

July 16, 2011 Meeting Organized by P. Mason

U.S. Department of Energy – Office of Science 9800 South Cass Ave Argonne, Illinois 60439

NBL-ME-2011 Meeting Minutes

MEASUREMENT EVALUATION PROGRAM ANNUAL MEETING MINUTES

Disclaimer

This report was prepared by the New Brunswick Laboratory as an account of work sponsoered by an agency of the United States Government. Neither the U.S. government nor any agency thereof, nor any of their employees or officers, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy completeness or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infirnge on privately owned rights. Reference herein to any specific commercial product, process, or service by trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the U.S. government or any agency thereof. The views and opinions expressed by the authors of the document do not necessarily reflect those of the United States government or any agency thereof.

New Brunswick Laboratory: History and Mission

NBL was established by the Atomic Energy Commission in 1949 in New Brunswick, NJ. It was initially staffed by scientists from the National Bureau of Standards that had contributed to the measurement science of nuclear materials for the Manhattan Project. NBL's initial mission was to provide a Federal capability for the assay of uranium-containing materials for the nation's developing atomic energy program. Over the years NBL expanded its capabilities, developing newer and improved methods and procedures, and certifying additional reference materials for use around the world. The capability for plutonium measurements was implemented at NBL in 1959. NBL was relocated from New Jersey to the site at Argonne National Laboratory during the period 1975-77.

Since its beginning, NBL has maintained a Center of Excellence in the analytical chemistry and measurement science of nuclear materials. In this role, NBL continues to perform state-of-theart measurements of the elemental and isotopic compositions for a wide range of nuclear materials.

NBL has expanded from its initial mission by improving methods and procedures and developing new ones for actinide analytical chemistry, added the capacity to certify and globally distribute nuclear reference materials and operated a number of interlaboratory measurement exercises to determine state-of-the-art and state-of-the-practice for many analytical techniques and actinide material forms. NBL also does work in highly enriched uranium transparency monitoring, assists in Material Control and Accountability surveys and inventories at laboratories nationwide, maintains a cadre of scientists capable of responding to nuclear emergencies, and collaborates with local, national, and international laboratories in the areas of Safeguards and nonproliferation.

NBL's Primary Functional Groups:

- Reference Materials Program
- Measurement Evaluation Program
- Nuclear Safeguards and Nonproliferation Support Program
- Measurement Services
- Measurement Development

Further details may be found at our website at <u>www.nbl.doe.gov</u> or by contacting us via telephone at 630-252-2446.

Opening Statement from Acting Laboratory Director

Dr. Usha Narayanan

Dear Colleagues,

Welcome to the 2011 New Brunswick Laboratory Measurement Evaluation Program Annual Meeting. We have some updates that we would like to share with you. Mr. Jon Neuhoff whom you knew as the New Brunswick Laboratory (NBL) Director has accepted a position in the private sector and his last day at NBL was June 21, 2011. I have been appointed to serve as the Acting Laboratory Director until a permanent NBL Director is selected.

Dr. Chino Srinivasan who coordinated this Program for nearly six years is now detailed within the laboratory to develop analytical procedures that would be used for certification efforts. I thank both Jon and Chino for their contributions and wish them the best.

Mr. Pete Mason is coordinating the NBL Measurement Evaluation Program. Pete's experience includes nuclear chemistry, mass spectrometry and coordinating the NBL Reference Materials Program. He is eager and willing to make the measurement evaluation program an effective and useful tool for the nuclear community. Please communicate with him about your needs and support him in this new role.

I apologize for not being here at this meeting. The Laboratory has been undergoing many changes over the past six years, and as we near the end of a long road to full operations, NBL management is focused on pushing the lab the 'final mile'. However, two NBL staff members Dr. Steven Goldberg (Nuclear Forensics) and Dr. Richard Essex (Reference Materials) are also in attendance at the INMM meeting. All three NBL staff will be available to talk to you regarding NBL status and services.

Thanks for your presence and participation, we are looking forward to a productive meeting here and would like to continue our communication beyond this meeting to strengthen the measurement capabilities of the safeguards community.

Best wishes for a successful meeting.

Usha Narayanan, Acting Laboratory Director

NBL Contact Information:

Website/Addresses	
Website	www.nbl.doe.gov
CRM Prices & Certificates	www.nbl.doe.gov/htm/price_list.htm
CRM Ordering Information	www.nbl.doe.gov/htm/ordering.htm
General (sales, shipping, general inquiries)	usdoe.nbl@ch.doe.gov
Reference Materials (technical questions, special requests, projects)	crm.nbl@ch.doe.gov
Measurement Evaluation (ME participation, data requests)	sme.nbl@ch.doe.gov

Staff Contacts		
Chief Operations Officer	Rock Aker	rock.aker@ch.doe.gov
Program Manager (Forensics Program)	Steven Goldberg	steven.goldberg@ch.doe.gov
Facility Operations Division Director	Robert Koedam	robert.koedam@ch.doe.gov
Standards and Evaluation Division Director	Margaret Legel	margaret.legel@ch.doe.gov
Measurement Services	Margaret Legel	margaret.legel@ch.doe.gov
Reference Materials Program Coordinator	Richard Essex	richard.essex@ch.doe.gov
Measurement Evaluation Program Coordinator	Peter Mason	peter.mason@ch.doe.gov
Domestic Safeguards Assistance	Paul Croatto	paul.croatto@ch.doe.gov

Attendee's:

Name	Facility	E-mail
Peter Mason	NBL	Peter.mason@ch.doe.gov
R. Chris Robinson	Y-12	YCR@y12.doe.gov
Thomas Sampson	-	tesampson@cox.net
Steven Goldberg	NBL	Steven.goldberg@ch.doe.gov
Jeff Gross	LLNL	Gross15@IInl.gov
Bud Marsh	LLNL	bud@llnl.gov
Greg Schaafe	Y-12	schaaffeg@y12.doe.gov
Joe Giaquinto	ORNL	giaquintojm@ornl.gov
Jane Poths	IAEA	J.Poths@iaea.org
Steve Balsley	IAEA	s.d.balsley@iaea.org
Maureen Bernard	SRNS	Maureen.bernard@srs.gov
Steven Bakhtiar	INL	Steven.bakhtiar@inl.gov
Kevin Norbash	INL	Kevin.norbash@inl.gov
Tamara Keever	ORNL	<u>keevertj@ornl.gov</u>
Debra Bostick	ORNL	Bostickda@ornl.gov
Russ Johns	PNL	Russell.johns@pnnl.gov
Bill Hopwood	ORNL	hopwoodwhjr@ornl.gov
Jeff Sanders	INL	Jeff.sanders@inl.gov
Veronica Sviridova	VNITA	Veronica.sv@mail.ru
Gary Kodman		kodmang@comcast.net
D.L.Whaley	DOE-HQ	D.L.Whaley@hq.doe.gov
Lynne Preston	DOE-HQ	Lynne.preston@hq.doe.gov
Lisa Colleti	LANL	lcolletti@lanl.gov
Terri L. Welsh	Hanford	<u>Terri L WelshL@RL.gov</u>
Katherine Hales	Urenco UK	Katherine.hales@urenco.com
Orpet Peixoto	ABACC	Orpet@abacc.org.br
Stephan Richter	IRMM	Stephan.richter@ec.europa.eu
Roger Wellum	-	r.wellum@gmail.com
Olivio Pereira	IPEN	oliviojr@usp.br
Erwin Galdoz	ABACC	galdoz@abacc.org.br
Claudio Devida	CAE-CNEA	devida@cae.cnea.gov.ar
Carlos Rodriquez	ABACC	Rodriguez@abacc.org.br
Stephan Croft	LANL	scroft@lanl.gov

2011 Safeguards Measurement Evaluation Meeting

AGENDA

July 16, 2011 JW Marriott Desert Springs Resort Palm Desert, California

Desert Ballroom, Salons 1-3

9:00 am	Introductions & Message from NBL Director	P. Mason, NBL
9:30 am	SME Program: History Review & 2010 Data Evaluation	P. Mason, NBL
	BREAK 10:30 – 10:45	
10:45 am	Measurements for Nuclear Safeguards and Improvement of Analytical Techniques	C. Devida, CNEA
11:10 am	Improvements in the Measurements of Uranium Concentration and Isotope Amount Ratio for Nuclear Safeguards	O. Pereira, IPEN
11:35 am	Uncertainty Estimation Procedures at CNEN's LASAL Laboratory	F. C. Dias, CNEN
	LUNCH 12 -1:30 pm	
1:30 pm	Measurement Evaluation Programmes at IRMM	S. Richter, IRMM
1:55 pm	An Independent Analysis Protocol for Thermal Ionization Mass Spectrometric Measurement of LEU in Blend-Down Process Solutions	M. Bernard, SRS
2:20 pm	UF ₄ Base Material for a Certified Reference Material	G. Schaff, Y12
2:45 pm	Importance of U-234 and U-236 in Nuclear Material Samples	J. Poths, IAEA
	BREAK 3:10 – 3:25 pm	
3:25 pm	Wrap-up of Data Evaluation (if necessary) Discussion of Possible Changes to SME: A. Samples B. Analysis/Evaluation Scheme C. Reporting GUM Uncertainties, minor isotopes, etc D. Annual Report/Meeting Suggestions E. Open discussion/suggestions/meeting evaluation Map of JW Marriott Desert Springs Resort on next page	ALL

Meeting Summary:

The 2011 SME Annual meeting was held in Palm Desert, California on Saturday July 16th. Approximately 40 people were in attendance. After introductions, an overview and status of the New Brunswick Laboratory was given, followed by a presentation of the CY2010 measurement evaluation data. There were general discussions and comments during the data presentation.

One request was that, in the future, NBL issue 'certification reports' and values and uncertainties for new SME materials. P. Mason, SME Program Coordinator, confirmed that that is the plan for future materials, and that in fact the new samples produced in FY11 have a report and values/uncertainties associated with them.

Plans for the program were presented, including NBL's commitment to continue to offer training in:

- o Chemical handling for high-accuracy measurements
- o Davies & Gray titrimetry
- High Precision titrimetry
- TIMS techniques
- o Measurement uncertainty workshops to ensure ISO compliance

Additionally, NBL management has expressed a need to expand participation in the SME program and do a better job of maintaining current customers. New materials to be added to the program in the future were mentioned, including new LEU fuel pellets and the preliminary plans to offer an 'impurities in uranium' round-robin campaign later in the year.

At the end of the day, an open discussion was held to solicit ideas and suggestions from participants. NBL presented the idea of changing how data evaluation and sample analyses are currently conducted, from an intense, multi-day and multi-replicate analysis scheme to simple reporting of value(s) and uncertainties. There seemed to be some agreement that this would be a good idea. NBL will not eliminate its current procedure of performing ANOVA (requiring multi-day and multi-replicate analyses) to look for day-to-day and analyst-to-analyst variabilities, but will allow individual participants to decide how they wish to perform analyses and report results.

Input on new sample types or properties was solicited. In general NBL seems to be meeting the needs of the DA community in terms of uranium materials. When plutonium is returned to the program new materials will need to be utilized.

One significant oversight at the meeting was the lack of discussion concerning NDA in the SME program. This has been an escalating problem over the past few years. At next years meeting NBL will make an effort to raise the issue of NDA materials and usage in intercomparison programs. NBL will also look to revive some NDA measurements using already-existing samples such as the CRM 149 SME containers at most major DOE sites.

The need for low-level materials was re-iterated, particularly of low enough U content to allow introduction into clean-lab-type conditions.

The arrangement and scheduling of the meeting was discussed. The vast majority of participants were happy with having the meeting in July and having it cover the previous years data. Having the annual report issued before the meeting would be useful.

2010 SME Annual Evaluation Presentation:

The data and information on the following slides was given as a presentation by Peter Mason of NBL at the annual meeting, and the slides summarize the performance of all participating laboratories for CY2010. This includes uranium content and isotopic determinations performed on a variety of uranium material types. Please refer to the 2010 SME Annual Report for complete details on program performance, or feel free to contact the NBL SME Program Coordinator (P. Mason) at peter.mason@ch.doe.gov or 630-252-2458 should you have any additional questions.

Please note that the slides presented here were originally appended to an additional set of slides. The first set of slides, included in this report in the "Presentations" section, give an overview of the New Brunswick Laboratory and its current operations. The set of slides included here discuss the actual SME performance results.

Due to animations in the original slideshow, the presentation as illustrated here differs somewhat from as given, in order to avoid the loss of information or clarity associated with slide animations.

Facility	Location	Facility	Location
British Nuclear Fuels, Ltd	 Capenhurst Springfield 	Laboratorio Chemica Industriale	14. Rome, Italy
Commissariat a L'Energie Atomique	3. Pierrelatte 15. Wil 4. Grenoble 15. Wil 5. Gif-sur-Yvette GE 16. 6. Narbonne 17. Pie		15. Wilmington, NC 16. Morris, IL 17. Pleasanton, CA
Bureau Centrale de Measures Nucleaires	7. Geel, Belgium	Reactor Centrum	18. Petten, Netherlands
Centro Commune Di Ricerca 8. Ispra, Italy		New Brunswick Lab	19. New Brunswick, NJ
Exxon Nuclear	Exxon Nuclear 9. Richland, WA		20. Julich, Germany
Union Carbide	10. Paducah, KY 11. Oak Ridge, TN	Westinghouse	21. Columbia, SC
Ultra-Centrifuge	12. Alemlo, Netherlands	Goodyear Atomic	22. Piketon, OH
Avco	13. Tulsa, OK		

Alpha Spec

LANL

Passive Gamma (both GeLi/Nal)

LABOR					
Material	Quantity	Container	Atmosphere	Measurement	Characterization Methods
UNH solution	5-20 mL	Flame-sealed amp	air	U conc U-235 abundance	D&G TIMS
UO ₂ powder	25 g	Heat sealed jar	nitrogen	U conc U-235 abundance	D&G, Gravimetry TIMS
UO ₂ pellet	20 g	Glass vial	air	U conc U-235 abundance	D&G, Gravimetry TIMS
PuO ₂ powder	1 g	Screw-cap glass vial	air	Pu conc Pu-239, Pu-241	Coulometry TIMS
(Pu,U)O ₂ pellet ~1 g		Sealed glass tubes	argon	Pu & U conc Pu-239, Pu-241, U-235	Coulometry, D&G TIMS

		WICK		ISt	ory				
SALE Res	ults (% of labs r	eporting m	ieans v	within 0.05%	% and 0.10	% of re	eference)	
Measurement	n	1982 % 0.05%	within 0.10%	n	1983 % 0.05%	within 0.10%	n	1984 % 0.05%	within 0.10%
UNH Assay	34	53	79	30	57	83	31	58	74
UNH U-235	27	48	71	27	41	74	28	43	64
UO ₂ assay	45	71	84	35	86	97	41	73	90
U0 ₂ U-235	30	33	57	31	42	65	32	25	56
(Pu,U)O ₂ U assay	6	17	17	5	40	60	6	17	50
(Pu,U)0 ₂ U-235	5	0	20	6	33	33	6	0	33
(Pu,U)O ₂ Pu assay	9	22	44	11	27	36	10	50	60
(Pu,U)0 ₂ Pu-239	7	71	100	8	88	100	8	100	-
PuO ₂ Pu assay	9	56	67	15	20	33	14	24	64
Pu0, Pu-239	8	88	100	12	100	-	11	100	-

	ABORATORY		i i	Jraniu	m Mass	Fract	ion
Lab Code	UNH	U308	UO2 PELLET	UF6	UO3	1	
A	IDMS, XRF					1	
AB		D&G	D&G			• 19	Ə Labs
AD	D&G		D&G			• 63	11 measurements
AE		D&G		D&G		1	 13 labs D&G
В	D&G, IDMS						 4 labs Gravimetry 2 labs IDMC
BA	D&G	D&G					 3 labs IDIVIS 3 labs XDE
BC	D&G	D&G	D&G				
BE	D&G	D&G	D&G		D&G		
BF			D&G	D&G			
EA				D&G			
F	D&G						
J		D&G, IDMS	D&G, IDMS] • D	&G Titration Msmts (456
SA	XRF						0 UF0 - 50
т			D&G				\circ Pellet = 127
TH			GRAV				0 11308 - 95
то			GRAV				0 0300 33
TP			GRAV				
TR			GRAV				
U	D&G						

NEW BRUNSWICK	LINH	Solution	Performan	ice.
LABORATORY	UIVII	Jointion	i chormai	ICC

Measurement	n	1982 % 0.05%	6 within 0.10%	n	1983 % v 0.05%	within 0.10%	n	1984 % 0.05%	6 within 0.10%
UNH Assay	34	53	79	30	57	83	31	58	74
UNH U-235	27	48	71	27	41	74	28	43	64
UO ₂ assay	45	71	84	35	86	97	41	73	90
U0 ₂ U-235	30	33	57	31	42	65	32	25	56
MOX U assay	6	17	17	5	40	60	6	17	50
2010 \$.	% with	% within % within 0.05% 0.10%		# of n		0	33
2010 3		ld	0.05%			# 01 1	leans	50	60
UNH	I Soln		22%		57%	9	ə T	100	-
							T	24	64
UO ₂ , U	$F_{6}, U_{3}0$	8	59%		82%	2	2	100	-

Small data-set, but is evaporation/storage/handling of solutions still an issue?

	WICK	Urani	um Assay:	Other I	Vethod
Pellet IDMS					
Lab Code	%RD	ITV	Std Dev	ITV	N
J	0.098	0.2	0.127	0.2	24
UNH IDMS					
Lab Code	Avg %RD	ITV	Std Dev	ITV	N
В	-0.78	0.2	0.20	0.2	31
Α	-0.15	0.2	0.19	0.2	16
U308 - IDMS					
Lab Code	%RD	ITV	Std Dev	ITV	N
J	0.11	0.20	0.12	0.2	8
UNH X-Ray					
Lab Code	Avg %RD	ITV	Std Dev	ITV	N
SA	1.51	2	1.01	2	20
^	0.23	2	0.17	2	16

		ĸ		Uraniun	n Enric	hm	ent
			Dellet			1	
Lab	UNH	U ₃ U ₈	Pellet	UF ₆	003		
A	TIMS					-	
AA	TIMS	TIMS			TIMS		17 Labs
AD	ICP-MS		ICP-MS				615 measurements
В	TIMS						
BC	TIMS	TIMS	TIMS	GSMS			
EA	ICP-MS			ICP-MS			13 TIMS: 352 msmts
EB				GSMS			2 GSMS (1 quadrupole)
F	TIMS						3 ICP-MS (1 quad, 2 MC)
G	TIMS						
J		TIMS	TIMS	TIMS			
SA	TIMS						EA = 144 msmts on 2
SF				ICP-MS			MC-ICP-MS'S (UNH & UF
т			TIMS			-	
тн			TIMS			1	
то			TIMS			1	
TP			TIMS			1	
тр			TIMS			1	

	345			- - -	6.2	
	De	talle	d Dai	ta la	bles	
	A CARLER OF					A READER
	c					
UFB - gas IM	5 Aur (/DD		611 D	177.4		
Lab Code	AVg %RD	0.05.0.10	Std Dev	0.05.0.10	16	
EB BC	0.069	0.05-0.10	0.055	0.05-0.10	10	
FB-	0.047	0.03-0.10	0.038	0.03-0.10	8	
EB-1.	% 0.119	0.05	0.010	0.05	8	
BC-	0.022	0.10	0.048	0.10	12	
BC-1.	% 0.019	0.05	0.048	0.05	12	
BC-	0.047	0.05	0.031	0.05	12	
BC-4.	0.118	0.00	0.033	0.05	12	
UF6 ICP-MS						
Lab Code	Avg %RD	ITV	Std Dev	ITV	N	
EA	0.056	0.1-0.2	0.061	0.1-0.2	64	
SF	0.023	0.1-0.2	0.107	0.102	21	
EA-	0U 0.113	0.20	0.065	0.20	16	
EA-	IU 0.003	0.20	0.062	0.20	15	
EA-1.	0.063	0.10	0.014	0.10	16	
EA-4.	0.045	0.10	0.023	0.10	16	
SF-	0.061	0.20	0.068	0.20	6	
SF-1.	0.030	0.10	0.151	0.10	/	
SF-4.	070 -U.UII	0.10	0.085	0.10	ð	
UF6 TIMS	Avg %PD	ITV	Std Dev	ITV	N	
	-0.002	01-02	0.076	0.1-0.2	12	
	-0.059	0.2	0.039	0.2	4	
J-1.	% 0.093	0.1	0.031	0.1	4	
J-4.	-0.040	0.1	0.017	0.1	4	
J-4.	-0.040	0.1	0.017	0.1	4	

NEW BRUNSWICK	D	etailed	d Data	Table	S
Lab Code	Avg %RD	ITV	Std Dev	ITV	N
AA	-0.125	0.1-0.2	0.121	0.1-0.2	44
вс	-0.162	0.2	0.078	0.2	8
J	0.026	0.2	0.051	0.2	8
AA-Nat	-0.084	0.2	0.096	0.2	18
AA-2%	-0.162	0.1	0.064	0.1	8
AA-3%	-0.150	0.1	0.151	0.1	18
BC-Nat	-0.162	0.2	0.078	0.2	8
J-Nat	0.026	0.2	0.051	0.2	8
UNH ICP-MS					
Lab Code	Avg %RD	ITV	Std Dev	ITV	N
AD-4.4%	0.306	0.1	0.211	0.1	8
EA	-0.026	0.1-0.2	0.062	0.1-0.2	80
EA-Nat	-0.041	0.2	0.061	0.2	64
EA-4.5%	0.031	0.1	0.019	0.1	16
SF-4.4%	0.019	0.1	0.039	0.1	16

L

			D - I - I		
	De	tailed	Data	lables	
	Contraction of the second				A State
UNH TIMS					
Lab Code	Avg %RD	ITV	Std Dev	ITV	N
A	0.017	0.05-0.1	0.071	0.05-0.1	16
AA 1%	-0.357	0.2	0.075	0.2	10
В	0.006	0.05-0.1	0.061	0.05-0.1	38
BC-4.4%	-0.069	0.1	0.089	0.1	24
F	0.002	0.05-0.1	0.002	0.05-0.1	24
G	0.022	0.050	0.022	0.05	8
SA	0.029	0.05-0.1	0.029	0.05-0.1	64
A-4.4%	-0.001	0.10	0.099	0.10	8
A-51%	0.036	0.05	0.006	0.05	8
B-4.4%	-0.11	0.10	0.057	0.10	7
B-51%	0.062	0.05	0.013	0.05	8
B-89%	0.020	0.05	0.005	0.05	23
AA 1%	-0.357	0.20	0.075	0.20	10
BC-4.4%	-0.069	0.10	0.089	0.10	24
F-4.4%	0.002	0.10	0.017	0.10	8
F-89%	0.003	0.05	0.004	0.05	16
G-51%	0.036	0.05	0.003	0.05	4
G-90%	0.007	0.05	0.001	0.05	4
SA-1%	0.074	0.20	0.088	0.20	16
SA-4.4%	-0.023	0.10	0.157	0.10	16
SA-51%	0.025	0.05	0.026	0.05	16
SA-89%	0.038	0.05	0.027	0.05	16

	Det	tailed	Data Ta	bles	
					and the
Pellet TIMS					
Lab Code	Avg %RD	ITV	Std Dev	ITV	N
BC	0.082	0.1	0.055	0.1	8
J	-0.010	0.1	0.057	0.1	24
т	0.083	0.1	0.026	0.1	32
тн	0.074	0.1	0.038	0.1	8
то	0.010	0.1	0.042	0.1	8
ТР	0.047	0.1	0.007	0.1	8
TR	-0.095	0.1	0.029	0.1	8
Pellet ICP-MS	1				1
Lab Code	Avg %RD	ITV	Std Dev	ITV	N
AD	-0.18	0.10	0.25	0.1	8
UO3 TIMS	1		·		
Lab Code	Avg %RD	ITV	Std Dev	ITV	N
Δ Δ	-0.27	0.20	0.15	0.2	18

	Discus	sion Points
amples:		
Material	Assay Certification?	Isotopic Certification?
UF ₆	Theoretical stoichiometry only	0.5% - 4.8%
UO ₂ fuel pellet	Yes	4%
UO ₃ powder	Yes	0.9%
U ₃ O ₈ powder	Some yes, some no	0.7%, 2%, 3%
UNH Solution	Most yes	0.7% - 90%
Dry UNH	No	1.5%
	No	77% 85% 91% ²³⁹ Pu

Presentations:

The following pages contain the slides as given by the presenter's at the 2011 NBL SME Annual Meeting. Presenters included:

- Dr. Olivio Pereira De Oliveira JR, of the Nuclear and Energetic Research Institute in Sao Paolo, Brazil
- Dr. Claudio A. Devida of the Argentinean National Atomic Energy Commission's Ezeiza Atomic Center
- Dr. Roger Wellum, formerly of the Institute for Reference Materials and Measurements in Geel, Belgium
- Dr. Stephan Richter of the Institute for Reference Materials and Measurements in Geel, Belgium
- Greg Schaaff of the Y-12 National Security Complex, Oak Ridge, TN
- Maureen Bernard of Savannah River Nuclear Solutions, Aiken, SC

NBL offers sincere thanks to each speaker. The presentations were well-received and given in a clear and concise manner. Questions regarding the content of the presentations may be directed towards the speakers listed above, via their email addresses given earlier in this report.

Improvements in the measurements of uranium concentration and isotope amount ratio for nuclear safeguards

Olivio Pereira de Oliveira Jr.

SMEP - NBL Annual Meeting Palm Desert, USA July 16th 2011

IPEN and CTMSP facilities

IPEN

Nuclear and Energetic Research Institute

- Civilian federal research center focused in applied sciences
- Holds the first nuclear research reactor (IEA-R1) built in South America (1958)
- Just 10% devoted to nuclear energy topics
- Runs a very successful posgraduation program (800 master and PHD students)

CTMSP

Brazilian Navy Technological Center

- Nuclear research center managed by the Brazilian navy
- Developed the uranium isotope enrichment process by ultracentrifugation
- About 600 employees working in two facilities within the Sao Paulo state

CTMSP provides analytical services for

- Brazilian uranium enrichment facilities
- Brazilian fuel manufacturer INB
- Brazilian nuclear institutes
- ABACC regional safeguards agency
- Universities and industry

Analytical services provided

- Uranium concentration measurement
- Uranium isotope amount ratios
- Volatile impurities in UF₆
- Metallic impurities in UF_6 and UO_2
- UF₆ hydrolysis

- Reconversion from UO_2 to UF_6
- Development of UF₆ sampling method with alumina with CNEA colleagues
- · Residual gas analysis

• Leak testing in vacuum instruments, valves and pumps uranium enrichment facilities

Year	ITV 2010		Results for UO ₂		
	Bias	Precision	Bias	Precision	
	(%)	(%)	(%)	(%)	
2010	0.10	0.10	0.009	0.045	
2009	0.10	0.10	0.039	0.021	
2008	0.10	0.10	-0.032	0.085	
2007	0.10	0.10	0.157	0.111	
2006	0.10	0.10	-0.010	0.055	
2006	0.10	0.10	-0.077	0.065	
2002	0.10	0.10	-0.178	0.305	
1998	0.10	0.10	0.025	0.238	

Year	Y (%)	ITV 2010		Results for UO ₂	
		Bias	Precision	Bias	Precision
		(%)	(%)	(%)	(%)
2010	4.0	0.10	0.10	0.082	0.055
2009	4.0	0.10	0.10	0.020	0.055
2008	0.7	0.10	0.10	-0.011	0.083
2008	4.0	0.10	0.10	0.119	0.079
2007	4.0	0.10	0.10	-0.010	0.075
2006	4.0	0.10	0.10	0.029	0.092
2006	4.0	0.10	0.10	-0.005	0.060
2002	0.7	0.10	0.10	0.547	0.251
2000	4.0	0.10	0.10	-0.410	0.178

UF₆ isotope ratio measurements

- Technique selected: Electron impact mass spectrometry (GSMS)
- Methods applied: Single and double standard
- Instrument used: IMU 200, IPI Instruments (Bremen, Germany)
- CIRM used
 MRI 0.5 to 20.0 (Brazilian CIRM)
 IRMM 019 028

Year	У (%)	ITV 2000		Result	s for UF ₆
		Bias	Precision	Bias	Precision
		(%)	(%)	(%)	(%)
2010	0.5	0.10	0.10	0.047	0.031
	1.29	0.05	0.05	0.019	0.048
2009	1.29	0.05	0.05	0.039	0.094
2008	1.29	0.05	0.05	-0.086	0.073
	0.49	0.10	0.10	0.016	0.114
	0.71	0.10	0.10	-0.025	0.086
2007	2.98	0.05	0.05	0.139	0.063
	3.19	0.05	0.05	0.162	0.083
	4.79	0.05	0.05	0.004	0.076
2006	3.19	0.05	0.05	0.017	0.250
	3.19	0.05	0.05	0.093	0.121

Non-volatile impurities in UO₂

Technique selected:

Inductively coupled plasma mass spectrometry (ICPMS)

Method:

Matrix matching method

Instrument used:

PQ II, VG Elemental (Winsford, Cheshire, UK)

CRM used NBL CRM 124

Volatile impurities in UF₆

Technique selected:

Fourier transformed infrared spectrometry (FTIR)

Method applied:

Calibration curves of pure gases mixed with UF₆

Instrument used:

Spectrum One Perkin Elmer (Shelton, CT, USA)

CRM used:

Pure gases (HF, BF_3 , PF_5 , SiF_4) from Matheson (Newark, CA, USA)

Residual gas analysis

Technique selected: Quadrupole mass spectrometry (QMS)

Method applied: Partial pressure measurements

Instrument used: Prisma QMS 200 (Pfeiffer Vacuum, Assler, Germany)

Participation in other international interlaboratorial comparison programs

- special designed instrument for direct UF₆ isotope ratio measurements
- three inlet tanks for D, N and E samples
- electron impact ion source
- quadrupole analyzer
- faraday cup & electron multiplier detectors
- can also detect volatile impurities in UF₆

ypical precison and bias values					
Isotope ratios Isotopic ratio range Precision (%) B					
n(²³⁴ U)/n(²³⁸ U	1.0e ⁻⁵	5.0	3.0		
	1.0e ⁻⁴	5.0	2.0		
	1.0e ⁻³	5.0	0.5		
	1.0e ⁻³	0.05	0.05		
n(²³⁵ U)/n(²³⁸ U)	1.0e ⁻²	0.05	0.05		
	1.0e ⁻¹	0.05	0.05		
	1.0e ⁻⁷ & 1.0e ⁻⁶	LOD	LOD		
	1.0e ⁻⁵	0.5	40		
n(²³⁶ U)/n(²³⁸ U)	1.0e ⁻⁴	0.5	30		
	1.0e ⁻³	0.5	20		

Conclusions

Destructive measurements (DA)

• CTMSP is performing well the basic measurements for nuclear safeguards

ITV 2010

• within a decade a considerable improvement has been made regarding the IAEA target values

New analytical instruments & procedures

• Very important developments in the measurement of n(²³⁴U)/n(²³⁸U) and n(²³⁶U)/n(²³⁸U) ratios

GOALS
The Analytical Laboratory located at EZEIZA ATOMIC CENTRE (CAE), was established by the CNEA to provide service in chemical analyses to:
 -Facilities that supply nuclear-grade purified uranium employed in the production of nuclear fuel elements and irradiation target for Mo-99 production. - Research laboratories. -Measurement of trace element in samples from CNEA and outside companies and organizations.
The aims has always been to provide fast, accurate, a reliable services to customers, using analytical methods and procedures that are accepted as international standards. The analytical capacity of the laboratory was upgraded with the incorporations of Quadrupole Inductively Coupled Plasma Mass Spectrometry (Q-ICPMS) .Among other advantages, this addition extended the capacity of the lab for safeguard methods used to uranium isotopic abundance measurements in different compounds.
THE 2011 MEASUREMENT EVALUATION PROGRAM ANNUAL MEETING 3

Proposal for a new type of LSD spike

R. Wellum

Why LSD spike?

The main problem area when measuring the uranium and plutonium isotopic amounts in spent nuclear fuel is in handling the dissolved fuel solution.

Large sized dried spikes were developed to allow a simple process in the hot-cells and still yield excellent measured values.

IRMM has been one of the world's centres of excellence for LSD spikes.

Present LSD spike

- A mixture of 20% ²³⁵U-enriched uranium and ²³⁹Pu; ratio ~ 50:1; ~ 50 mg U per spike
- Sample of dissolved fuel is spiked directly, chemically homogenized and a small sample is taken
- A dilute sample of the dissolved fuel also needed without spiking

Basis of new scheme

- Only uranium LSD spike is used
 - The concentration of uranium in the sample is fixed with this spike
- An aliquot of the sample is diluted as required (e.g. x1000) and the uranium and plutonium isotopic concentrations are measured by IDMS using a mixed U/Pu spike

$\langle 0 \rangle$	EURO DIRECTOR	PEAN COMMISSION NE-GENERAL Research Centre	Introduction
	≻	REIMEP	= <u>R</u> egular <u>E</u> uropean <u>I</u> nter-Laboratory <u>M</u> easurement
		<u>Evaluation</u>	on <u>P</u> rogram
	\succ	NUSIME	P: <u>Nu</u> clear <u>Sig</u> natures Interlaboratory <u>M</u> easurement
ð		Evaluation	on <u>P</u> rogramme
inti	\succ	Rules:	
int Research Ce		a) Ex sa er b) La ur c) Re	ternal quality control tools for laboratories from nuclear feguards, nuclear industry but also from the vironmental, geochemistry field and academia boratories receive well-characterised samples with disclosed values eferences values are provided, independent of the riticipants' results
Jo		d) Fu	Il confidentiality is guaranteed (result vs. identity)
RICHTE	R - INMM-2	2011 2	-irm

EUROPI Directorate	N COMMISSION Rearch Centre NUSIMEP-7
≻	Uranium isotope amount ratios in uranium particles
\succ	Graphite planchet
\succ	Measurement of ²³⁴ U/ ²³⁸ U, ²³⁵ U/ ²³⁸ U & ²³⁶ U/ ²³⁸ U, 2 enrichments !
\succ	Routine measurement procedure, SIMS, FT-TIMS, LA-ICPMS,
\succ	Preparation of "real life" U particles:
	$i \rightarrow VF_6 + 2H_2O \rightarrow UO_2F_2 + 4HF$
	R - INMM-2011

	EURC Directo Join	DPEAN COMMIS RATE-GENERAL t Research Cen	tre Content
Centre		Introdu 1. 2. 3.	action about UF_6 -gas source mass spectrometry Role of UF_6 in nuclear fuel cycle Need for accurate isotopic measurements of UF_6 samples Preparation of basic gravimetric mixtures, certification of first UF_6 isotope reference materials
Joint Research		UF ₆ -ga 1. 2. 3. 4. 5.	as source mass spectrometry at IRMM Installation of MAT511 at IRMM Replacement of 39-year old MAT511 by URANUS Design of URANUS Measurement performance for "major" ratios ²³⁵ U/ ²³⁸ U Measurement performance for "minor" ratios ²³⁴ U/ ²³⁸ U and ²³⁶ U/ ²³⁸ U
	≻	Conclu	usions
RICHTE	R - INMM	-2011-ver03	2 im

	E Di J	UROPEAN COMMISSION RECTORATE-GENERAL oint Research Centre	erformanc	e for "ma	ajor" ratio	os ²³⁵ U/ ²³⁸ U	J		
		Investigation of methods & corrections done using a set of 6 working standards							
entre		 Characterized for major and minor ratios by TIMS-MTE (modified total evaporation), relative to new gravimetric standard IRMM-074 ²³⁵U/²³⁸U: agreement between TIMS/MTE and UF₆ GSMS 							
C	≻	TIMS/MTE da	ta used						
arch		Working Standard No.	IRMM ID	235U/238U	U (k=2)	Rel. U (k=2)			
Se		5	IRMM-2396	0.0058943	0.0000013	0.023%			
Re		6	IRMM-634	0.0072586	0.0000017	0.023%			
int		7	IRMM-2397	0.0084305	0.0000022	0.026%			
Jo		8	IRMM-714	0.0155608	0.0000031	0.020%			
		9	IRMM-026	0.0256780	0.0000050	0.020%			
		10	IRMM-029	0.0440481	0.0000093	0.021%			
RICHTE	RICHTER - INMM-2011-ver03 9								

	EUROPI DIRECTORATE Joint R	AN COMMISSION CONCLUSIONS
	\succ	New UF ₆ GSMS installed at IRMM
	≻	40 years old MAT511 replaced by URANUS
	≻	Necessary to guarantee the high quality supply of IRMM UF ₆
tre		reference materials and reference measurements in the future
en'	≻	Advantages of URANUS:
C		a) Measurement of major & minor ratios
rct		b) Automatic measurement sequences
ea	\succ	Performance for "major" ratios ²³⁵ U/ ²³⁸ U satisfactory (±0.03%),
es		correction for memory effects necessary: MCDS !
t R	\succ	Validation ongoing for "minor" ratios ²³⁴ U/ ²³⁸ U and ²³⁶ U/ ²³⁸ U
)in	\succ	New UF ₆ GSMS guarantees IRMM's role as a leading provider of
JC		high quality UF_6 reference materials and measurements to
		European and international safeguards authorities and other
		customers
		-irm
RICHTE	R - INMM-20	11-ver03 1

<section-header><list-item><list-item><list-item><list-item><list-item>

V12 NATIONAL SECURITY COMPLEX

15

LEU Product

- Excellent Isotopic Abundance Agreement between SRS and AREVA for shipper-receiver agreement (SRA)
- DOE-NBL: Official referee laboratory, SRA issue resolution
 - Limited but Effective, Helpful and Appreciated
 - DOE/NBL Staff visits to SRS
 - SRNS AL staff visit to NBL on UDG titration measurements

Savannah River NUCLEAR SOLUTIONS"

Thermal Ionization Mass Spectrometer (TIMS) for Isotopic Abundance

- Thermo Fisher Triton®
- Multi-sample turret (capacity: 21 samples)
- Operates with an acceleration ion energy of 10 KEV
- Automated operation which enables consistency between samples
- Multicollector platform, with one fixed Faraday cup and 8 moveable computer controlled Faraday cups
- Zoom optics for enhanced multidynamic measurements

٩

Savannah River NUCLEAR SOLUTIONS®

	IAP Dat	a Summary for U-23	35 wt%, 20 Std Deviation Within Sample	03 - 2011 Std Deviation Between Samples	
		Count, N	226	113	
		Mean Median	0.0047	0.0027	
		Min	0.0001	0.0000	
		Мах	0.0137	0.0105	
		RSD, 1 sigma	0.10%	0.05%	
V		Acceptance Criteria, RD%	0.40%	0.30%	
	Savannah River NUCLEAR SOLUTI	IONS"			15

16 determinations/day	Includes sample preparation, Carousel segregated for IAP samples only
± 0.2%	Major isotope ratios (10-100 wt%)
± 10%	Minor isotope ratio (0.001 wt%)
0.001wt%	With 1 ug material plated on filament
	Participate in DOE complex-wide U and Pu performance comparison studies
	16 determinations/day ± 0.2% ± 10% 0.001wt%

