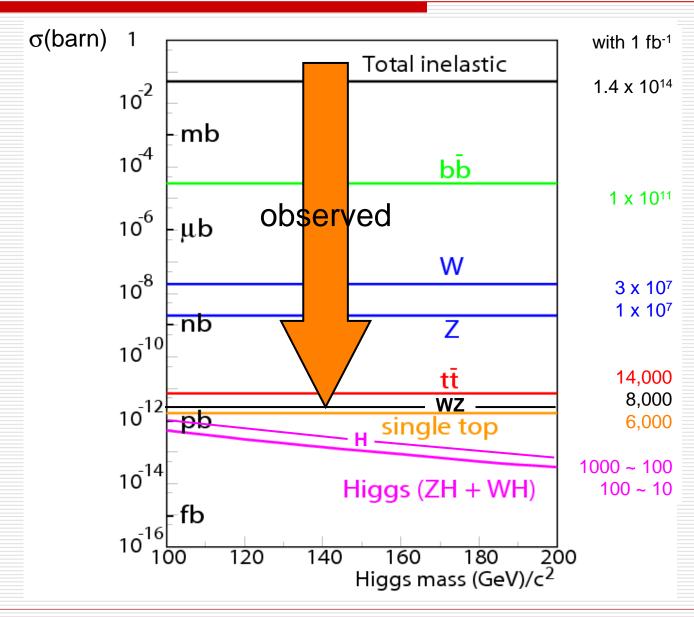
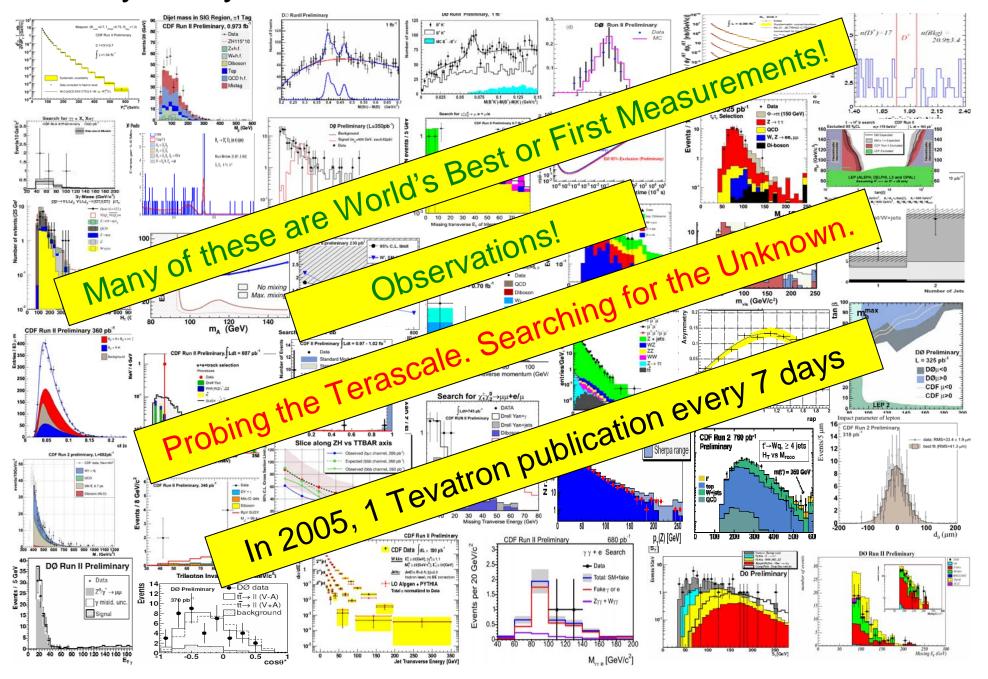
The Tevatron

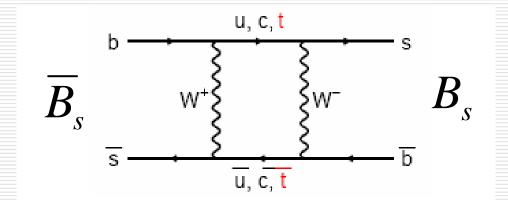

HEPAP Meeting, October 12-13, 2006, Young-Kee Kim

- 1. Physics Highlights with Data through Feb. 2006 (~1 fb⁻¹)
 - B_s Oscillation, M_{top}, Higgs, ...
- 2. Achievements during the Shutdown (March mid June 2006)
- 3. Tevatron Performance since the Shutdown
- 4. Challenges and Excitements Ahead


Entry to Tevatron Luminosity: Entry to Tevatron Physics:

www-bdnew.fnal.gov/operations/lum/lum.html www-d0.fnal.gov/Run2Physics/WWW/results.htm www-cdf.fnal.gov/physics/physics.html

Physics at the Tevatron

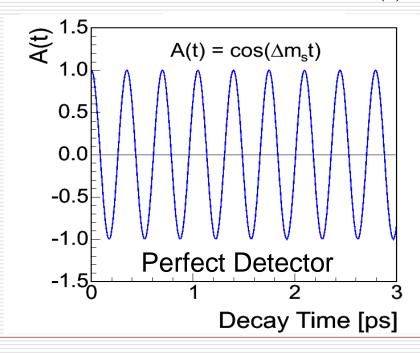


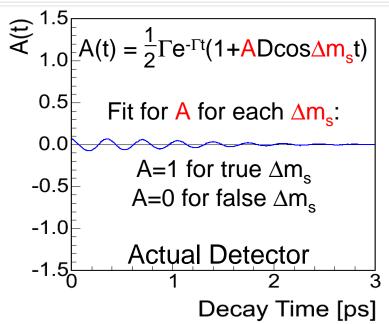
Many many measurements and searches at Tevatron

B_s Oscillation (B_s Mixing)

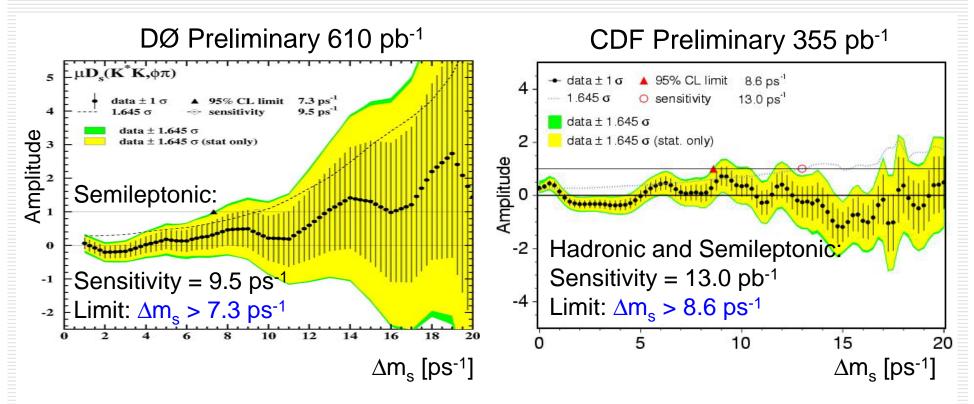
 \square B_s particles can change into their anti-particles.

- ☐ The rate at which $B_s \longrightarrow B_s$ oscillate = Δm_s
- □ Important consistency check of CKM quark-mixing Matrix in the standard model.


$$\frac{V_{td}}{V_{ts}} = \xi \sqrt{\frac{\Delta m_d}{\Delta m_s} \frac{m_{B_s}}{m_{B_d}}}$$

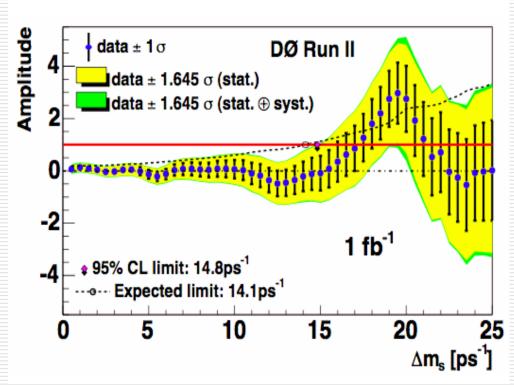

B_s Oscillation

 \square Probability that B_s at t=0 decays as \overline{B}_s at time t


$$P(\text{mixed}) = \frac{1}{2\tau} e^{-\frac{t}{\tau}} (1 - \cos\Delta m_s t)$$

Experimentally, measure Asymmetry as a function of proper decay time $A(t) = \frac{\#\text{unmixed}(t) - \#\text{mixed}(t)}{\#\text{unmixed}(t) + \#\text{mixed}(t)}$

B_s Oscillation: Fall 2005



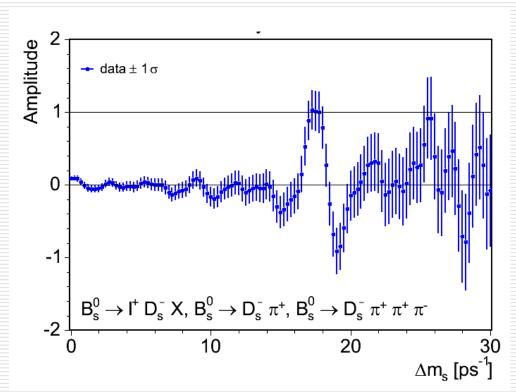
These results improved world limit from $\Delta m_s > 14.5 \text{ ps}^{-1}$ to $\Delta m_s > 16.6 \text{ ps}^{-1}$ @95%CL.

Summer 2005 CKM Fit Result: $\Delta m_s = 18.3^{+6.5}_{-1.5} \text{ ps}^{-1}$

B_s Oscillation: DØ 1 fb⁻¹ March 2006

- Two-side limits:
 - $17 < \Delta m_s < 21 \text{ ps}^{-1} \text{ at } 90\% \text{ CL}$
 - 8% probability random fluctuation would look like a signal

Lab Press Release on March 22:

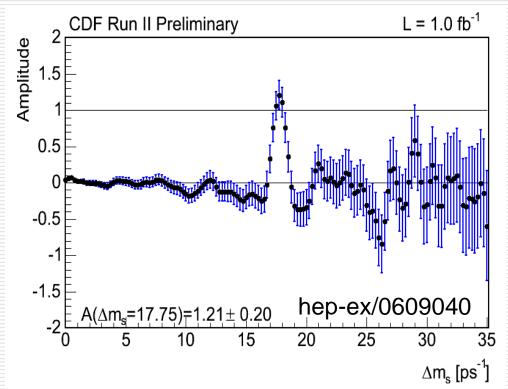

What happened to the Antimatter? Fermilab's DØ Experiment Finds Clues in Quick-Change Meson.

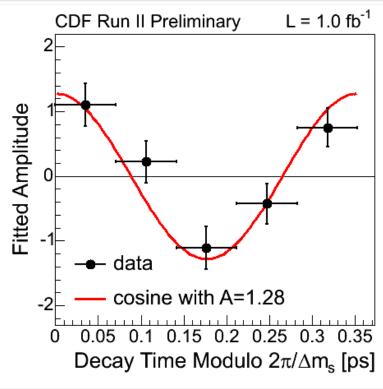
PRL 97, 021802 (2006) hep-ex/0603029

B_s Oscillation: CDF 1 fb⁻¹ April 2006

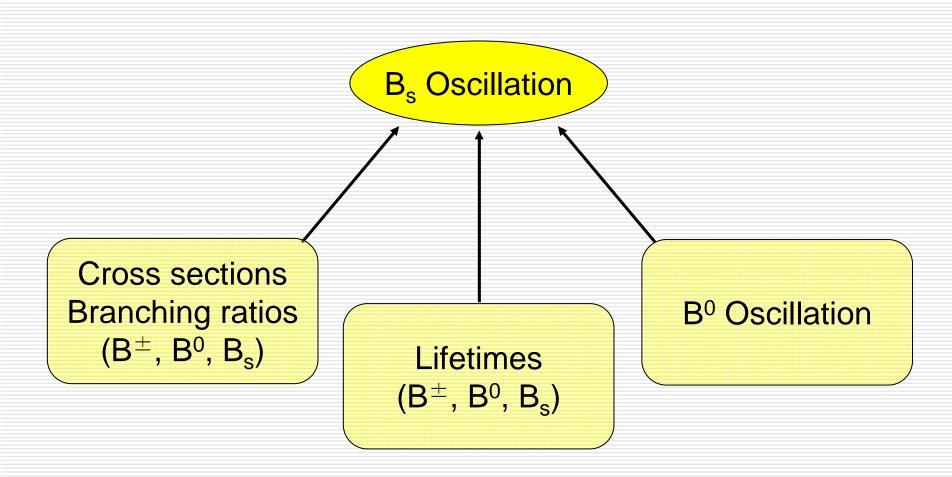
Evidence:

- \blacksquare 0.2% probability (> 3 σ) random fluctuation would look like a signal
- $\Delta m_s = 17.31^{+0.33}_{-0.18} \pm 0.07 \text{ ps}^{-1}$
- $|V_{td}/V_{ts}| = 0.208 + 0.001_{-0.002} \text{ (expt.)} + 0.008_{-0.006} \text{ (theo.)}$


Lab Press Release on April 11:


Fermilab CDF scientists present a precision measurement of a subtle dance between matter and antimatter.

PRL 97, 062003 (2006) hep-ex/0606027

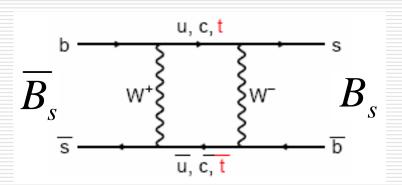

B_s Oscillation: CDF 1 fb⁻¹ September 2006

- ☐ Observation: Reanalyzed the same dataset used for Evidence.
 - \blacksquare 8 x 10⁻⁸ probability (> 5 σ) random fluctuation would look like a signal
 - Effective statistics a factor of 2.5: Evidence became Observation.
 - $\Delta m_s = 17.77 \pm 0.10 \pm 0.07 \text{ ps}^{-1}$
 - $|V_{td}/V_{ts}| = 0.2060 \pm 0.0007 \text{ (expt.)}^{+0.0081}_{-0.0060} \text{ (theo.)}$

B_s Oscillation is not "ONE" analysis!

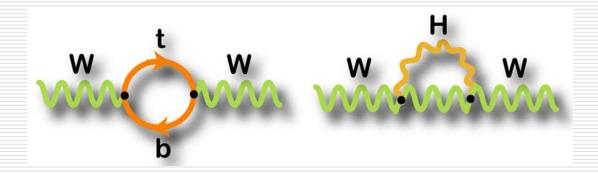
21 Ph.D.s in the course of the analysis

Constraining New Physics with B_s


- ☐ Measurements in B_s section constrain new physics.
 - B_s sector largely unexplored
- New physics can affect

$$\Delta m_s = 17.77 \pm 0.10 \pm 0.07 \text{ ps}^{-1}$$

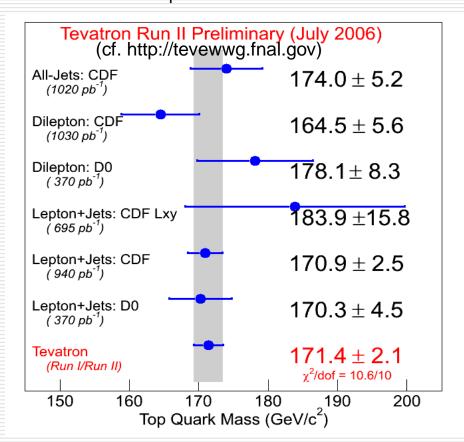
- $\Delta \Gamma_{\rm s} = 0.17 \pm 0.09 \pm 0.03 \ {\rm pb^{-1}}$
- Br(B_s $\rightarrow \mu\mu$) < 1.0 x 10⁻⁷



- **CPV** phase $\delta \phi$ = -0.79 ±0.56 ± 0.01
- \square CPV parameter Re(ε_b) / (1 + $|\varepsilon_b|^2$) = -1.1 \pm 1.0 \pm 0.7
- \Box A_{CP} (B_s \rightarrow K π) = + 0.39 \pm 0.15 \pm 0.08
- ...
- e.g. SUSY: already puts stringent limits.
 - There is little room left for generic SUSY that produce large new flavor-changing effects.

Understanding the Origin of Mass

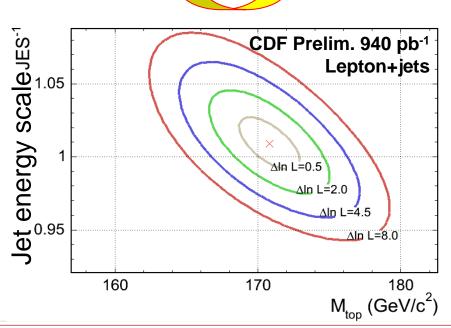
There might be something (Higgs) in the universe that gives mass to particles.

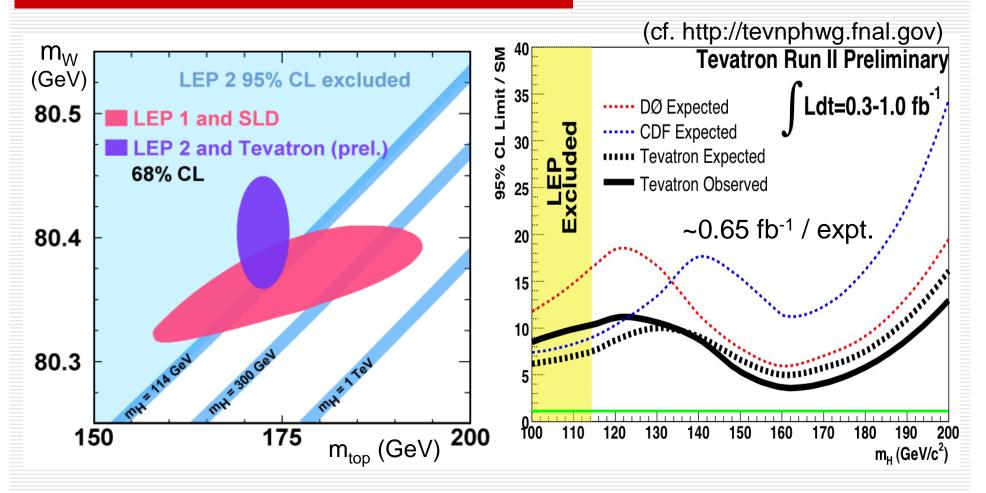

 M_W - M_{top} - M_{Higgs} Relation: M_W , M_{top} measurements predict M_{Higgs} .

M_{top} is an important input for new physics models. e.g. MSSM:

 $M_{Higgs} < M_Z$ at tree level, and $M_{Higgs} < 135$ GeV with top quantum corrections (M_{top}).

Top Quark Mass

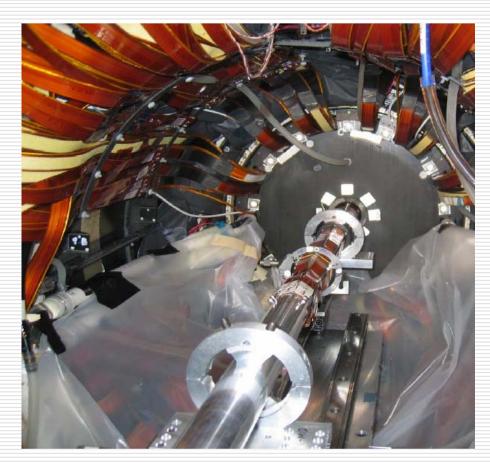

- \square $\delta M_{top} = 2.1 \text{ GeV } (1.2\%), L < 1 \text{ fb}^{-1}$
 - $\bullet \quad \delta M_{top} \text{ (stat.) } = \pm 1.2 \text{ GeV}$
 - $\bullet \quad \delta M_{top} \text{ (Jet E)} = \pm 1.4 \text{ GeV}$
 - δM_{top} (syst.) = ± 1.0 GeV


Surpassed 2 fb-1 Goal!

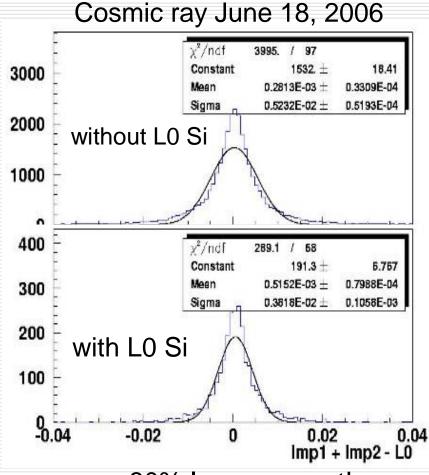
- Results of improvements through creativity, boldness
- e.g.: Jet Energy Scale
 - □ 3 GeV → 1.4 GeV

$$\begin{array}{c} t \rightarrow W^+b \rightarrow e/\mu \ \nu \ b\text{-jet} \\ \hline t \rightarrow W^-\bar b \rightarrow \underline{\text{jet jet}} \ b\text{-jet} \end{array}$$

Top Quark Mass and Higgs Searches

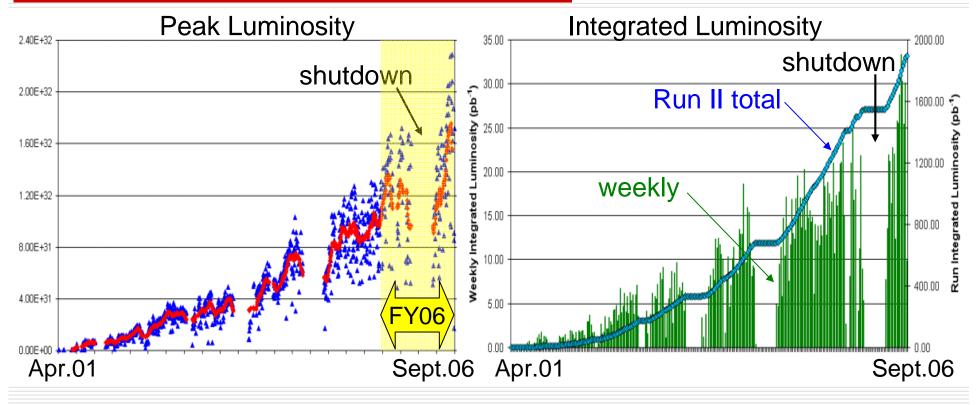

Indicates Higgs is light
(M_{higgs} < 166 GeV at 95% CL)
Where Tevatron sensitivity is best!

~15 CDF + DØ Results combined. SM Sensitivity within a factor of 5-10 for $110 < M_{higgs} < 200 \text{ GeV}$

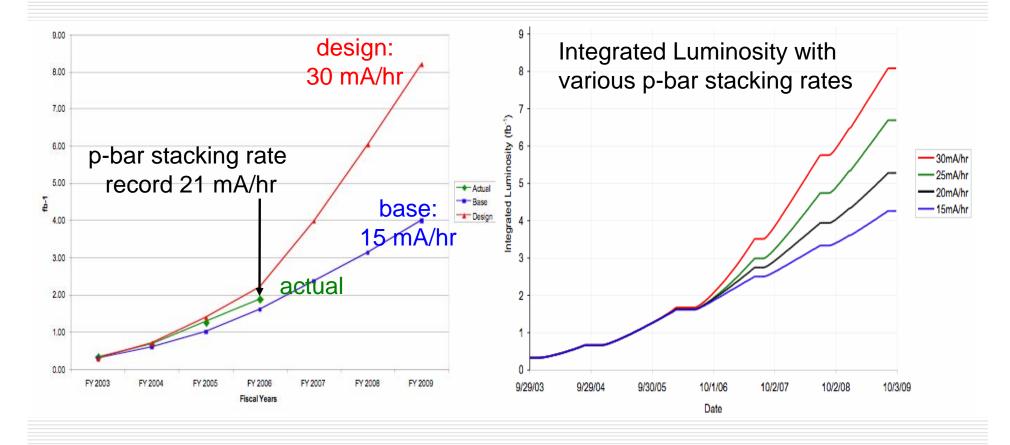

Shutdown: March - Mid June, 2006

- Completion of Run IIb Detector Upgrades!
 - DØ Layer-0 Silicon (new)
 - DØ Level-1 Calorimeter and Tracking Trigger Upgrades
 - CDF Level-1 Tracking Trigger Upgrade
- Accelerator Improvements and Maintenance
 - Booster: rebuilt booster injection system
 - Main injector: installed large aperture quadruples at injection and extraction points
 - Tevatron: new separators, better magnet alignment
 - More protons
 - Antiprotons with less emittances
 - Longer collision lifetime

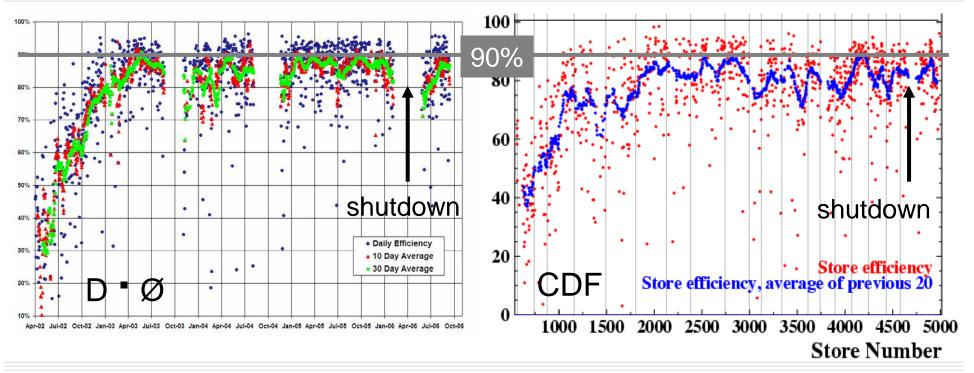
DØ Layer-0 Silicon Installed!


All went extremely well!

~30% Improvement! even before final alignment


Expect 15% gain in b-tagging efficiency

Tevatron performs extremely well!


- □ Peak luminosity record: 2.3 × 10³² cm⁻² s⁻¹
- Weekly Integrated luminosity record: 33 pb-1 / week / expt
- □ total delivered: 1.8 fb⁻¹/ expt, total recorded: 1.5 fb⁻¹/ expt
- □ Doubling time: ~1 year
- ☐ FY06: 620 pb⁻¹ (664 pb⁻¹ with final corrections)

Tevatron Luminosity Projection

- Given the current p-bar stacking rate, doing better than expected
 - Results of many people's hard work
- □ Primary goal now is to reach 30 mA/hr

Data Taking Efficiencies

- Challenges with rapidly improving instantaneous luminosity
 - Over 100 trigger paths per each experiment richness of physics
 - Trigger rates increase much faster than inst. luminosity.
 - Not all of them can be estimated reliably by Monte Carlo.
 - Re-optimize triggers with real data

Tevatron Accomplishments and Prospects

Tevatron Accelerator and DØ and CDF Experiments have been performing well. Better than ever!

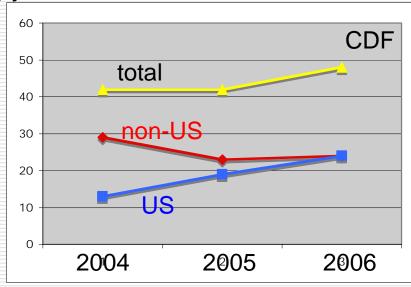
- We are confident that we will get 8 fb⁻¹!
- B_s oscillation observed
 - $\Box \delta(\Delta m_s^{\text{Tevatron}}) = 0.1 \text{ x } \delta(\Delta m_s^{\text{theory}})$
- Top and W mass
 - \square $\delta M_{top} = 2.1 \text{ GeV} \text{with } < 1 \text{ fb}^{-1}, \text{ surpassed 2 fb}^{-1} \text{ goal}$
 - \square Reaching $\delta M_{top} = 1-1.5$ GeV, $\delta M_W = 20-30$ MeV is critical!
- We are now measuring processes with a few pb's.
 - $\sigma_{W7} = 3.98^{+1.91}_{-1.53} \text{ ps}$
 - ☐ Close to low mass SUSY cross sections
 - □ An important stepping stone for the Higgs search
- What is the next biggest challenge?

Tevatron Sensitivity to Higgs

- Primary goal is to reach SM Higgs sensitivity.
 - Improvements
 - ☐ Statistics (so far 0.65 fb⁻¹ / expt on average)
 - Triggers, Acceptance, Efficiency, Jet Resolutions, Analysis techniques, ...
 - Complex and challenging
 - even more than B_s oscillation and M_{top}
 - ☐ Many final states, Small cross sections, large backgrounds
 - Many other high profile analyses will benefit from this.
 - □ Examples:
 - "Single top observation"
 - another important stepping stone towards Higgs
 - Low mass SUSY searches
- □ Achievable by coordinated effort, focus, and determination as demonstrated in success in B_s oscillation, M_{top} ...

Our Goal:

be prepared...

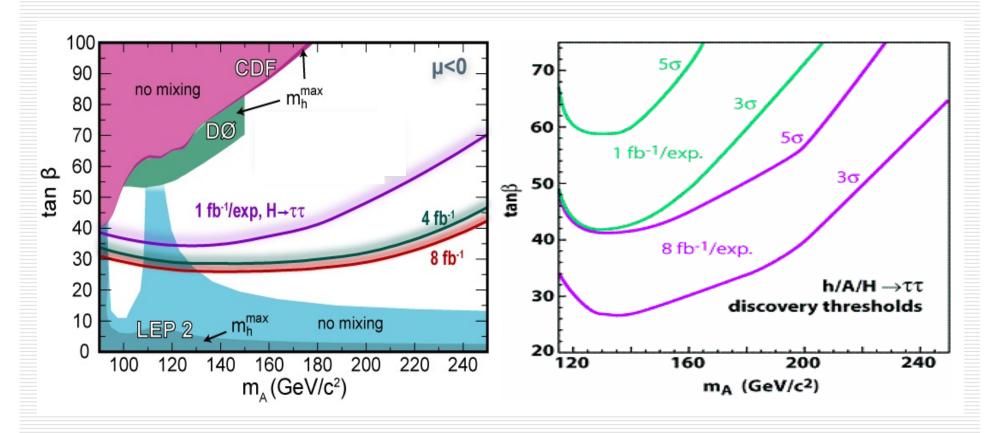

Then let Nature decide whether we see the Higgs or see a hint of it!

Concerns: Physicist Resources

- Progress made from CDF and DØ Collaborations
 - Stream-lined operations
 - Adopting common solutions in computing
 - Focusing on "high impact" physics analyses
- □ Progress made from Fermilab
 - Visitors budget: ~12% increase for DØ
 - Added 4 postdoc positions (2 to CDF, 2 to DØ)
 - Initiated International Fellowship Program
 - 2 to CDF, 2 to DØ (1 student from UK, 1 postdoc from Mexico, 2 faculty members from China and Cyprus)
 - Slowed down physicists transition from the Tevatron to the CMS
 - Provided further Fermilab staff support to the DØ operations
 - Inviting theorists to Fermilab, sponsoring mini workshops
- Current "Concerns": loosing detector/offline experts (university groups)
 - Modest help from funding agencies could make a big difference
 - Supporting Ph.D. students
 - Supporting key personal (experts) from university groups

Participation of New Students

- Survey on new students in this coming year
 - CDF: 45 out of55 universities responded


- DØ: 49 out of ~85 institutions responded
 - \square New Students = 30 +2 $_{-5}$, New U.S. Students = 15 \pm 2
- More than 80 new Ph.D. Students
- ☐ Tevatron is a great place for Ph.D. students
 - Excellent physics
 - Educating and training analyses, hands-on operational experience.
- □ A few new institutions joining the Tevatron experiments.

Backup Slides

Tevatron Lum Progress since the Shutdown

- More protons
 - New 150 GeV helix
 - Less proton loss during p-bar loading
 - ☐ Improved proton lifetime
 - New booster injection system and removal of L13 extraction system
 - Booster performance is better
 - 5-10% more protons in collision
- Antiprotons with low emittances
 - Accumulator to Recycler transfers shortened significantly (45'→ 25')
 - □ 5-10% higher stacking rate
 - Changed recycler tune point
 - Transverse emittances in Recycler is preserved better.
 - □ 5-10% higher luminosity per antiproton
- Improved luminosity lifetime
 - 10% higher integrated luminosity for the same initial luminosity.

MSSM Higgs Sensitivities

Tevatron will have sensitivity to MSSM Higgs for all $\tan \beta > 30$ and $M_A < 200$ GeV/c²