DESTINY
Dark Energy
Space Telescope

Dominic Benford
NASA / GSFC
Content of the Universe

- **73%** Dark Energy
- **23%** Dark Matter
- **3.6%** Intergalactic Gas
- **0.4%** Stars, etc.
How Important Is This?

Science's Top Question:

“What is the universe made of? ... what is dark energy? This question, which wouldn't even have been asked a decade ago, seems to transcend known physics more than any other phenomenon yet observed.”
Dark Energy 70% of Universe

Supernova Cosmology Project

Knop et al. (2003)
Spergel et al. (2003)
Allen et al. (2002)

Supernovae

Clusters

No Big Bang

CMB

expands forever
recollapses eventually

flat
closed
open

Ω_Λ

Ω_M

0 1 2 3 0

4
Evolution of the Universe

Average Density of the Universe

- **Matter**
- **Cosmological constant**

Density (grams per cubic centimeter)

<table>
<thead>
<tr>
<th>Age (billions of years)</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>First galaxies formed</td>
<td>10^{-30}</td>
</tr>
<tr>
<td>Solar system formed</td>
<td>10^{-29}</td>
</tr>
<tr>
<td>Now</td>
<td>10^{-29}</td>
</tr>
<tr>
<td>Our sun dies</td>
<td>10^{-29}</td>
</tr>
</tbody>
</table>
Current Destiny Status

- Awarded JDEM concept study by NASA 8/06
- Pursuing DOE grant to augment NASA grant activities

Teams in place:
- Technical people at Goddard hard at work.
- Science team working on calibration, survey definitions, etc.

Working with industry:
- LMCO for spacecraft
- Goodrich for telescope
- Teledyne for detectors

Target mid-2008 for high-fidelity definition
- Prepared for AO to flight late 2008
DESTINY Facts & Design

• **1.65m telescope at L2**
• **SN1a survey over 3°² - first two years**
• **Imaging Spectrograph with \(\lambda/\delta\lambda \sim 75 \). Over 0.85\(\mu \)m < \(\lambda \) < 1.7\(\mu \)m**
• **WL survey 1000°² - third year**
• **R~5 IR filters for WL survey**
• **Goal of \(w_0 \) to 0.05 and \(w_a \) to 0.20**

• **Heritage: no technology development**
• **Spacecraft, instrument, Cost defined in two independent studies (GSFC & LMCO)**
• **Scientifically unique configuration of proven technology**
Destiny Philosophy

• Do only in space what must be done in space - leverage ground based observations.

• Use the minimal instrument required – maintain high heritage.

• Highly automated survey - no time critical operations.

• All spectra all the time. Complete spectro-photometric time series on all SN events.
Destiny Science Team

PI: Tod R. Lauer (NOAO)

- **Matthew Beasley (Colorado)**
- **Chris Burns (OCIW)**
- **Kenneth Carpenter (GSFC)**
- **Doug Clowe (Ohio U)**
- **Ian Dellantonio (Brown)**
- **Megan Donahue (MSU)**
- **Chris Fassnacht (UC Davis)**
- **Wendy Freedman (OCIW)**
- **Chris Fryer (LANL)**
- **Jay Holberg (Arizona)**
- **Aimee Hungerford (LANL)**
- **Robert Kirshner (Harvard)**
- **Lloyd Knox (UC Davis)**
- **Lori Lubin (UC Davis)**
- **Sangeeta Malhotra (ASU)**

Deputy PI: Dominic Benford (GSFC)

- **Tom Matheson (NOAO)**
- **Phillip Pinto (Arizona)**
- **Marc Postman (STScI)**
- **James Rhoads (ASU)**
- **Yong-Seon Song (Chicago)**
- **George Sonneborn (GSFC)**
- **Sumner Starrfield (ASU)**
- **Nicholas Suntzeff (TAMU)**
- **Frank Timmes (LANL)**
- **Thomas Vestr and (LANL)**
- **Mike Warren (LANL)**
- **Rogier Windhorst (ASU)**
- **Robert Woodruff (LMCO)**
- **Ann Zabludoff (Arizona)**
DETF Findings

“A mix of techniques is essential for a fully effective [Dark Energy] program.”
Supernova Hubble Diagram

Destiny’s primary survey will leverage the maturity of the supernova standard candle technique (with data from existing supernova studies) to precisely determine the dark energy equation of state.
Hubble Diagram (diff.)

Relative to Empty ($\Omega=0$) Universe

Relative to Coasting ($q(z)=0$) Universe

$\Omega_M=0.27$, $\Omega_\Lambda=0.73$

"replenishing" gray Dust

$\Omega_M=1.0$, $\Omega_\Lambda=0.0$

High-z gray dust ($+\Omega_M=1.0$)

Evolution $\sim z$, ($+\Omega_M=1.0$)

Constant Acceleration, $q_0=-$, $dq/dz=0$ ($j_0=0$)

Constant Deceleration, $q_0=+$, $dg/dz=0$ ($j_0=0$)

Acceleration+Deceleration, $q_0=-$, $dq/dz=+$

Acceleration+Jerk, $q_0=-$, $j_0=+$

$\Delta(m-M)$ (mag)

$\Delta(m-M)$ (mag)

0.0 to 2.0

0.0 to 2.0
SN light curves required for “standard candle” use

V Band

-20
-19
-18
-17
-20 0 20 40 60 days

Calan/Tololo SNe Ia

light-curve timescale “stretch-factor” corrected

as measured
Spectra needed for SN redshifts & classification

Spectra of SNe near maximum light (~1 week)

SN 1994D (Ia)

SN 1992H (II)

SN 1994I (Ic)

SN 1998dt (Ib)
Why go to high redshifts?

Dark energy has been well detected at \(z < 0.5 \). To determine what it is – and not just that it is – demands measurements at earlier epochs.
NIR AVAILABLE ONLY IN SPACE

Crucial near-infrared observations are impossible from the ground for the required photometric accuracy

- Sky is very bright in NIR: >100x brighter than in visible
- Sky is not transparent in NIR: absorption due to water is very strong and extremely variable

Data from Gemini Observatory & ATRAN: Lord (1992)
ACS Grism Images of SN2002FW (z = 1.30)

Riess et al. (2004)
Riess et al. (2004)
ACS grism spectra of
z ~ 1.3 SN Ia
Supernova Observations

1. Broadband: locate SN & host galaxy
2. Dispersed: spectral time series
3. Difference & extract SN spectrophotometry
Survey area is a contiguous Mosaic of Destiny FOVs. Orientation rolls by 90° every 3 months. Dithering will fill in chip gaps and ensure Nyquist sampling.
Sn Photometric Calibration

- Obtain high fidelity external and internal flats in ground tests.
- Monitor with internal flats on orbit, plus field stars.
- Absolute photometric calibration with DA white Dwarfs.
- Sn spectra isolated with differencing. Ad hoc spectral flat extracted from data cube of monochromatic flats.
Supernova Spectra

- **Simultaneous spectrum & photometry = redshift & brightness**
- **Redshift from 615nm SiII line**
- **Equal precision & more accuracy than broadband filters alone**
Supernova Light Curves

- **Always get photometry around maximum light**
- **Sample every 5 days**
- **SN Ia are “most direct & precise approach” to study Dark Energy**
Supernova Survey

- Present day & ongoing surveys find hundreds
Supernova Survey

- Present day & ongoing surveys find hundreds
- Destiny will find >3000 SN in 2 yrs.
- Most at z~1; requires 3.2 deg² survey area
- Destiny does 0.4 < z < 1.7 - combine with ground over 0 < z < 0.8
- Goal: 100 SN Ia in each Δz = 0.1 bin
What IS Weak Lensing?

In weak lensing, we measure the shapes of galaxies.

Dominant noise source is the random intrinsic shape of galaxies.

Large-N statistics extract lensing influence ("shear") from intrinsic noise.
Dark Energy and Weak Lensing

Dark Energy equation of state:
\[w = \frac{p}{\rho} \quad (w = -1 \text{ for } \Lambda) \]

Modifies:
- Angular-diameter distance
- Growth rate of structure
- Power spectrum on large scales

\[\rightarrow w \text{ can be measured from the lensing power spectrum} \]
Destiny Performance
Ongoing Work Continues to Refine DE & Cosmological Parameters

Preliminary results from ESSENCE are Consistent with $w = -1$
Understanding Dark Energy

![Graph showing various dark energy models with different values of \(\Omega_N = 0.8 \), \(\Omega_N = 0.6 \), \(\Omega_M = 1 \), and \(\text{SUGRA potential} \). The graph compares the magnitude difference from a flat, \(\Omega_N = 0.7 \) model with various potential models such as Albrecht & Skordis potential, exponential tracker potential, two D3-Brane potential, double exponential potential, pure exponential (fine tuned), periodic potential, inverse tracker potential, and Pseudo-Nambu-Goldstone Boson (example). The graph is based on Weller & Albrecht (2001).]
Destiny will conduct a Weak Lensing survey as an independent, complementary technique for increased accuracy and precision on the determination of the dark energy equation of state.
Predicted Survey Results

Assuming a Flat Universe
Predicted Survey Results

Not Assuming a Flat Universe

See Knox, Song & Zhan 2006
Destiny Design
Science Goals

- **To Characterize and Constrain the Nature of Dark Energy**
 - Determine the expansion history of the Universe to 1% accuracy over the past 10 billion years of cosmic history, constraining the equation of state constant term w_{de} to within 0.05 and its time derivative \dot{w}_{de} to within 0.20.
 - Obtain precise photometric light curves and redshifts of >3000 Type Ia supernovae to provide luminosity distances with sufficient statistics (>100 SN) in each $\Delta z\sim 0.1$ bin over the redshift range $0.4 < z < 1.7$.
 - Combine Destiny constraints with results from other ground-based and space-based techniques.

Science Investigation

- Measure photometry of SN Ia in four R–5 band-passes with S/N >7 to 20 days (rest frame) after maximum. Each point on light curve from 8 hrs or less of exposure time.
- Measure redshifts of the SN to an accuracy of $\Delta z\sim 0.005$.
- SN Ia occur at the rate of 1.5×10^4 Mpc$^{-3}$ yr$^{-1}$ at $z \sim 1$. Repeatedly monitor ~ 3 sq-deg with ~ 5-day cadence to detect SNe and measure their light curves and redshifts. The 3 sq-deg survey is split into two sky regions of ~ 1.5 sq-deg near the NEP and SEP.
- Use 1 broadband imaging filter and grism to obtain precise positions, photometry, galaxy morphology, redshifts, and SN type.

Measurement Capabilities

- **Primary Mirror ~ 1.65 m**
 - **Field of View and Image Scale:**
 - Angular Resolution
 - Diffraction-Limited at 1μm to $1.2\lambda/D = 0.15$ arcsec
 - **Image Scale**
 - 0.15 arcsec/pixel
 - **Science Field of View**
 - 0.12 square-degrees
 - **Fine Guidance FoV**
 - 100 square-arcmins with 0.15 arcsec/pixel scale
 - **Broadband Near-IR Imaging Filter:**
 - $R \equiv \frac{\lambda}{\Delta \lambda} = 5$
 - J-Band Filter centered at 1250 nm
 - **Low-resolution Near-IR Spectroscopy:**
 - Spectral Resolving Power $R = 75$ at 1.2μm
 - **Minimum Wavelength Coverage**
 - 850–1700 nm

Implementation

- **Optics**
 - 1.65 m monolithic PM
 - Three-mirror anastigmatic Telescope
 - High reflectance coatings (e.g., protected Ag or Au)
 - High throughput imaging filter and grism/prism
 - Low scatter dispersive optic
- **Detectors**
 - 16.2kx2k format 1.7 μm cut-off HgCdTe detectors
 - 3- or 4-edge buttable
 - $>80\%$ QE over bandpass, optimized AR coatings
 - >20 krad radiation tolerance
- **Miscellaneous**
 - Mission lifetime: 3 years
 - Fine pointing/correction 10 mas (1\sigma), using guide camera 10 Hz feedback
 - 37 GBytes/day raw data, 1:8:1 compression, Ka-band downlink
Science and Instrumentation

- **Destiny SN survey** motivated by unique role of an NIR space telescope for observing SN Ia at $z > 0.8$.
- **All spectra all the time** gives a rich data set that allows for future developments of SN Ia’s as standard candles. Minimizes mission complexity.
- **WL survey** uses sharp and stable PSF; NIR for depth.
- **Instrument follows from HST/WFC3, JWST/NIRCAM.** Its unique aspect is the large mosaic of H-2RG SCAs.
- **Analysis techniques** well understood for both SN and WL observations.
- **Absolute Photometric calibration of SN survey data** is a challenge and a major part of our present study.
Mission Design / Operations

- **SN and WL survey fields located near both ecliptic poles. No targeting or acquisition of specific objects.** Highly automated and repetitive “blank sky” surveys.

- **No real-time or time-critical operations required as part of SN or WL surveys.**

- **Steady-state operations mainly comprises monitoring of data stream, spacecraft health, occasional maintenance (angular momentum dumps, orbit stabilization).**

- **Location at Sun-Earth L2 gives stable spacecraft and simple operations.**

- **Delivery to L2 can be done with Atlas V (401) with ample mass margins.**
Performance Requirements

- **Survey time:**
 SN: 2 yrs; WL: 1 yr

- **Survey areas:**
 SN: 3.2 deg²; WL: 1000 deg²

- **Science FOV:**
 0.18° x 0.72°

- **0.85μm < λ < 1.7μm**
 \(\therefore 0.4 \leq z \leq 1.7 \)

- **\(\lambda / \Delta \lambda = 75; R = 5 \) NIR broadband filters**

- **Resolution:** 0.13″

- **Pointing:** 0.01″

- **Stability:** 0.01″ / 900s

- **13 GB / day**

- **Thermal control:**
 passive; FPA 150K
PAYLOAD LAYOUT

DESTINY PHILOSOPHY: TECHNICAL FEASIBILITY AND A SIMPLE, LOW-COST APPROACH WITH HIGH HERITAGE.
Optical Design

- **1.65m primary, ULE glass**
- **Three-mirror anastigmat**
- **Movable secondary**
- **FOV for surveys is 0.72°x0.18°; well-corrected diameter of 1.15°**
- **Filter wheel with disperser & broadband filters**
Focal Plane Layout

- **Science FPAs:**
 - 2k x 2k arrays,
 - 2 x 8 mosaic

- **Guide FPAs:**
 - 2k x 2k arrays,
 - 2 x 2 sparse mosaic
Detector Arrays

Existing technology can meet requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rockwell H2RG</th>
<th>Raytheon VIRGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{dark} ($\lambda_C=1.7,\mu m$)</td>
<td>0.1 e$^-$/s at 145K</td>
<td>0.1 e$^-$/s at 139K</td>
</tr>
<tr>
<td>Read noise, CDS</td>
<td>15 e$^-$ (Loose et al. 2003)</td>
<td>15 e$^-$ (McMurtry et al. 2005)</td>
</tr>
</tbody>
</table>
Mission Parameters

- Mass: 1972 kg (wet)
- Power: 785W
- Size: 4.4m x 2.5m
- Data: ~13 GB/day
- Launch: Atlas V 401
- Location: L2
- Timeline: 2013
Spacecraft Implementation

• **Two independent Design studies: 1) GSFC/IMDC 2) LMCO; derive similar spacecraft parameters and cost**

• **High maturity, high Heritage, TRL 7 or greater for all subsystems**

• **No significant risks**

• **No new spacecraft technology**

• **High stability is demanded --> Precise pointing control.**
Launch Around 2013

~1,500,000 km

~340,000 km

-1,500,000 km
Mission Operations / Data Flow

50 Mbps Ka-Band,
2 kbps S-Band TLM
2 kbps S-Band CMD
S-band ranging

Deep Space Network
34M

50 Mbps Ka-Band
Science & HK
CMD (S-Band Ranging)

DESTINY S/C

TDRSS

SSA
2 kbps TLM
1 kbps CMD
Launch & Early Orbit Operations Only

Mission Ops Center

White Sands Complex

Science Ops Center (STScI)

Destiny Science Analysis Center (LANL)

Astronomical Community

HK = House Keeping Data
CMD = Commanding
TLM = Telemetry
LANL = Los Alamos National Lab
STScI = Space Telescope Science Institute

(HK & Science) 6.2 Mbps
(4 T1 Lines)
CMD (Real-Time & Stored)

Level 0 Data
Coordination

Level 2 Data
Level 3 Data

CMD
HK
Closing Remarks

• Team is engaged in advancing Destiny as a lost-cost but realistic JDEM.

• Current tasks:
 – Serious engineering work
 – Refined science simulations

• Making substantial progress.
DESTINY