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Outline
• Quick Survey of On-Going and Future 

Applications
• A Selection of Technology Highlights
• Outstanding issues:

– Common to all applications 
– High gradient applications
– CW operation (medium gradient)
– Weak beam loading

• Is there a higher gradient future beyond Niobium 
Cavities?



SRF Has Become a Core Technology 
Worldwide for a Variety of Accelerators

• HEP
– Now: LHC, CESR-TA, KEK-B, Beijing Tau-charm Factory
– Future: ILC, ProjectX, CERN-SPL, Neutrino Factory, JPARC-Upgrade (neutrino beam line) 

Muon Collider
• NP, Nuclear-Astrophysics

– Now: CEBAF, 12GeV Upgrade, 
– Future: FRIB (Argonne/MSU), ISAC-II (TRIUMF), Spiral-2, CERN ISOLDE Upgrade,  Eurisol, 

RHIC-II, eRHIC, ELIC
• BES X-rays

– Now: FLASH, X-FEL, CHESS (NSF), Canadian Light Source, DIAMOND, SOLEIL,Taiwan 
Light Source, Beijing Light Source (Tau-charm Factory), Shangai Light Source, Jlab- 
FEL/ERL, Rossendorf-FEL

– Future: NSLS-II, Cornell-ERL (NSF), KEK-ERL, BESSY-ERL, WIFEL (NSF), ARC-EN-CIEL, 
Pohang Light Source, Peking University,…

• BES: Neutron Sources
– SNS, SNS upgrade,
– Future: ESS (Bilbao?)

• Other High Intensity Proton Sources for 
– Nuclear waste transmutation, Energy amplifier, Power generation from Thorium
– INFN, KAERI, Indian Laboratories at Indore, Mumbai and Kolkata



Strong World-Wide Collaboration Forums for 
SRF Technology and Applications

• SRF Workshops every 2 years 
– Beijing, Cornell, Travemunde, Santa Fe…
– Next Workshop : Berlin in September 2009

• Tesla-Technology Collaboration (TTC) meetings 
every 6 months
– Delhi, Hamburg, KEK, Frascati…

• Focused on major technical issues
– E.g. Gradient yield R&D, Industrialization, couplers, 

tuners…
• ILC Collaboration Meetings

– Monthly



SRF Capabilities in the US 
Associated Projects

• Argonne National Lab
– Heavy Ion (ATLAS), FRIB

• Brookhaven National Lab
– ERL for eRHIC and RHIC-II 

• Cornell University, LEPP
– CESR/CHESS, ERL, ILC

• Fermilab
– ILC, Project X

• Jefferson Lab
– CEBAF, ILC, ELIC

• Michigan State University
– ReAccelerator, FRIB

• Oak Ridge National Lab
– SNS



1300 MHz Structures for Accelerating Particles at v ~ c 

Structures for Accelerating 
Particles at v < c 
For protons at 1 ~ GeV

TESLA- 
shape

(DESY, 
TTF)

Low-Loss shape (Jlab, KEK…)

Re-entrant shape (Cornell)

1-cell 500 MHz for high current storage rings

CESR, DIAMOND, CLS, TLS, SLS…

Structure Examples



Low-Velocity Structures for Heavy Ions 
β = v/c : 0.28 -0.62



Crab Cavities (Deflecting mode)
• KEK-B
• Possibly LHC-upgrade
• Possibly Ultra-fast X-ray source



For Tesla-Test Facility (now FLASH) CESR Module for High Current Storage Rings

Cryomodule Examples

Low β

 

Module (TRIUMF)



Common Issues for All SRF Applications

• Niobium material control (more on this later)
• Good fabrication procedures

– Key element is electron beam welding
• Good surface preparation procedures

– chemical treatment
– furnace treatment
– high pressure rinsing
– clean room assembly

• Operation
– Accommodate gradient distribution for maximum energy gain

• Provide flexibility in rf distribuition
– Reliability of operation, low trip rate, 

• low x-ray production level during operation…
• Production and testing capacity/rate of cavities, cryomodules



Likely US Upcoming Projects : 
Cavity/CM Demands

• > 1000 cavities, 150 CM
– Jlab upgrade: 80 cavities, 10 CM
– ProjectX: 320 cavities, 40 CM
– ERL Cornell: 450 cavities, 75 CM
– FRIB: 200 low beta cavities 35 CM

• QWR, HWR, Spoke

• On top of XFEL: 1000 cavities, 125 CM
• ILC…Some fraction of 16,000 cavities, 2000 CM
• => Need to broaden industrial base for cavities 

and CM



Status of World-Wide Industrial Capability

• Strong European industrial base: 
– growing due to XFEL 
– ACCEL, Zanon, Thales…

• American industrial base: 
– Developing slowly
– AES, Niowave/Roark, PAVAC, CPI, Meyer Tool

• Asian industrial base: 
– Growing
– Mitsubishi Heavy Industries, Mitsubishi Electrical, 

Nomura Plating, Toshiba



Nb Material Is Common to All Projects

• Basic material specs for “good” cavities have been defined 
• Starting material quality control procedures developed

– RRR, grain size, yield strength, eddy-current scanning to screen out 
defects…

• A new development is large grain material
• Possible advantages are

– Cost reduction (slice directly from ingot)
– BCP only (skip more intricate EP)

• Not valid for highest gradients
• Some fabrication issues still need to be worked out
• Overall performance is same as small grain
• Single crystal: too hard for mass production

– But Useful for basic studies
– E.g. Grain boundaries are not the main cause for high field Q-slope



Standard Ingot and slice

Large grain ingot 
and slice



Go Directly from Ingot to Sheet?



• Gradient Yield at 35 MV/m is low
• Gradient spread is high

– Quench
– Field emission

• Best 9-cell Cavities
About one dozen

Outstanding Issues for Highest Gradient 
Applications: e.g. ILC



Gradient Yield (Before 2008) 
• Field emission Quench

9-cell Yield Comparison (n=0.1, b=0.045)
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66 DESY Tests on 51
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Two vendors

Cavities prepared by 
EP/HPR/800C/EP/HPR/Bake

Open bars are yields due to quench 
modeling



Progress in Gradient Yield Over 
Last One Year

Gradient Yield DESY & Jlab
All  Cavity Yield (47 tests)

(A6, A7, A8, A11, A12, A15, AES 1- 4, Ichiro5, J2,AC115, AC117, 
AC122, 125, 126, Z139, 143)
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Field Emission Reduction
• Improvement mostly due to reduction in field 

emission with better cleaning after 
electropolishing
– Jlab: Ultrasonic degreasing
– DESY: Ethanol rinsing

S particle 
deposited 
on sample 
during EP

(Cornell 
Basic R&D)

Dissolved 
particle, 

but leaves 
an imprint, 
Possible 
quench site?

unknown



Success in Identifying Sources of Quench 
Below 25 MV/m (Limiting 20% of Cavities)

• More R&D 
needed to 
identify quench 
sources for 
gradients > 25 
MV/m !

• Limiting 40% of 
cavities

• Remaining 
cavities make it 
over 35 MV/m

Cavity Success Rate (9-cell DESY)
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Museum of Identified Sources 
of Quench Below 25 MV/m (Pits and Bumps)

Pit with sharp edges 

Reported in Thesis of J. 
Knobloch (1997)

Quenched at 93 mT

Eacc =21 MV/m
26
μm

Bump found by KEK Optical 
Inspection with CCD camera in 
AES 9-cell cavity with 
thermometry (Jlab and FNAL) 
Quench at 18 MV/m

Bump found at Quench 
location on 
Niowave/Roark 1-cell 
cavity (Cornell)

Deep scratch 
subsequently found on 
Cavity Forming Die

5 mm

Pit found by KEK 
optical inspection 
with CCD camera 
in AES #1cavity

Quench at ~ 18 
MV/m

500 μm 500 μm200 μm

Theory



Museum of Quench Sources (con’t) 
for Eacc < 25 MV/m 

• Rough spot near weld 
seam, correlated with 
quench signal from 
thermometry
– (DESY Cavity and 

quench location, KEK 
Optical inspection

• 100 μm pit near weld
• Quench at 18 MV/m

– Jlab quench location 
and optical inspection

– With remote Questar



Recent Result on Pre-Heating at Large Pit (lots of EP)
• Cornell 1-cell massive thermometry system works in superfluid to detect 

heating BELOW quench
• 760 thermometers for 1-cell, 1500 MHz cavity
• Grain size 1 mm, preparation: 

– EP, 800 C, EP, HPR (no bake)



Temperature Map & Q vs E

• General heating due to high field Q-slope
• Defect heating at pit before quench
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Outstanding Issues for CW Applications, 
Medium Gradient, e.g. ERL, FEL

• High Q0 and High Qext (related to input coupler strength)
• If Q = 1010 at 2 K, 450 cavities (5 GeV ERL)

– 2 K heat load = 14 kW (AC power = 13 MW)
• Reduce by factor of 10 if Q0 = 1011 at 1.6 K
• Does higher Q outweigh increased refrigeration cost 

from 2 K to 1.6 K?
• Need excellent shielding for earth’s magnetic field in 

cryomodule
– 5 mGauss

• If beam loading is negligible, only need RF power to 
reach operating field (15 MV/m)

• Operate at highest  Qext allowed by microphonics to 
reduce RF power demand to < 5 kW per cavity. 



5 mGauss DC 
magnetic field



• Peak rf drive power as function of QL for a 1.3GHz, 7- 
cell cavity at 20 MV/m accelerating gradient. The power 
is determined by the peak microphonics cavity detuning 
during cavity operation 



Outstanding Issues for High Intensity Proton Applications, 
Medium Gradient

• Flexibility to make optimal use of gradient spread
– e.g. one klystron/cavity

• Gradient distribution on-line without  beam for 65 out of 
81 cavities.
– The average is 17.8 MV/m

• Beam loss
– Good matching

• Reliability



Beam Loss (SNS)

• As of EPAC 08



Beyond Niobium Cavities 
For TeV Upgrade Linear Collider?

• Is Nb (50 - 60 MV/m) the end of the road for 
superconducting cavity gradients?

• Outstanding question:
• What is the relationship between the RF critical magnetic 

field and the famililar DC critical magnetic fields? 
• Is Hrf

– Hc1 , Hc , Hsh ?
– How does it depend on temperature?
– How does it depend on 

• Ginzburg-Landau parameter κ = λ/ξ?
– Nb: κ ~1, Νb3Sn: κ ~ 20..

DC Critical Fields



• Two Re-entrant Shape Single Cell Cavities 

• Hpk = 38, 36 Oe/MV/m

• Cavities built at Cornell,  treated and tested at KEK 

• # 1 Best  53  MV/m (2010 Oe) at KEK, 

• #2 Best 59 MV/m (2100)  Oe

 

at Cornell

Best Nb
 

Cavities:
 Cornell Collaboration with KEK

Cornell (Geng et al PAC 07)
Best 59 MV/m (2100 Oe)

KEK (Furuta et al, EPAC 06)
Best  53  MV/m (2010 Oe)

30 mm



Cornell Experimental Status (1996) 
Measured RF Critical Field for : Nb3 Sn Using High Pulse Power 

(Calibrated results with Nb)

Nb3 Sn Hc1

Best single 
cell Nb 
cavity 
result

Best single 
cell Nb3 Sn 
cavity 
result

Cavities Prepared 
by BCP
Q-slope limit?

G-L Theory 
Prediction



New from Theoretical Condensed Matter Physics 
(Cornell: Jim Sethna)

• Are the phenomenological Ginzburg-Landau 
Predictions correct?

• New approach goes beyond Ginzburg-Landau
• Theoretically calculates the maximum possible 

Hsh from advanced formulations of BCS theory
– Eilenberger theory

• For perfect samples of practical materials 
• Nb3 Sn, MgB2 at realistic operating temperatures 

(2K)? 
• Only valid for High kappa materials



Eilenberger (BCS) Results !
Superheating field Hsh (T) from the Eilenberger Equations 

And large κ (so not applicable for Nb)
13% larger Hsh at low T than Ginzburg-Landau estimate !

Ginzburg-Landau
Underestimate 

for Hsh

MgB2 Nb3 Sn

Nb
at 

2K

Hrf-critical = Hsh ~ 
0.9 Hc

Which means



Theory gives hope  for 100 – 200 MV/m  !

• Eilenberger (BCS) Theory predicts 
• Eacc ~ 120 MV/m for perfect Nb3 Sn 
• and  200 MV/m for perfect MgB2 !!
• Strong motivation for materials and cavity push
• But be prepared for a long road to realization
• Can we do it?
• At least 5 years of well supported R&D !
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