

# **News from DOE HEP**

**HEPAP Meeting** 

March 11-12, 2010 Bethesda, Maryland

Dennis Kovar
Associate Director of the Office of Science
for High Energy Physics



## **Overview**

The HEP program, with input from the scientific community (HEPAP), is pursuing a longrange plan that maintains a leadership role for the U.S. at the three scientific frontiers that define the field.

## The major elements of this plan are to:

- maintain a strong, productive university and laboratory research community
- enable U.S. leadership roles in the Tevatron and LHC programs at the <u>Energy Frontier</u>
- achieve the vision of a world-leading U.S. neutrino and rare decay program at the <u>Intensity Frontier</u>, building on the existing accelerator infrastructure at Fermilab
- deploy selected, high-impact experiments at the <u>Cosmic Frontier</u>
- support accelerator R&D to position the U.S. to be at the forefront of <u>advanced</u> <u>technologies</u> for next-generation facilities.





# HEP Budget Overview HEP FY 2011 Budget Request

FY 2011 Request is a +2.3% increase compared to FY 2010 Appropriation

FY 2010 Appropriations were a +1.9% increase over FY 2009 Appropriations

(dollars in thousands)

|                                    | (dende in the dearlas)              |                                                |                                      |         |                    |         |
|------------------------------------|-------------------------------------|------------------------------------------------|--------------------------------------|---------|--------------------|---------|
|                                    | FY 2009<br>Current<br>Appropriation | FY 2009 ** Current Recovery Act Appropriations | FY 2010<br>Current<br>Appropriations | Delta   | FY 2011<br>Request | Percent |
| High Energy Physics                |                                     |                                                |                                      |         |                    |         |
| Proton Accelerator Based Physics   | 401,368                             | 107,990                                        | 434,167                              | 5,095   | 439,262            | 1.2%    |
| Electron Accelerator Based Physics | 32,030                              | 1,400                                          | 27,427                               | -2,720  | 24,707             | -9.9%   |
| Non Accelerator Based Physics      | 101,138                             | 4,445                                          | 99,625                               | -11,086 | 88,539             | -11.1%  |
| Theoretical Physics                | 66,148                              | 5,975                                          | 66,962                               | 2,562   | 69,524             | 3.8%    |
| Adavanced Technolgy R&D            | 195,042 *                           | 116,690 *                                      | 182,302                              | 7,666_  | 189,968            | 4.2%    |
| Subtotal, High Energy Physics      | 795,726                             | 236,500                                        | 810,483                              | 1,517   | 812,000            | 0.2%    |
| Construction                       | 0                                   | 0                                              | 0                                    | 17,000_ | 17,000             |         |
| Total, High Energy Physics         | 795,726 *                           | 236,500 *                                      | 810,483 1.90%                        | 18,517  | 829,000            | 2.3%    |

<sup>\*\*</sup> The Recovery Act Current Appropriation column reflects the allocation of funding as of September 30, 2009.

Total includes SBIR/STTR: \$17,730,000 of which was transferred to the Small Business Innovation Research (SBIR) program and \$2,128,000 of which was transferred to the Small Business Technology Transfer (STTR) program.



# **FY 2011 Program Highlights**

#### **Energy Frontier**

- Tevatron will operate in FY 2011 (possibility of discovery or ruling out over a significant fraction of the allowed mass region for the Higgs boson in the Standard Model at the 95% confidence level).
- U.S. LHC program is supported (at a level that will allow U.S. researchers to play an leading role in extracting physics from the data obtained and in planned upgrades).

#### **Intensity Frontier**

- On-going MIE projects (NOvA and Daya Bay) are supported on planned schedules
- First investments (MicroBooNE, Mu2e and LBNE) made for next generation U.S. leadership program

#### **Cosmic Frontier**

- Support ongoing programs (e.g.; Fermi, AMS, VERITAS, Pierre Auger, BOSS, CDMS-II, COUPP, LUX, ADMX)
- On-going MIE projects (DES, SuperCDMS-Soudan) are supported on planned schedules
- R&D for possible future experiments (guidance from HEPAP (PASAG) and ASTRO2010)

#### **Core Research**

- EPP Research supported at a level that will maintain scientific workforce and the ability to be productive
- Advanced Technology R&D supports high risk, high impact initiatives, development of infrastructure (e.g.; BELLA and FACET) and core competencies important for the U.S.



# FY 2011 Budget Breakout of Funding

# **Facility Operations are constant**

**Core Research and Projects maintained (grow somewhat)** 

|                                         | FY 2009 |        |         | FY 2011 |         |         |  |
|-----------------------------------------|---------|--------|---------|---------|---------|---------|--|
| HEP Functional Categories               | FY 2009 | ARRA _ | FY 2010 | Delta   | Request | vs FY10 |  |
| Fermilab Accelerator Complex Operations | 162.8   | 15.0   | 156.5   | -1.4    | 155.1   | -0.9%   |  |
| LHC Detector Support/Operations         | 69.4    | 0.0    | 71.2    | 3.6     | 74.8    | 5.1%    |  |
| SLAC Accelerator Complex Operations     | 15.3    | 0.0    | 12.1    | -2.3    | 9.8     | -19.0%  |  |
| Facility Operations                     | 247.5   | 15.0   | 239.7   | -0.1    | 239.6   | 0.0%    |  |
| EPP Research                            | 284.5   | 24.8   | 286.3   | 10.9    | 297.1   | 3.8%    |  |
| Advanced Technology R&D                 | 167.2   | 78.9   | 162.6   | 4.1     | 166.7   | 2.5%    |  |
| Core Research                           | 451.7   | 103.7  | 448.9   | 15.0    | 463.9   | 3.3%    |  |
| Intensity Frontier Projects             | 47.7    | 55.0   | 72.8    | 5.4     | 78.3    |         |  |
| Energy Frontier Projects                | 2.5     | 0.0    | 9.0     | 0.3     | 9.3     |         |  |
| Cosmic Frontier Projects                | 10.9    | 0.0    | 10.1    | -6.1    | 4.0     |         |  |
| Technology Projects                     | 8.0     | 33.7   | 0.0     | 3.2     | 3.2     |         |  |
| Projects                                | 69.1    | 88.7   | 92.0    | 2.8     | 94.7    | 3.0%    |  |
| Other (GPP/GPE/SBIR/STTR)               | 27.5    | 29.1   | 29.9    | 0.9     | 30.8    | 2.9%    |  |
| High Energy Physics                     | 795.7   | 236.5  | 810.5   | 18.5    | 829.0   | 2.3%    |  |



# FY 2011 Budget Projects

|                                                                |         | FY 2009 |         | F       | Y 2011 |         |
|----------------------------------------------------------------|---------|---------|---------|---------|--------|---------|
| HEP Projects (MIEs and Construction)                           | FY 2009 | ARRA    | FY 2010 | Delta R | equest | vs FY10 |
| Project - NOvA - MIE                                           | 27.8    | 55.0    | 59.0    | -12.8   | 46.2   |         |
| Project - Minerva - MIE                                        | 4.9     | 0.0     | 0.8     | -0.8    | 0.0    |         |
| Project - MicroBooNE - MIE                                     | 0.0     | 0.0     | 2.0     | 6.0     | 8.0    |         |
| Project - Mu2e - Construction (Ops & TEC)                      | 0.0     | 0.0     | 0.0     | 10.0    | 10.0   |         |
| Project - Muze - Construction (Ops & 12C)  Project - T2K - MIE | 1.0     | 0.0     | 0.0     | 0.0     | 0.0    |         |
| •                                                              | 14.0    | 0.0     | 11.0    |         | 2.1    |         |
| Daya Bay - MIE                                                 |         |         |         | -8.9    |        |         |
| Project - LBNE - Construction (Ops & TEC)                      | 0.0     | 0.0     | 0.0     | 12.0    | 12.0   | 7.50/   |
| Intensity Frontier Projects                                    | 47.7    | 55.0    | 72.8    | 5.4     | 78.3   | 7.5%    |
| LHC Accelerator Upgrade - APUL - MIE                           | 2.5     | 0.0     | 9.0     | 0.3     | 9.3    |         |
| Energy Frontier Projects                                       | 2.5     | 0.0     | 9.0     | 0.3     | 9.3    | 2.8%    |
| Project - DES - MIE                                            | 9.9     | 0.0     | 8.6     | -4.6    | 4.0    |         |
| Project - Super CDMS - MIE                                     | 1.0     | 0.0     | 1.5     | -1.5    | 0.0    |         |
| Cosmic Frontier Projects                                       | 10.9    | 0.0     | 10.1    | -6.1    | 4.0    | -60.4%  |
| FACET                                                          | 0.0     | 445     | 0.0     | 0.0     | 0.0    |         |
| FACET                                                          | 0.0     | 14.5    | 0.0     | 0.0     | 0.0    |         |
| Project - SRF Electron Beam Welder - MIE                       | 0.0     | 0.0     | 0.0     | 3.2     | 3.2    |         |
| Project - BELLA - MIE                                          | 8.0     | 19.2    | 0.0     | 0.0     | 0.0    |         |
| Technology Projects                                            | 8.0     | 33.7    | 0.0     | 3.2     | 3.2    |         |
| Total, HEP Projects                                            | 69.1    | 88.7    | 92.0    | 2.8     | 94.7   | 3.0%    |



# **Energy Frontier: Recent Activities & Plans**

## **LHC Program**

- > Collided beam at 900 GeV and ramped to 1.2 TeV center of mass energy (12/2009)
  - Congratulations to the accelerator and detector groups
  - 1fb<sup>-1</sup> @ 7 TeV center of mass energy main objective for 2010-2011
- > CERN is in the process of defining its mid-term plan for the LHC program
  - U.S. is planning to participate in the LHC program
  - Participation includes detector / accelerator "modest upgrades"
  - Present US-CERN MOU lasts until 2017

## **Next generation Lepton Collider**

- Next generation lepton collider "decision" awaits results from LHC and commitments of interested participants
  - Envisioned to happen ~ FY 2012 now expected to happen later
  - Working with ART to define a US ILC R&D FY2012–2015 program
- Working with to establish a five year national muon accelerator R&D plan
  - Fermilab has been charged to organize this national effort



# Intensity Frontier: Recent Activities and Plans

DOE and NSF are coordinating planning for LBNE and for DUSEL

- ➤ Mission Need (CD-0) approval obtained for the Long Baseline Neutrino Experiment (LBNE) that includes the neutrino beam and a large underground detector (01/2010)
- > NSF supporting conceptual design of the DUSEL facility and a suite of experiments
- Joint Oversight Group (JOG) coordinating these efforts

Other Intensity Frontier "scientific opportunities"

OHEP has received a report from SLAC describing possible US options in SuperB (Italy)

- Three possible scenarios (both minimal and optimal)
  - 1 Provision of reusable PEP-II and BABAR components
  - 2 1 + additional funding for US participation in detector program
  - 3 2 + additional funding for US participation in accelerator program

OHEP expects to get a proposal for participation in Belle-II at SuperKEKB (Japan)

Participation in detector subsystems

OHEP expects to get a proposal for implementing the g-2 experiment at Fermilab

Utilizes existing Fermilab infrastructure and planned upgrades (and BNL D&D)

OHEP will conduct peer-reviews of these "scientific opportunities"



# Non-Accelerator Physics: Recent Activities and Plans

### DOE and NASA continue to work to identify the path forward on a JDEM

- > Two concepts (IDECS and OMEGA) presented to Astro2010 in June 2009.
- Costs are not compatible with current budget projections
- Project Offices (GSFC and LBNL) developing a \$650M-capped mission concept
- > Advice being provided by the Interim Science Working Group (since December 2009)

## DOE and NSF charged HEPAP to assess opportunities in particle astrophysics

- ➤ HEPAP (PASAG) Report was submitted in 2009
- Guidance is being utilized in DOE SC HEP planning

## **Looking for guidance from Astro2010 - the findings and recommendations:**

- Will influence the opportunities for HEP participation
- Will inform OHEP on scientific/technical aspects of particle astrophysics (e.g.; optimum dark energy strategy with available resources)

## **OECD Global Science Forum Astroparticle Physics Working Group**

- Global coordination and planning of astroparticle physics experiments
- > Study report will be completed in Oct. 2010



# OHEP Summary of HEPAP (PASAG) Report

### **Prioritization Criteria for Particle Astrophysics**

- Science addressed by the project necessary (significant step towards HEP goals)
- Particle physicist participation necessary (significant value added/feasibility)
- Scale matters (particularly at boundary between particle physics and astrophysics)

Priorities are generally aligned with recommendations for Cosmic Frontier in the 2008 HEPAP (P5) Report

Dark matter & dark energy both remain high priorities

#### **Guidance:**

- Dark energy funding (recommended for largest budget portion) should not significantly compromise US leadership in dark matter, where a discovery could be imminent
- Dark energy and dark matter together should not completely zero out other important activities (except in the lowest funding scenario - even then a limited CMB participation is recommended)
- DOE SC HEP funding is somewhere between the lower budget scenarios (A & B)
- HEP (along with NASA and NSF) awaits Astro2010 Report before decisions on proposed major projects (AGIS, Auger-North, BigBOSS, JDEM, LSST).



# PASAG Guidance Dark Matter

### **Dark Matter:**

#### Scenario A

- Maintain world-leading program by supporting 2 next-generation (G2) experiments and SuperCDMS-SNOLab
- Not able to do a third-generation (G3) experiment this decade which may mean loss of world leadership

#### Scenario B

- ➤ Maintain world-leading program by supporting 2 G2 experiments and SuperCDMS-SNOLab
- > Start a G3 experiment this decade.
- A broad G2 program is higher priority than a 2nd G3 experiment

### Currently DOE is supporting: LUX -SUSEL, COUPP, SuperCDMS-Soudan, ADMX

- Proposals submitted for R&D efforts
- Current experiments are also planning their G2 and, in some cases, their G3 experiments
- Developing with NSF a plan for a path forward, with milestones and decision points
  - Will use review panel(s) to make decisions on which ones to go forward
  - > Insufficient funds for each of the efforts to go to the next generation
  - Agencies will decide what they will contribute and to which efforts



# PASAG Guidance Dark Energy

## **Dark Energy:**

#### Scenario A

Not possible to have major hardware and science contributions to any large project – participation supported only in very limited areas

#### Scenario B

May have just enough funding for significant participation in one large project but there are risks since costs are uncertain; fast start may not be possible

DES is under fabrication, BOSS is operating & there are a number of smaller research efforts

- Providing some R&D funding for JDEM and LSST
- BigBOSS has sent in a letter of intent in response to a call for proposals from NOAO for new instrumentation on existing telescopes at Kitt Peak
- Astro2010 is expected to recommend a coordinated ground/space dark energy program
  - DOE is talking regularly with NASA and NSF-AST about coordination of efforts.



# PASAG Guidance High Energy Cosmic Particles

## **High Energy Cosmic Particles**

#### Scenario A

- > Effort is severely curtailed in order to preserve viable program in dark matter & energy
- VERITAS upgrade & HAWC should be a priority.
- Auger-North & AGIS are not possible

#### Scenario B

- VERITAS upgrade and HAWC
- > A reduced but leading role in an AGIS that is merged with CTA
- Auger-North is not possible

### Currently DOE is supporting VERITAS, Auger-South and Fermi

- NSF and DOE are holding a joint review of HAWC in April
- The VERITAS upgrade is being considered for an NSF-MRI.
- Astro2010 is considering AGIS and Auger-North.



# PASAG Guidance Cosmic Microwave Background

## **Cosmic Microwave Background**

Scenario A, B, C, D

> QUIET-II should be supported along with other small investments that meet prioritization criteria.

Currently DOE is not supporting any CMB projects but we do have a number of small research efforts.

- Fermilab and SLAC are proposing roles in QUIET-II
- NSF recently held a review of QUIET-II proposal (with DOE attending as an observer)



# **Other Program Activities**

### **HEPAP/Advisory**

- HEPAP Committee of Visitors (COV) to examine/evaluate operations of the DOE SC OHEP
- Report from Accelerator Workshop will be utilized in developing the strategic plan for the HEP Accelerator Science/R&D program

### **Early Career Awards**

- Funding of \$16M provided in FY 2009 ARRA (4 laboratory & 10 university 5-year awards)
- Coordinated/managed at Office of Science (SC) level
- Steady state funding of ~\$16M will be established for such awards in out-years

#### Office of HEP

- Two recent appointments still several open federal positions in HEP
- Need for IPAs / Detailees (a number of appointments ending in FY2010 and FY2011)



# **HEP Early Career Program**

- Supersedes HEP Outstanding Junior Investigator (OJI) program
- Breakdown of proposals:

|            | Experiment | Theory | Total |
|------------|------------|--------|-------|
| Lab        | 41         | 6      | 47    |
| University | 64         | 43     | 107   |
| Total      | 105        | 49     | 154   |

- Three HEP panels met in early December:
  - Laboratory Experiment
  - University Experiment
  - > Theory
- Statistics:
  - > Theory: Six awards (49 proposals) spanning research frontiers, mostly focused on LHC physics
  - Experiment: Eight awards (105 proposals); Three Energy Frontier; Three Intensity Frontier; Two Cosmic Frontier; One Accelerator R&D
  - > Gender: Three women; Eleven men
  - Geography: Six East; Four Midwest; Four West
  - Evenly distributed in year since PhD



# **HEP Organization Chart**





## **Staffing Actions**

#### New Personnel

- Christie Ashton Program Analyst Effective 02/14/10
- Fred Borcherding Instrumentation Program Manager Effective 04/12/10

#### Federal Vacancies

- Non-Accelerator Physics Program Manager candidate selected
- Computational HEP Program Manager reviewing applications
- Theoretical Physics Program Manager reposting March 2010
- Accelerator Science Program Manager vacancy to be posted



# **Congratulations and Good Luck!**

- Phil Debenham is retiring April 2 after 30 years of Federal Service
- Would like to recognize and thank him for his stewardship of accelerator science.
- Wish him well in all of his new endeavors.



PACO5 - Knoxville, TN