Completing the RHIC Science Mission

The Facility

Brookhaven Science Associates

RHIC – the First Heavy Ion Collider

- After continuous improvements and upgrades RHIC reached 25x design luminosity, exceeding "RHIC II" goal
- Unparalleled flexibility of operation:
 - Wide energy range ($\sqrt{s_{NN}} = 7 200 \text{ GeV}$)
 - Capability of colliding different species with detector in center-of-mass frame
 - 6 modes (Au+Au, d+Au, Cu+Cu, Cu+Au, U+U, ³He+Au) and 15 energies to date

Ongoing upgrades:

- 56 MHz SRF cavity to compress vertex and increase usable luminosity (commissioned)
- Low Energy RHIC electron Cooling: 3 – 10x Au-Au luminosity for √s_{NN} < 20 GeV

BNL Electron Beam Ion Source

Au-Au luminosity with 3-D cooling

RHIC – the First Heavy Ion Collider

RHIC explores the Phases of Nuclear Matter

LHC: High energy collider at CERN with 13.8 - 27.5 times higher beam energy: Pb+Pb, p+Pb, p+p collisions only.

FAIR & NICA: Planned European facilities at lower energies.

RHIC: Spans largest swath of the phase diagram in the preferred collider mode.

Message

RHIC is perfectly suited to explore the phases of nuclear matter and the perfectly liquid quark-gluon plasma.

If RHIC did not exist, someone would have to build it (...but no one could afford it - a >\$2B value!)

RHIC – the First Polarized Proton Collider

- Successful development of all necessary tools to accelerate polarized protons in the injector and in RHIC (polar. source, [partial] Siberian snakes, polarimeters)
- Polarized proton collisions in RHIC:
 √s=200 GeV: P~59%, L_{peak}~0.5x10³² cm⁻²s⁻¹
 √s=510 GeV: P~52%, L_{peak}~2.5x10³² cm⁻²s⁻¹
- Ongoing upgrade: Luminosity increase with electron lenses to compensate for beam-beam interactions (commissioned)

RHIC Detectors

~580 collaborators from 13 countries

~550 collaborators from 15 countries

Recent RHIC Detector Upgrades

Completed on schedule and below cost

Enhances triggering capabilities for heavy quarkonia

Enables forward γ detection in Run15

The Science

Brookhaven Science Associates

 Hot nuclear matter produced in high energy nuclear collisions is a quarkgluon plasma (QGP) containing individually flowing quarks, not quarks bound into baryons and mesons.

- Hot nuclear matter produced in high energy nuclear collisions is a quarkgluon plasma (QGP) containing individually flowing quarks, not quarks bound into baryons and mesons.
- The QGP is a strongly coupled, nearly "perfect" liquid with η/s near the holographic quantum limit.

- Hot nuclear matter produced in high energy nuclear collisions is a quarkgluon plasma (QGP) containing individually flowing quarks, not quarks bound into baryons and mesons.
- The QGP is a strongly coupled, nearly "perfect" liquid with η/s near the holographic quantum limit.
- Light quarks (u,d,s) and maybe even c-quarks are thermalized in the QGP and recombine into hadrons during hadronization.

- Hot nuclear matter produced in high energy nuclear collisions is a quarkgluon plasma (QGP) containing individually flowing quarks, not quarks bound into baryons and mesons.
- The QGP is a strongly coupled, nearly "perfect" liquid with η/s near the holographic quantum limit.
- Light quarks (u,d,s) and maybe even c-quarks are thermalized in the QGP and recombine into hadrons during hadronization.
- Energetic quarks and gluons moving through the QGP rapidly lose energy by rescattering, causing jets to be strongly quenched.

- Hot nuclear matter produced in high energy nuclear collisions is a quarkgluon plasma (QGP) containing individually flowing quarks, not quarks bound into baryons and mesons.
- The QGP is a strongly coupled, nearly "perfect" liquid with η/s near the holographic quantum limit.
- Light quarks (u,d,s) and maybe even c-quarks are thermalized in the QGP and recombine into hadrons during hadronization.
- Energetic quarks and gluons moving through the QGP rapidly lose energy by rescattering, causing jets to be strongly quenched.
- Charmonium states "melt" in the QGP due to color screening and ionization.

- Hot nuclear matter produced in high energy nuclear collisions is a quarkgluon plasma (QGP) containing individually flowing quarks, not quarks bound into baryons and mesons.
- The QGP is a strongly coupled, nearly "perfect" liquid with η/s near the holographic quantum limit.
- Light quarks (u,d,s) and maybe even c-quarks are thermalized in the QGP and recombine into hadrons during hadronization.
- Energetic quarks and gluons moving through the QGP rapidly lose energy by rescattering, causing jets to be strongly quenched.
- Charmonium states "melt" in the QGP due to color screening and ionization.
- Gluon spin contributes a sizable fraction to the proton spin.

Standard model of the "Little Bang"

NATIONAL LABORATO

What do the data tell us about the initial conditions for the hydrodynamic expansion? Can we determine them unambiguously?

- What do the data tell us about the initial conditions for the hydrodynamic expansion? Can we determine them unambiguously?
- At what scale does the transition from asymptotically free quarks and gluons to the QGP liquid occur?

- What do the data tell us about the initial conditions for the hydrodynamic expansion? Can we determine them unambiguously?
- At what scale does the transition from asymptotically free quarks and gluons to the QGP liquid occur?
- What is the smallest collision system that behaves collectively?

11

- What do the data tell us about the initial conditions for the hydrodynamic expansion? Can we determine them unambiguously?
- At what scale does the transition from asymptotically free quarks and gluons to the QGP liquid occur?
- What is the smallest collision system that behaves collectively?
- Does the QCD phase diagram contain a critical point? Does the HG-QGP transition become a first-order phase transition for large µ_B?

- What do the data tell us about the initial conditions for the hydrodynamic expansion? Can we determine them unambiguously?
- At what scale does the transition from asymptotically free quarks and gluons to the QGP liquid occur?
- What is the smallest collision system that behaves collectively?
- Does the QCD phase diagram contain a critical point? Does the HG-QGP transition become a first-order phase transition for large μ_B?
- What can jets and heavy flavors tell us about the structure of the strongly coupled QGP at different scales?

- What do the data tell us about the initial conditions for the hydrodynamic expansion? Can we determine them unambiguously?
- At what scale does the transition from asymptotically free quarks and gluons to the QGP liquid occur?
- What is the smallest collision system that behaves collectively?
- Does the QCD phase diagram contain a critical point? Does the HG-QGP transition become a first-order phase transition for large μ_B?
- What can jets and heavy flavors tell us about the structure of the strongly coupled QGP at different scales?
- What do the quarkonium (and other) data tell us about quark deconfinement and hadronization?

- What do the data tell us about the initial conditions for the hydrodynamic expansion? Can we determine them unambiguously?
- At what scale does the transition from asymptotically free quarks and gluons to the QGP liquid occur?
- What is the smallest collision system that behaves collectively?
- Does the QCD phase diagram contain a critical point? Does the HG-QGP transition become a first-order phase transition for large µ_B?
- What can jets and heavy flavors tell us about the structure of the strongly coupled QGP at different scales?
- What do the quarkonium (and other) data tell us about quark deconfinement and hadronization?
- Can we find evidence for chiral symmetry restoration?

Which properties of hot QCD matter can we hope to determine?

Which properties of hot QCD matter can we hope to determine?

NATIONAL LABO

Which properties of hot QCD matter can we hope to determine?

$$\begin{bmatrix} \mathsf{Easy} \\ \mathsf{for} \\ \mathsf{LQCD} \end{bmatrix} \begin{array}{l} T_{\mu\nu} \iff \mathcal{E}, p, s \quad \mathsf{Equation of state} \\ \hline \eta = \frac{1}{T} \int d^4 x \left\langle T_{xy}(x) T_{xy}(0) \right\rangle \quad \mathsf{Shear viscosity: Momentum transport} \\ \hline \eta = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle U^{\dagger} F^{a+i}(y^-) U F_i^{a+}(0) \right\rangle \\ \hline q = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle i U^{\dagger} \partial^- A^{a+}(y^-) U A^{a+}(0) \right\rangle \\ \hline e = \frac{4\pi \alpha_s}{N_c^2 - 1} \int dy^- \left\langle i U^{\dagger} \partial^- A^{a+}(y^-) U A^{a+}(0) \right\rangle \\ D = \frac{4\pi \alpha_s}{3N_c} \int d\tau \left\langle U^{\dagger} F^{a0i}(\tau) t^a U F^{b0i}(0) t^b \right\rangle \end{array}$$

Which properties of hot QCD matter can we hope to determine?

$$\begin{bmatrix} \mathsf{Easy} \\ \mathsf{for} \\ \mathsf{LQCD} \end{bmatrix} \begin{array}{l} T_{\mu\nu} \iff \mathcal{E}, p, s \quad \mathsf{Equation of state} \\ \hline \eta = \frac{1}{T} \int d^4 x \left\langle T_{xy}(x) T_{xy}(0) \right\rangle \quad \mathsf{Shear viscosity: Momentum transport} \\ \hline \eta = \frac{1}{T} \int d^4 x \left\langle T_{xy}(x) T_{xy}(0) \right\rangle \quad \mathsf{Shear viscosity: Momentum transport} \\ \hline \mathsf{Very} \\ \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{LQCD} \\ \hline e = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle U^{\dagger} F^{a+i}(y^-) U F_i^{a+}(0) \right\rangle \\ e = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle i U^{\dagger} \partial^- A^{a+}(y^-) U A^{a+}(0) \right\rangle \\ D = \frac{4\pi \alpha_s}{N_c} \int d\tau \left\langle U^{\dagger} F^{a0i}(\tau) t^a U F^{b0i}(0) t^b \right\rangle \\ \hline \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{LQCD} \\ \hline \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{for} \\ \mathsf{LQCD} \\ \hline \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{LQCD} \\ \hline \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{for} \\ \mathsf{LQCD} \\ \hline \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{LQCD} \\ \hline \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{LQCD} \\ \hline \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{LQCD} \\ \hline \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{for} \\ \mathsf{Hard} \\ \mathsf{for} \\$$

Which properties of hot QCD matter can we hope to determine?

$$\begin{bmatrix} \text{Easy} \\ \text{for} \\ \text{LQCD} \end{bmatrix} \begin{array}{l} T_{\mu\nu} \iff \mathcal{E}, p, s \quad \text{Equation of state} \\ \hline \eta = \frac{1}{T} \int d^4 x \left\langle T_{xy}(x) T_{xy}(0) \right\rangle \quad \text{Shear viscosity: Momentum transport} \\ \hline \eta = \frac{1}{T} \int d^4 x \left\langle T_{xy}(x) T_{xy}(0) \right\rangle \quad \text{Shear viscosity: Momentum transport} \\ \hline \Psi_{\text{Hard}} \\ \text{for} \\ \text{LQCD} \quad \begin{array}{l} \hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle U^{\dagger} F^{a+i}(y^-) U F_i^{a+}(0) \right\rangle \\ \hat{e} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle iU^{\dagger} \partial^- A^{a+}(y^-) U A^{a+}(0) \right\rangle \\ D = \frac{4\pi \alpha_s}{N_c} \int d\tau \left\langle U^{\dagger} F^{a0i}(\tau) t^a U F^{b0i}(0) t^b \right\rangle \end{array} \quad \begin{array}{l} \text{Momentum/energy diffusion:} \\ \text{Gluon structure of the QGP} \\ D = \frac{4\pi \alpha_s}{3N_c} \int d\tau \left\langle U^{\dagger} F^{a0i}(\tau) t^a U F^{b0i}(0) t^b \right\rangle \end{array} \quad \begin{array}{l} \text{Momentum/energy diffusion:} \\ \text{Gluon structure of the QGP} \\ D = \frac{4\pi \alpha_s}{3N_c} \int d\tau \left\langle U^{\dagger} F^{a0i}(\tau) t^a U F^{b0i}(0) t^b \right\rangle \end{array} \quad \begin{array}{l} \text{QGP Radiance: Quark currents in the QGP} \\ \hline \\ \text{Easy} \\ \text{for} \\ \text{LQCD} \end{array} \quad \begin{array}{l} m_D^{\mu\nu}(k) = \int d^4 x e^{ikx} \left\langle j^{\mu}(x) j^{\nu}(0) \right\rangle \quad \text{Screening mass: Color screening} \\ \end{array}$$

Brookhaven Science Associates

NATIONAL LABORATORY

Beyond discovery: η/s

Shape Matters: U+U Collisions

- U+U collisions use geometry to "engineer" 20% increase in energy density in very central collisions by selecting **tip-tip orientation** enhanced samples
- IP-Glasma model, assuming saturated gluon densities in the colliding nuclei, is consistent with the observation

Bjoern Schenke, et al. arXiv:1403.2232

Maciej Rybczyński, et. al. PRC87,044908(13)

Fluctuation spectrum

Can the power spectrum of v_n be used to determine scale of parton density fluctuations in colliding nuclei as function of x ?

The RHIC/LHC advantage: There are many knobs to turn, not just a single universe to observe. Power spectrum in ultracentral Pb+Pb collisions Data: CMS. Theory: U. Heinz, arXiv:1304.3634

Data (v_3/v_2) indicate more fluctuations relative to global geometric effects than predicted by nucleon-scale granularity of initial state.

How small can a QGP droplet be?

Mass ordering of $v_2(p_T)$ for identified charged particles is observed in both d+Au and p+Pb – consistent with hydrodynamic flow

How small can a QGP droplet be?

How small can a QGP droplet be?

Charm quark flow: D_{c,b}

Beyond discovery: q[^]

NATIONAL LABORAT

Quarkonium melting: mD

Probing scales of QGP structure

Equation of State: v₁

- Minimum in v₁ is consequence of the softening of the equation of state in the transition region of the phase diagram.
- Precision measurement requires BES-II data allowing dv₁/dy to be measured with tightly specified centrality.

Quest for critical fluctuations

Δg from π^0 and jets

W. Vogelsang et al., PRL 113 (2014) 012001E.R. Nocera et al., Nucl. Phys. B887 (2014) 276

New QCD global fits result in first clear observation of a large gluon contribution to the proton spin in a definite x-range (0.05 < x < 1).

Large further improvements expected from Run 13 / 15 data

Transverse spin physics

New insight in A_N : forward photon and diffractive capabilities Initial exploration of polarized p+A.

24

The Strategy

Brookhaven Science Associates

Completing the RHIC science mission

Status: RHIC-II configuration is complete

- Vertex detectors in STAR (HFT) and PHENIX
- Luminosity reaches 25x design luminosity

Plan: Complete the RHIC mission in 3 campaigns:

- 2014–16: Heavy flavor probes of the QGP using the micro-vertex detectors Transverse spin physics
- 2017: Install low energy e-cooling
- 2018/19: High precision scan of the QCD phase diagram & search for critical point
- 2020: Install sPHENIX upgrade
- 2021/22: Precision measurements of jet quenching and quarkonium suppression
- 2023-25: Transition to eRHIC

Completing the RHIC science mission

Status: RHIC-II configuration is complete

- Vertex detectors in STAR (HFT) and PHENIX
- Luminosity reaches 25x design luminosity

Plan: Complete the RHIC mission in 3 campaigns:

- 2014–16: Heavy flavor probes of the QGP using the micro-vertex detectors Transverse spin physics
- 2017: Install low energy e-cooling
- 2018/19: High precision scan of the QCD phase diagram & search for critical point
- 2020: Install sPHENIX upgrade
- 2021/22: Precision measurements of jet quenching and quarkonium suppression
- 2023-25: Transition to eRHIC

RHIC remains a unique discovery facility

Low Energy e-Cooling for Au+Au

- Cooling of low energy heavy ion beams (3.8–10 GeV/n) with bunched electron beam increases luminosity by up factor 10
- Enables a QCD critical point search with second, high luminosity Beam Energy Scan
- Use Cornell-built DC gun and existing SRF cavity for cost effective implementation
- Start commissioning in 2018

sPHENIX upgrade

Built around the BaBar solenoid – now being shipped to BNL An (almost) complete makeover of the PHENIX detector to make precision measurements of hard probes of the QGP at strongest coupling (near T_c) and with the largest resolution range

• Campaign 1:

- QCD equation of state at $\mu_B \approx 0$
- Precision measurement of η/s(T≈T_c)
- Measurement of heavy quark diffusion constant D_{c/b}
- Determination of the scale of nuclear granularity
- Origin of single spin asymmetries
- Δg , flavor dependence of spin in the quark sea

• Campaign 1:

- QCD equation of state at $\mu_B \approx 0$
- Precision measurement of η/s(T≈T_c)
- Measurement of heavy quark diffusion constant $\mathsf{D}_{c/b}$
- Determination of the scale of nuclear granularity
- Origin of single spin asymmetries
- Δg , flavor dependence of spin in the quark sea
- Campaign 2:
 - QCD equation of state at $\mu_B > 0$
 - Discovery of the QCD critical point, if within the accessible range

• Campaign 1:

- QCD equation of state at $\mu_B \approx 0$
- Precision measurement of η/s(T≈T_c)
- Measurement of heavy quark diffusion constant D_{c/b}
- Determination of the scale of nuclear granularity
- Origin of single spin asymmetries
- Δg, flavor dependence of spin in the quark sea
- Campaign 2:
 - QCD equation of state at $\mu_B > 0$
 - Discovery of the QCD critical point, if within the accessible range
- Campaign 3:
 - Precision measurement of $q^{T} \approx T_c$ and $e^{T} \approx T_c$
 - Scale dependence of QGP structure
 - Many insights we can't even imagine yet !

Our Plan for RHIC Operations

- Continue RHIC II operation through FY16
- Installation of Low Energy RHIC electron Cooling during FY17
- Run the second Beam Energy Scan (BES II) in FY18 and FY19
- Installation of sPHENIX detector during FY20
- Run RHIC with STAR and sPHENIX in FY21 and FY22

30

Our Plan for RHIC Operations

- Continue RHIC II operation through FY16
- Installation of Low Energy RHIC electron Cooling during FY17
- Run the second Beam Energy Scan (BES II) in FY18 and FY19
- Installation of sPHENIX detector during FY20
- Run RHIC with STAR and sPHENIX in FY21 and FY22

Plan can be executed within constant level of effort budget scenario

Tremendous scientific payoff with continued discovery potential

Thank You !

Backup slides

Brookhaven Science Associates

Proposed run schedule for RHIC

Years	Beam Species and	Science Goals	New Systems
2014	15 GeV Au+Au 200 GeV Au+Au ³ He+Au at 200 GeV	Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search	Electron lenses 56 MHz SRF STAR HFT STAR MTD
2015-16	Pol. p+p at 200 GeV p+Au, p+Si at 200 GeV High statistics Au+Au Pol. p+p at 510 GeV or Au+Au at 62 GeV	Extract η/s(T) + constrain initial quantum fluctuations More heavy flavor studies Sphaleron tests Transverse spin physics	PHENIX MPC-EX Coherent e-cooling test
2017	No Run		Low energy e-cooling upgrade
2018-19	5-20 GeV Au+Au (BES-2)	Search for QCD critical point and onset of deconfinement	STAR ITPC upgrade Partial commissioning of sPHENIX (in 2019)
2020	No Run		Complete sPHENIX installation STAR forward upgrades
2021-22	200 GeV Au+Au with upgraded detectors Pol. p+p, p+Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia	sPHENIX
2023-24	No Runs		Transition to eRHIC

Dileptons: Chiral symmetry restoration

- Observed excess at low mass consistent with broadening ρ
- Observing chiral symmetry restoration from dileptons: hadronic structure (vector meson peaks) dissolves into continuous thermal distribution
- Need to subtract dominant charm contributions to isolate thermal QGP radiation
- Will be measured as function of beam energy

Latest Lattice Gauge Results

From Data to Insight: QCD EoS

- Unbiased model data comparison enabled by state-of-the-art model parametrization via Gaussian emulators
 - Equation of state determination from comparison of hydrodynamic calculations and RHIC data.

From Data to Insight: QCD EoS

- Unbiased model data comparison enabled by state-of-the-art model parametrization via Gaussian emulators
 - Equation of state determination from comparison of hydrodynamic calculations and RHIC data.

