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RHIC - the First Heavy lon Collider

BNL Electron Beam lon Source

- b ol 3

@ After continuous improvements and
upgrades RHIC reached 25x design
luminosity, exceeding “RHIC II” goal

Au-Au luminosity with 3-D cooling
o Wide energy range (Vs = 7 — 200 GeV) g

0 :(”4 R -

o Capability of colliding different species with e
detector in center-of-mass frame

@ 6 modes (Au+Au, d+Au, Cu+Cu, Cu+Au,
U+U, 3He+Au) and 15 energies to date

@ Unparalleled flexibility of operation:
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@ Ongoing upgrades:

0 6 12 I8 24 30 6 a2 48

H Time |h)
Q 56 MHz SRF cavity ’go compress vgrtgx and 56 MHZ GUarer Wae SRR
increase usable luminosity (commissioned) -

@ Low Energy RHIC electron Cooling:
3 — 10x Au-Au luminosity for Vs, < 20 GeV
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RHIC - the First Heavy lon Collider

@ After continu
upgrades RF
luminosity, e
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o Wide energy

o Capability of
detector in ce

@ 6 modes (Au
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RHIC explores the Phases of Nuclear Matter

LHC: High energy collider at CERN with
13.8 - 27.5 times higher beam energy:
Pb+Pb, p+Pb, p+p collisions only.

FAIR & NICA: Planned European
facilities at lower energies.

RHIC: Spans largest swath of the phase
diagram in the preferred collider mode.

Message

RHIC is perfectly suited to explore the
phases of nuclear matter and the
perfectly liquid quark-gluon plasma.

If RHIC did not exist, someone would

have to build it (...but no one could
afford it - a >$2B value!)
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Quark-Gluon Plasma
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RHIC - the First Polarized Proton Collider

Absolute Polarimeter (HT jet)

@ Successful development of all necessary
tools to accelerate polarized protons in
the injector and in RHIC (polar. source,
[partial] Siberian snakes, polarimeters) @\

~

Spin Rotators
(longitudinal polarization)

@ Polarized proton collisions in RHIC: 8
o V=200 GeV: P~59%, L, ~0.5x10%2cm-2s-1 |
o Vs=510 GeV: P~52%, L, ~2.5x1032cm-2s-"

$00
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@ Ongoing upgrade: Luminosity increase
with electron lenses to compensate for
beam-beam interactions (commissioned)
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RHIC Detectors

PHEENIX

~580 collaborators from 13 countries

~550 collaborators from 15 countries
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Recent RHIC Detector Upgrades

K200 with ISTPXL 2+PX1 1

0 02 04 06 08

Fully reconstruct open charm/beauty
hadrons with displaced vertex

STAR-HFT
LA

Kaon with ISTPXL2«PXL 1

0 02 04 06 08 1 12 14

i p (GaVic)

p (GeVic)

Distance of Closest Approach to Vertex
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Muon Tele _,pe'?; Enhances triggering
L SRS USE capabilities for
S = | heavy quarkonia

- Enables forward y
detection in Run15

PHENIX
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Main RHIC Discoveries
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= Hot nuclear matter produced in high energy nuclear collisions is a quark-
gluon plasma (QGP) containing individually flowing quarks, not quarks
bound into baryons and mesons.
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Main RHIC Discoveries

= Hot nuclear matter produced in high energy nuclear collisions is a quark-
gluon plasma (QGP) containing individually flowing quarks, not quarks
bound into baryons and mesons.

= The QGP is a strongly coupled, nearly “perfect” liquid with n/s near the
holographic quantum limit.

= Light quarks (u,d,s) and maybe even c-quarks are thermalized in the QGP
and recombine into hadrons during hadronization.

= Energetic quarks and gluons moving through the QGP rapidly lose energy
by rescattering, causing jets to be strongly quenched.

= Charmonium states “melt” in the QGP due to color screening and ionization.

= Gluon spin contributes a sizable fraction to the proton spin.
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Standard model of the “Little Bang”

A 2 final detected
Relativistic Heavy-Ion Collisions particles.distributions

Kinetic
freeze- oul/;

_’ TG
Initial energy

density
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§
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collision
overiap zone

pre=
equilibrium viscous hydrodynamics |
cynamics | b free streaming

’ =

collision evolution
t~0fm/c t~1fm/c t ~ 10 fm/c t ~ 10'° fm/c
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= \What do the data tell us about the initial conditions for the hydro-
dynamic expansion? Can we determine them unambiguously?
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New Questions

= \What do the data tell us about the initial conditions for the hydro-
dynamic expansion? Can we determine them unambiguously?

= At what scale does the transition from asymptotically free quarks
and gluons to the QGP liquid occur?

= \What is the smallest collision system that behaves collectively?

= Does the QCD phase diagram contain a critical point? Does the HG-
QGP transition become a first-order phase transition for large ps?

= \What can jets and heavy flavors tell us about the structure of the
strongly coupled QGP at different scales?

= \What do the quarkonium (and other) data tell us about quark
deconfinement and hadronization?

= Can we find evidence for chiral symmetry restoration?
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Hot QCD matter properties

Which properties of hot QCD matter can we hope to determine?
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Hot QCD matter properties

Which properties of hot QCD matter can we hope to determine?

Easy :
for Tuv = E&,p,S Equation of state

LQCD
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Hot QCD matter properties

Which properties of hot QCD matter can we hope to determine?

Easy :
for TNv <~ E&,p,S Equation of state

LQCD

== Jd4x<Txy(x)Txy(0)> . Momentum transport

N 4 2 SC - a+i = a+
q=—’]f,3“_1Rjdy (UTF* (" )UF (0))
4r’ C -/ — pat .- a+
%jdy (iU"a” A (y UA™ (0))

~

Gluon structure of the QGP .

4

D= 3’;‘;? [az (Ui P @evr™ o))
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Hot QCD matter properties

Which properties of hot QCD matter can we hope to determine?

Easy T & E,p,S Equation of state

for Hv
LQCD
1
n= ?Jd4x<Txy(x)Txy(0)> . Momentum transport
A 47Z2asc = ati/  — a+
6]=T_1Rjdy (UTF*' (y)UF" (0))
. 4r’aC el :
TN e Jdy (iU 0 A" GUA" )| Glyon structure of the QGP
47tas a0i a i
DT [ar(UF @y ur O)")
Hard
for 1% (k) = J‘a"‘xe”“ <j“(x)jv(0)> QGP Radiance: Quark currents in the QGP
LQCD
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Hot QCD matter properties

Which properties of hot QCD matter can we hope to determine?

Easy
for
LQCD

Hard
for
LQCD

Easy
for
LQCD

T & E,p,S Equation of state

JIY

n= % j d*x(T, ()T, (0))

A 4 ? C = ati/  — a+
q=—’]f,3“_isjdy (UTF* (" )UF (0))
4r’o,C N
%jdy (iU"a” A (y UA™ (0))

Q>
[l

D=

43’;5? [az (Ui P @evr™ o))

: Momentum transport

~

Gluon structure of the QGP .

" (k)= Jd“xe”“ <j“(x)jv(0)> QGP Radiance: Quark currents in the QGP

m, =—lim iln(UTE“ (x)UE*(0))

[xl—o0 | X |
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Screening mass: Color screening
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Beyond discovery: n/s

Gluon density fluctuations

I »

Nucleon density fluctuations

e

Yy

't'

n/s determination from data depends on
assumption of the the scale of graininess
of the density of the colliding nuclei.

Is it the nucleon size (~1 fm) or the gluon
saturation scale (Qs ~ 0.1 fm)? Or some

other scale?

Gale, Jeon, Schenke, Tribedy, Venugopalan, arXiv:1209.6330

o’ i v, — | ATLAS 30-40%, EP
; 02 Vs --

B — B —

Brogkhaven Science Associates
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Shape Matters: U+U Collisions

0.034 = |p- * U+U i
T goema A : STAR Preliminary
B
.
-
. f !
. t
0.018F | > D4V
,gmlm..m.ml ~ Top0.1%2ZDC [ « Au+Au |

0.9 1.0 1.1 DTS T
Y Mult/<Mult>( \’ © Collision centrality (ZDC)

e U+U collisions use geometry to “engineer” 20% increase in energy density in
very central collisions by selecting tip-tip orientation enhanced samples

¢ |P-Glasma model, assuming saturated gluon densities in the colliding nuclei, is
consistent with the observation

Bjoern Schenke, et al. arXiv:1403.2232 Maciej Rybczynski, et. al. PRC87,044908(13)

BROOKHRAVEN
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Fluctuation spectrum

Can the power spectrum of v, be used to determine scale of parton density
fluctuations in colliding nuclei as function of x ?

Power spectrum in ultracentral Pb+Pb collisions
| | ' . ' ] Data: CMS. Theory: U. Heinz, arXiv:1304.3634

6000 — WM AP5 . A
| R SRR o CMS preliminary
< PbPb Vs, = 2.76 TeV
X, 4000 I~ 0-0.2% centrality
gi e = VISH2+1 Hydro
- — Glauber, 1)/s = 0.08
£ [ = ——— MCKLN, n/s = 0.20
g 002 5 %
=
= 10 40 100 200 400 800 %
Multipole moment I 0.01 ?
=
The RHIC/LHC advantage: 1o |03 <meacae —
There are many knobs to turn, not T =
just a single universe to observe. T T T

Data (vs/v2) indicate more fluctuations relative to global geometric
effects than predicted by nucleon-scale granularity of initial state.

BROOKHEVEN
VI TONA | 8] KA KY
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How small can a QGP droplet be?

0.251-

PHENIX arXiv:1404.7461

ALICE Phys. Lett. B726, 164 (2013)

III|IIII|IIII|IIII|IIII|Illl|llll|ll__llII|IIII|IIII|IIII|IIII|IIII|IIII|II_
[ 0-5% d+Au @ 200 GeV (a)] 0-20% p+Pb @ 5.02 TeV (b)]
[ W pion + [ [ pion ]
foproton : + O proton
istous hydro.
a s = 1.0/(4x) I EeSP _
— pion 1 0O
i —Proton 10 FDQIQ | | | | LA
05 7.071520253.035 05101520 253035
P, (GeV/c) P, (GeV/c)

TSRl
2 Associates

Mass ordering of v,(p) for identified

1~ charged particles is observed in both

L

d+Au and p+Pb — consistent with
hydrodynamic flow

BROOKHEVEN
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How small can a QGP droplet be?

PHENIX arXiv:1404.7461 ALICE Phys. Lett. B726, 164 (2013)

0,25 T T T T T T T T T T T Mass ordering of v,(p) for identified
[ 0-5% d+Au @ 200 GeV (a); 0-20% p+Pb @ 5.02 TeV (b)I/ charged particles is observed in both

0.20:- m pion 1T 0O pion _'/ d+Au and p+Pb — consistent with
1 o proton ) hydrodynamic flow

- @ proton

§ &

N
0.10 ] .
Sus hydro Very successful 3-week run resulted in 2.2
0.05F /s = 1.0/(4x) I EeSP i 3blIIlon reco.rclled (PHENIX) minimum !mas
i — pion 1 0.8 1 He+Au collisions — plus a sample using a
[ —Proton = |© QI ] new centrality trigger — in 2014.
05101520253035 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2
p. (GeV/c) p. (GeV/c) Powerful additional handle on connection of
Pr T coordinate space €3 to momentum space vs.
Analysis under way
SHe+Au hydrodynamic simulation l
t=1.00 fm/c | t=1.75fm/c | t=5.00 fm/c 34
.o 32 ;
3 3 3
g [ 28 =
5 26 %
° 24 §
5 22
0" [ i 2 g‘
> a8 =
. 16
e e e 14 JOKHEVEN

4 2 0 2 4

4 2 0 2 4 .
- . s ." x coordinate [fm)

x coordinate [fm]) x coordinate [fm]
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How small can a QGP droplet be?

PHENIX arXiv:1404.7461 ALICE Phys. Lett. B726, 164 (2013)
P A A L A A0 L) RS LRSS RN R RARRS R R Mass ordering of v,(p) for identified
: 0-5% d+Au @ 200 GeV (a): 0-20% p+Pb @ 5.02 TeV (b)/ Charged partiCIeS is observed in both
0.20[ M pion 1 O pion _'/ d+Au and p+Pb - consistent with
- @ proton O proton ] hydrodynamic flow
N0-15'_ : + i
> I
0.10f ]
is€ous hydro. T ] Very successful 3-week run resulted in 2.2
0.05F s = 1.0/(4n) 1 E—P ] billion recorded (PHENIX) minimum bias
r — pion 1 0.8 ] SHe+Au collisions — plus a sample using a
[ —Proton = |© QI ] new centrality trigger — in 2014.
05101520253035 0.5 1.0 1.5 2.0 2.5 3.0 3.5 = :
p. (GeV/c) p. (GeV/c) Powerful additional handle on connection of
T T coordinate space €3 to momentum space vs.
How short is the mean free path? Analysis Gl
SHe+Au hydrodynamic simulation l
t=1.00 fm/c | t=1.75 fm/c  t=5.00 fm/c
E 8
© e
5 %
o
- [
A L ' 1 L hdd Par Y el P Y i
Brookhay 4 2 0 2 4 4 2 0 2 4 4 2 0 2 4 4 2 0 2 4 JOKHRVEN

x coordinate [fm] x coordinate [fm) x coordinate [fm)] x coordinate [fm)]



Charm quark flow: D¢,

STAR: PRL 113. 142301 HFT Projection for Au+Au runs 14+16
[T ! J 0 T ' T fhor " ' ' ' P
2["STAR Au+Au — D° + X @ 200 GeV Central 0-10% os [ 200 GeV AusAu Collisions. -+ Hydro E
— TAMU : - (0°: 18 min bias events; ly|<0.5) — vd‘(‘:')“f‘i '(‘:”‘,’"’“’ -
----- SUBATECH - mp——
1 5 - Tonno ] 20 L_ J( }=0 ]
Duke wshad.  _ E
— Duke w/o shad. 4 15
B L ANL i

—
o
T L

(&)
T L

-
-~ .
Y-

0 | 1 | | 1 1 1

N
XYIIIIYIIIITIYIYIY

o
Y T

o
N
ESN
»
o

Anisotropy Parameter v, (%)

1 2 3 4 5 6
P; (GeV/c) Transverse Momentum p_(GeV/c)

First measurement of reconstructed

charmed hadron radial flow at RHIC: Quantify charm quark flow

and recombination with
high-statistics datasets
Probe c,b quark diffusion

—-————mm

Brogkhaven Science Associates 17
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Beyond discovery: g/

r—0—= PHENIX Au+Au 200 GeV, 20-30% cantral
s AMY + 3410 Hydro o,=0.39 b=7.5Im
— AMY + @lastic + 341D Hydro «,=0.29 b=7.5Im

1
09 +
o8 -
0.7 ¢
06}
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10.1 3
0

LT it
03} + el ]

S 0.9 | v=ewe PHENIX AusAu 200 GeV, 0-10% central
0.8 | meme AMY + 341D Hydro a,=0.39 b=2.4 fm
0.7 F| —— AMY «+ elastic + 341D Hydro a,=0.29 b=2.4 Im
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Quarkonium melting: mp

Color
1.41 ~ screening
é ~  ® ALICE (Po-Po V50 = 2.76 TeV), 25<y<4 global sys.= + 12.5% Q VQQ Q
{9/ @ PHENIX (Au-AuyS, = 200 GeV), 12<yi<22 global sys.= +9.2% ‘ R R _‘ —_
O PHENIX (Au-Auys,,, = 200 GeV), 14035 global sys.= + 129% - mp gT

1 lonization
l # + + T'qQ

ey
I.TTI

0.8

0.6

0.4— 4# ] \ Q VQQ Q
0.2— + + 4_ ® m

0 pdaJd o g g b g g Lo | T T T W T T | ] g

0 200 400 600 800 1000 1200 1400 In~2niTe

dN /i _

Stronger J/Y suppression at RHIC than LHC:
c-cbar recombination explains the data.

Recombination

Resolved measurement of Upsilon states
required at RHIC (recomb. negligible)
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Probing scales of QGP structure

How does the perfect
fluidity of the QGP
emerge from the
asymptotically free
theory of QCD?

&)
S

,,,,,, TN

““PH . ENIX

10

microscope resolving power [1/fm]
r
-
@
®
e
(&
\3\
L
Q >,
%
®
/

&‘“ Jets probe sub-thermal
- RHIC 582 length scales
L 4 ¢ » - -
2 Y Upsilon states probe
Y(3s) ¢ . thermal length scales
— Qe |
! Te oTe 3T

medium temperature
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Equation of State: v,

Or—"10-40% Céntrality __

-0.021- ; ,J/l
-0.04— {/ a) antiproton-

—4

T 0.01+ I\ b) proton
> -\ .
8 \

E O -';:' p————
i ‘ o i

0.01 !

Phys. Reuv. Lett, 112 (2014) 162301

Brogkhaven Science Associates

¢  BES(10-40% oemlamyi
J BES-(10-15% centrality

B BESNH(10-15% oenualilyJ

10°

Vs GeV

Minimum in vi is consequence of the
softening of the equation of state in
the transition region of the phase
diagram.

Precision measurement requires BES-II
data allowing dv,/dy to be measured

with tightly specified centrality.

BROOKHAVEN
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Quest for critical fluctuations

200 MeV (N) Possible scenario

baseline

1 GeV "B 11 19

- Au + Au Collisions at RHIC
4 ] ,;::::::::;.:;;:.J --------- ———————
0.2 o N *
g 8 = o B &’ e
- § g 0.8 R STAR net-proton
o o ® 9 i ® 0.5% O 7080%
% Q06 4 (lyi<0.5; 0.4<p,<0.8iGeV/c))
-0.2 ‘ 3 : I BES! e
' £ ‘ 0.4 UrQMD (0 - 5%)
—04 , NI | I|Phys Rev. Lett. 112 (2014) 32302 | =~~~ Poisson
-04 -02 00 02 04 Y —
H Colliding Energy Vs, (GeV)
Sign change of net baryon kurtosis k4 DUV IEsAWCN
NATIONAL LABORATORY
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Ag from n0 and jets

W. Vogelsang et al., PRL 113 (2014) 012001
E.R. Nocera et al., Nucl. Phys. B887 (2014) 276

=V p_ (GeV/c)

0 5 10 15
L 1 1 L l L] Al 1 ) I L L
® PHENIX Prelim 2", Run 2005 2009 : -
PHENLX e hift incortainty
— DSSVrefor 2’
0.04 o STAR Prelim. ja. Run 2009
i STAR shift uncortadnty . A
— DSSVr+ o1 jet P -~
3 " . o~
- A~
< 002} AT
] + ,+
= I .ﬂ#/_.u*.'
0 ‘M-m, 4
i <
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de Ag(x)

S ool

New QCD global fits result in first

clear observation of a large gluon

contribution to the proton spinin a
definite x-range (0.05 <x < 1).

v I L B A § l T T T T I TrTT I LA & 'I T F T F l
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2 { dx Ag(x)

Large further improvements
expected from Run 13/ 15 data
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Transverse spin physics

Z 0.12—Expected Asymmetries of Prompt Photons | 2 >
<
01 —_— >~
: - < 08
0.08}~ adz
arXiv: 1208.1962 <
0061 —— Tor PP %7 0.6
- T+ SIDIS new
0.04 T, SIDIS old
0.4
0.02}
O G TS s 0s
-0.02
-0.04
-0.06 Vs = 200 GeV, P=60%, Ldt=50 pb"', 1zl<40cm
! 0.2~
-0.08—! !
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0.8
Xg

ll)

Probes gluon saturation ,

L?®: 50 pb™1z1<40 cm, P=60%
LP*": 190 nb™' 121<40 cm, P=60%

++§§il

1!‘ LL‘ LA l;l;' 1‘ ‘111 l

1

156 2 25 3 35 4 45
P, (GeV/c)

New insight in Ax: forward photon and diffractive capabilities

Initial exploration of polarized p+A.
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Completing the RHIC science mission

Status: RHIC-Il configuration is complete
e Vertex detectors in STAR (HFT) and PHENIX
e Luminosity reaches 25x design luminosity

Plan: Complete the RHIC mission in 3 campaigns:

= 2014-16: Heavy flavor probes of the QGP
using the micro-vertex detectors
Transverse spin physics

= 2017: Install low energy e-cooling

= 2018/19: High precision scan of the QCD phase
diagram & search for critical point

= 2020: Install sSPHENIX upgrade

= 2021/22: Precision measurements of jet
quenching and quarkonium suppression

m 2023-25: Transition to eRHIC

BROOKHRVEN
NATIONAI ABORA RY
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Completing the RHIC science mission

Status: RHIC-Il configuration is complete
e Vertex detectors in STAR (HFT) and PHENIX
e Luminosity reaches 25x design luminosity

Plan: Complete the RHIC mission in 3 campaigns:

= 2014-16: Heavy flavor probes of the QGP
using the micro-vertex detectors
Transverse spin physics

= 2017: Install low energy e-cooling

= 2018/19: High precision scan of the QCD phase
diagram & search for critical point

= 2020: Install sSPHENIX upgrade

= 2021/22: Precision measurements of jet
quenching and quarkonium suppression

m 2023-25: Transition to eRHIC

RHIC remains a unique discovery facility

- BROOKHRVEN
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Low Energy e-Cooling for Au+Au

e e The Phases of QCD
LHC Experiments

@ Cooling of low energy heavy ion beams
(3.8—10 GeV/n) with bunched electron
beam increases luminosity by up factor 10

xperiments

Temperature

Quark-Gluon Plasma

@ Enables a QCD critical point search with
second, high luminosity Beam Energy Scan

@ Use Cornell-built DC gun and existing SRF C N —
cavity for cost effective implementation Superconductor

0 MeaV ) A

!;I:)", on Chemucal Potential
Search for a QCD Critical endpoint via low-
energy scan in RHIC-Il era

@ Start commissioning in 2018

/\

¥ 31--‘4'.::1:1'

1
|

Yellow Au beam

—

ﬁ-":‘f:ﬂ'::':ﬁ‘ — sy
|_|—|||| | e

Blue Au beam : ety

electron beam
BROOKHRVEN
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SPHENIX upgrade

An (almost) complete makeover of the
PHENIX detector to make precision
measurements of hard probes of the QGP
at strongest coupling (near T¢) and with
the largest resolution range

s 129~ e T
x , -
1[ ;? | ] PHENIX: SPHENIX: _

. l[ ____________________ -

l —= direct y = directy ]

0.8[+ ] = € - b-jet _:
3 - - jet .
s ?Q‘ "_’_f_‘}—"‘ ~ h B
0.4:'# | A A A=A A—A-A-A—AtA-A—k “444%,}{_ 4

Built around the BaBar solenoid 0 ! | 1 | AP I

— now being shipped to BNL 0 10 20 30 40 50 60 70 80
P, (GeVlc)

BROOKHRVEN
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What RHIC will deliver
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What RHIC will deliver

= Campaign 1:
* QCD equation of state at uyg =0
* Precision measurement of n/s(T=T,)
* Measurement of heavy quark diffusion constant D¢
* Determination of the scale of nuclear granularity
* Origin of single spin asymmetries
» Ag, flavor dependence of spin in the quark sea
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What RHIC will deliver

= Campaign 1:
* QCD equation of state at uyg =0
* Precision measurement of n/s(T=T,)
* Measurement of heavy quark diffusion constant D¢
* Determination of the scale of nuclear granularity
* Origin of single spin asymmetries
» Ag, flavor dependence of spin in the quark sea
= Campaign 2:
* QCD equation of state at ug > 0
 Discovery of the QCD critical point, if within the accessible range
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What RHIC will deliver

= Campaign 1:
* QCD equation of state at uyg =0
* Precision measurement of n/s(T=T,)
* Measurement of heavy quark diffusion constant D¢
* Determination of the scale of nuclear granularity
* Origin of single spin asymmetries
» Ag, flavor dependence of spin in the quark sea
= Campaign 2:
* QCD equation of state at ug > 0
 Discovery of the QCD critical point, if within the accessible range
= Campaign 3:
* Precision measurement of g*(T=T¢) and e?(T=T.)
» Scale dependence of QGP structure

* Many insights we can’t even imagine yet !
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Our Plan for RHIC Operations

Fiscal year ‘ 2012 ‘ 2013 | 2014 ‘ 2015 ‘ 2016 ‘ 2017 ‘ 2018 | 2019 | 2020 | 2021 | 2022 | 2023

I
RHIC I/l operations

LE cooling RHIC with sPHENIX

RHIC with

RHIC

Low Energy RHIC electron Cooling (LEReC)

SPHENIX

R&D/PED/Design (CDO-CD3) [ Projects/Construction (CD3-CD4) [ NG Operations/physics [ NG

@ Continue RHIC Il operation through FY16

@ Installation of Low Energy RHIC electron Cooling during FY17
@ Run the second Beam Energy Scan (BES Il) in FY18 and FY19
@ Installation of sSPHENIX detector during FY20

@ Run RHIC with STAR and sPHENIX in FY21 and FY22

.o  BROOKHRUVEN
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Our Plan for RHIC Operations

Fiscal year ‘ 2012 ‘ 2013 | 2014 ‘ 2015 ‘ 2016 ‘ 2017 ‘ 2018 | 2019 | 2020 | 2021 | 2022 | 2023
|
RHIC I/l operations RHIC with LE cooling RHIC with sPHENIX
RHIC —

Low Energy RHIC electron Cooling (LEReC)

SPHENIX

R&D/PED/Design (CDO-CD3) [ Projects/Construction (CD3-CD4) [ NG

@ Continue RHIC Il operation through FY16

Operations/physics [ NG

@ Installation of Low Energy RHIC electron Cooling during FY17
@ Run the second Beam Energy Scan (BES Il) in FY18 and FY19

@ Installation of sSPHENIX detector during FY20
@ Run RHIC with STAR and sPHENIX in FY21 and

FY22

@ Plan can be executed within constant level of effort budget scenario
@ Tremendous scientific payoff with continued discovery potential
BROOKHAVEN
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Thank You !
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Proposed run schedule for RHIC
Years | Beam Species and | Science Goals | New Systems _____

Heavy flavor flow, energy loss,

Electron lenses

U8 S LT thermalization, etc. 56 MHz SRF
2014 200 GeV Au+Au . .
3He+Au at 200 GeV Quarkonium studies STAR HFT
QCD critical point search STAR MTD
Pol. p+p at 200 GeV Extract n/s(T) + constrain initial
p+Au, p+Si at 200 GeV quantum fluctuations i
2015-16  High statistics Au+Au More heavy flavor studies zl;lllerz(ngnep-go?lgn test
Pol. p+p at 510 GeV Sphaleron tests 9
or Aut+Au at 62 GeV Transverse spin physics
2017 No Run Low energy e-cooling
upgrade
i, . STAR ITPC upgrade
201819 520 GeV Au+Au (BES-2)  of o for ACD critical point and onset b iia) commissioning of
sPHENIX (in 2019)
Complete sPHENIX
2020 No Run installation
STAR forward upgrades
200 GeV Au+Au Jet, di-jet, y-jet probes of parton
2021-22  with upgraded detectors transport and energy loss mechanism sPHENIX
Pol. p+p, p+Au at 200 GeV  Color screening for different quarkonia
2023-24 No Runs Transition to eRHIC
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Dark photons?

£290% CL

T
PHENIX: excellent electron ID
g and e*e” mass resolution — huge
LN sample of i° Dalitz decays
10° zﬁl?,_ et
C | A1 (MAMI) LA N
| e~ \
h electron g-2 20 107
KLOE .
.| COSY-WASA\
0 muon g-2 90% CL
HADES
- .\‘1 i
! i — | 10°
] PHENIX . /.
10°}
. PHENIX arXiv:1409.0851 BaBar arXiy:1406.2980
L1l 1*' L1 1 Lx; kit ‘Ll ‘11 L) LA Al 11l 10". — - A aaal A A V- A A llAALLl
10 20 30 40 50 60 70 80 90 100 102 10"

10
m, [MeVic?) m,. (GeV)

Recent combined limits - WASA, HADES, A1, BaBar, PHENIX, NA62 - rule out essentially all
parameter space for the minimal version of a dark photon explaining the (g-2), anomaly
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dN/dM,, (c*/GeV)

Ratio to Cocktail

Dileptons: Chiral symmetry restoration

| . | ' |
10l-« AU + Au |s,, =200 GeV (MinBias)
i p$>0.2 GeV/c 7°, ¢, JAp, Y’
) m®l<1 ,Iyeel<1 n. M, o, bb, DY
107 ¢ PYTHIA
—— Cocktail Sum
107}
10° : i
. | ‘ I
2.5 - (b) —— Rapp: broadened p +QGP
2 ----- PHSD:broadened p +QGP
1.5
1+
0.5 -
0 1
Meo (%eV/cZ)
ememe—————)
)
LMR IMR
— JIY, DY, Y(1,2,3
p%e*‘e- q q%l"'l' ’ ’ ( yh=)y )

Phys. Rev. Lett, 113 (2014) 022301

Broockhaven Science Associates

Observed excess at low mass
consistent with broadening p

Observing chiral symmetry
restoration from dileptons:
hadronic structure (vector meson
peaks) dissolves into continuous
thermal distribution

Need to subtract dominant charm
contributions to isolate thermal
QGP radiation

Will be measured as function of
beam energy

i BROOKHEVEN



Latest Lattice Gauge Results

Now a reliable guide for many (static) medium

properties:
Chiral symmetry breaking Equation of state
o3srrrrrrrrrrrr 1T T T T T T T T T T
10 . N 4 X d - cg non-int. limit
08! 0.30
N
|§ 0.6} 0.25
' 0.20
0.2}
0.15
100 120 140 160 180 200 220 T[Mev]

| S N SN N 'S U U U U U U SN S U U N U U U ———

0.10
-t Slanad 130 170 210 250 290 330 370
HotQCD, arXiv:1407.6387 A ‘



http://arxiv.org/pdf/1407.6387v1.pdf
http://arxiv.org/pdf/1407.6387v1.pdf

From Data to Insight: QCD EoS

= Unbiased model - data comparison enabled by state-of-the-art
model parametrization via Gaussian emulators

« Equation of state determination from comparison of hydrodynamic
calculations and RHIC data.

03 =

01 |-

150 200 250 300 150 200 250 300 350
T (MeV) BROOKHAVEN
ABORATORY
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http://arxiv.org/abs/1303.5769

From Data to Insight: QCD EoS

= Unbiased model - data comparison enabled by state-of-the-art
model parametrization via Gaussian emulators

» Equation of state determination from comparison of hydrodynamic
calculations and RHIC data.
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