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N Motivation and overview

BERKELEY LAB

= Collider size set by maximum particle energy and
maximum achievable gradient limited by breakdown

= Motivates R&D for ultra-high gradient technology

l Driver technology l
r Laser —l r E-beam T
Direct laser Laser wakefield Plasma wakefield Dielectric
accelerator accelerator accelerator accelerator

BEtHIA FACET
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LASER ACCELERATOR
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f\‘ A Ultra-high gradients could result in
\H smaller accelerators

BERKELEY LAB

m-scale

10 — 40 MV/m

100 micron-scale

10 — 100 GV/m

Plasmas sustain extreme fields => compact accelerators
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/\I ""Principle of laser/plasma wakefield accelerators

Linear
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= Laser driver--Tajima&Dawson, PRL'79 = E-fields: 10 — 100 GV/m

= Beam driver--P. Chen et al., PRL'85 = Phase velocity wake=Group velocity driver

Focusing (E))
Decelerating (E))

é
Relativistic
electron
beam
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‘Iﬁ Operation in bubble or blow-out non-linear

MN regime: most experiments to date

Distance= Omm=  0Zg
Energy, .= 0 MeV = High gradients

= Can produce narrow energy
spread beams

BUT

= Limited control
= Self-trapping (dark current)
= Can easily go unstable

= Does not work well for
positrons

Courtesy of W. Mori, UCLA
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/\I » Channel guided laser plasma accelerators
’\H achieve high quality, up to GeV beams

2004 result

Internationalwecklyjournal of sience
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C. G. R. Geddes,et al, Nature,431, p538 (2004)
S. Mangles et al., Nature 431, p535 (2004)
2006 result J. Faure et al., Nature 431, p541 (2004)
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Ub(} Plasma wakefield accelerator expt

Energy |PO: Li Plasma |P2
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= Few % accelerated

Charge Density [-e/mm]

= Highest energy observed ~ 85 GeV i [s10°atceV]
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SLAC/UCLA/USC Experiments @ FFTB

tudied all aspects of beam-plasma interaction
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N Electron-Positron Linear Collider

BERKELEY LAB

|P-detector

Electron main
linac

Positron main
linac

final
focus

final

focus
Damping ring(s)

Damping polarized y
ring (LWFA)

e injector e* target

(LWFA ) e injector

= G. Dugan, “Advanced Accelerator System Requirements for Future Linear
Colliders,” in Proceedings of AAC 2004, p.29

Conventional technology.

« Current generation of future linear collider designs based on existing technology
(e.g., ILC): E.,~ 0.5 TeV; gradient ~ 0.03 GV/m; ~30 km (~multi-$B).

 Higher energy collider with existing technology: 5 TeV =» >100 km, > tens of $B

11



Primary Issues for any Plasma-based LC

* Need to understand acceleration of electrons & positrons

* Luminosity drives many issues:
— High beam power (20 MW) = efficient ac-to-beam conversion
— Well defined cms energy = small energy spread
— Small IP spot sizes = small energy spread and small Ac

* These translate into requirements on the plasma
acceleration
— High beam loading of e+ and e- (for efficiency)
— Acceleration with small energy spread
— Preservation of small transverse emittances — maybe flat beams
— Bunch repetition rates of 10’s of kHz

* Multiple stages allow better beam control and use of
drive-beam
— possible to demonstrate single stage before full system test

iwn
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FACET @ SLAC
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Example: PWFA-Linear Collider Concept

« Developed a concept for a 1 TeV plasma wakefield-based
linear collider

— Use conventional Linear Collider concepts for main beam and drive
beam generation and focusing and PWFA for acceleration

« Makes best use of PWFA R&D and 30 years of conventional rf R&D
— Concept illustrates  rFgun Drive beam accelerator

focus of PWFA 4 RF separator
R&D program bunch comp,ressor Drive beam distribution
- High efficiency C
Beam Delivery and IR

» Emittance pres.
* Positrons PWFA cells PWFA cells

— PWFA concept
could be used to
upgrade LCLS or
simply other e- acc.

1 A7/
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main beam
e- injector

main beam DR e+
e+ injector




New SLAC Experimental Facility: FACET

 New FACET facility will provide high quality 25 GeV e+ & e-
beams for studies of plasma wakefield acceleration

— Plasma wakefield acceleration could reduce cost/GeV significantly for
linear colliders and could provide an easy upgrade for FEL facilities

— FACET will also be used to develop beam-driven dielectric acceleration
and plasma focusing concepts as well as other beam physics studies

 Beams of e+ / e- at 25 GeV with 20kA and 10x10 um spot sizes

FACET timescale ' ~rng " Comprestor rostionsaurce g 0om N 7 0 gEme O\

2010 — 2017 et \ SN DL =R
. G N W = 2 N[ e pain \O
— W \ \_/__ ..................... 3 ~&Nm LCLS :

Scheduling CD1 Lines e fnsportto PEFL -~/ A :

Review in June Sl DEfY e <N #

— Unique facility is only possible because of SLAC linac
ol As>»
d e "\
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Short Bunches Bring Large Gradients
and Long, Uniform High-Density Plasmas

Damping Ring
50 ps
L — /\ SLAC Linac <700 fs LCLS
D [o——
Q .‘ ). .“ s = & s a
1 GeV  Yps 0.4 ps FAhCET -
% | Peak Field For A Gaussian Bunch:
e&et E =6GV Im Nm 201100
22 KAmps == ] 2x10°7 o, o,
120 fsec FWHM @ —>  &— lonization Rate for Li:
N Y, e w,[s] 3.60x10" t 85.5. |
| ' e T E? l'\lGl'."'m]L p.._ ElGl'a"an,,

See D. Bruhwaler et al, Physics of Plasmas 2003

Space charge fields tunnel ionize the vapor!
- No timing or alignment issues
- Long high-density plasmas now possible

1 A7S E T
B 3 ®  May 5, 2009 PAC 2008 Vancouver, B.C. Page 12 F‘\\ E
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Single FFTB Bunch Sampled All Phases of the Wake
Resulting in ~ 200% Energy Spread

E-167 Data

o~ 7
SL A-‘” ' May 5, 2009 PAC 2009 Vancouver, B.C. Page 13 L\{ PPA’s"timau
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SLAC Duke UCLA USC | QPPA?HL&::;AL”;%:

UNIVERSITY

Facility for Advanced Accelerator Experimental Iésts

LCLS Undulator 2 ==’ N | \,\i\ Stairway in
i Positron Bunch T Y End \ \ \ Sector 19 shaft
North Damping ot Positron Source Beam / / ne \ ‘
Ring N X Switch Yard — / Station A i
\  Positron Return Line \ (BSY) \ //\/ / (ESA) | 2 - )
i F)\ \n | \ LcLS Injector \ /7 e O < D Underground accelerator housing
/ Xid CLS Undulator 3 '\ E::] g
LA N W = 7 (

e gun

Two electron
bunches formed

by notch
collimator will

allow study

A
T
Energy [GeV]

energy doubling,
high efficiency
acceleration,
emittance
preservation

Bent crystal for beam collimation or photon source
e+ and e- acceleration study essential for LWFA & PWFA

Magnetic Electromagnetic SLAC linac beam . . . .
sample field of the beam 28 GeV Dielectric wakefield acceleration
Short bunches and their Tera-Hz radiation open new Energy-doubling for existing facilities such as FEL’s

possibilities to study ultrafast magnetization switching Generation of THz radiation for materials studies



SLAC Duke UCLA

UNIVERSITY

e N

USC | \ /g aticle Physics
ape ] PPAHSI:n;Irlﬁsics
Facility for Advanced Accelerator Experimental Tests
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R End

Stairway in
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Ring Compressor Positron Source o 0 N\ 4 / Station A
\ \
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e gun Linac

[ ]
Focal Point: ]
Az = -0.1mm7]

e+

Az=5cm

“Sailboat” dual chicane will give unique opportunity to study
acceleration of positrons by an electron bunch

Bent crystal for beam collimation or photon source
. : : e+ and e- acceleration study essential for LWFA & PWFA
Magnetic Electromagnetic SLAC linac beam ] . . ]
sample field of the beam 28 GeV Dielectric wakefield acceleration
Short bunches and their Tera-Hz radiation open new Energy-doubling for existing facilities such as FEL’s
possibilities to study ultrafast magnetization switching Generation of THz radiation for materials studies
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UNIVERSITY

Stairway in
Sector 19 shaft
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Short bunches and their Tera-Hz radiation open new
possibilities to study ultrafast magnetization switching

Magnetic Electromagnetic SLAC linac beam
sample field of the beam 28 GeV

Bent crystal for beam collimation or photon source
+ and e- leration nti
Magnetic Electromagnetic i AR frai baai e+ and e- acceleration study essential for LWFA & PWFA

sample field of the beam 28 GeV Dielectric wakefield acceleration
Short bunches and their Tera-Hz radiation open new Energy-doubling for existing facilities such as FEL’s
possibilities to study ultrafast magnetization switching Generation of THz radiation for materials studies
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Facility for Advanced Accelerator Experimental IeSts
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Unique science opportunities for variety of
fields:

Plasma beam source for LC or Basic Energy Science

RF Plasma lens for compact focusing
Bent crystal for beam collimation or photon source
“1 et and e- acceleration study essential for LWFA & PWFA y

Dielectric wakefield acceleration
Energy-doubling for existing facilities such as FEL'’s
Generation of THz radiation for materials studies

Bent crystal for beam collimation or photon source

e+ and e- acceleration study essential for LWFA & PWFA

Magnetic Electromagnetic SLAC linac beam . . . .
sample fisld ofthi Bes 28 GeV Dielectric wakefield acceleration
Short bunches and their Tera-Hz radiation open new Energy-doubling for existing facilities such as FEL’s

possibilities to study ultrafast magnetization switching Generation of THz radiation for materials studies



PWFA Experimental Program

®
Experimental Tasks and Milestones FY09 FY10 FY11 FY12 FY13 FY14 FY15 FY16
Accelerate e- bunch with sufficient charge FACET §FACET 5
Accelerate e- bunch achieving low energy spread iFACET FACET
Accelerate e- bunch with high efficiency ﬁFACET FACET
Demonstration of electron acceleration: high 1, low 4E * :
Emittance preservation of e- bunch §FACET FACET FACET
Demonstration of a single stage of an electron PWFA-LC *
Acceleration of e+ bunch by e+ drive §FACET FACET:FACET
Initial test of e+ acceleration in e- wakes FACET FACET :
Emittance preservation of e+ bunch FACET FACET | FACET
Upgrade Sector-20 chicane ‘
Accelerate e+ by e- drive; charge, low dE/E FACET FACET
Accelerate e+ by e-, high efficiency, low emittance FACET FACET
Selection of optimum positron acceleration mechanism fora PWFA-LC *
Upgrade injector with rf gun O :
Plasma cell with jet and power removal Study § Study §Eng. Eng. FACET EFACET FACET
Design plasma cell with needed stability and cooling ) . ¢
1 A _q Long-Range Accelerator Science Strategy

b M\ Page 22
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U.S. DEPARTMENT OF Search GO |
FAC E I FACILITY FOR ADVANCED ACCELERATOR EXPERIMENTAL TESTS ENERG I O sLacwee @ pEOPLE

SLAC NATIONAL ACCELERATOR LABORATORY

About FACET News and Events
Home SLAC National Accelerator
, Laboratory to Receive $68.3 Million
What Is FACET? in Recovery Act Funding - March 23,
Research 2009
. New Accelerator Technique Doubles
Facility Particle Energy in Just One Meter -
Applications February 14, 2007
Upgrade Schedule
Organization
Mews and Events
Contact e
SLAC Links What Is FACET? Research
SLAC Home
SLAC Today Advanced accelerator research promises FACET—Facilities with FACET, the SLAC linac will support a
to improve the power and efficiency of for acceleratar unique program concentrating on
SLAC Space today’ ricl lerat hanci . 4 second-generatlon research on plasma
oday’s particle accelerators, enhancing science an wakefield acceleration.
For Staff applications in medicine and high-energy Experimental Test
For Users physics, and providing potential benefits beams at SLAC—
. for research in materials, biological and will study plasma Plasma Wakefield
Directorates energy science, Experiments on future acceleration, using Acceleration
acceleration techniques require high- short, intense pulses of electrons and
quality, forefront facilities. positrons to create an acceleration source

called a plasma wakefield accelerator. THz Eadiation

FACET will meet the Department of
Energy Mission Need Statement for an Prizs

: . # :
Advanced Plasma Acceleration Facility. 450 Plasma Focusing

Dielectric Wakefield
Acceleration

» more » more

y Office of

“d Scilence




BELLA @ LBNL

BLLIAN

BERKELEY LAB
LASER ACCELERATOR

24
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BERKELEY LAB ‘

/\‘ »  Draft concept has been developed for a
) Laser Plasma Linear Collider

aser\o\ EIQQ,[ron
.‘LI 500~1000 o 1
Qap . gmmges .
g . Toy
Asgr n X -y 1 Te\,

= Injector techniques
= Staging techniques
= Bunch properties @
= 10 GeV module Sag y

= Collisions, synchrotron losses, efficiency

C.B. Schroeder et al., AAC Proceedings 2008

25
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/\l echnical challenges in next 10 vears
9 y




~

’\l uAl‘ “Electrons™ accelerating on a wave: controlled

injection

Injected Electronsn‘

Self Injection
A

‘;-. ;_“L;;_\%‘-
Trapping requires: -so s
=~ .‘_s -

-Isunami e
~=Boost electrons or sloWcdOW

—
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/\‘ . Longitudinal density tailoring allows
trapping control

Breali
accelerate™@

NA

= As laser propagates through down-ramp

= Plasma wavelength increases so wave period and laser period match
leading to
= Efficient wave generation

= Slower phase velocity that enables trapping

Geddes et al., PRL V 100, 215004 (2008); S.V. Bulanov et al., PRL 78, (1997)
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’\l \ Gas Jet Nozzle Machined Into Capillary .
Can Provide Local Density Perturbation

Laser-machined gas jet

Density profile in
jet region
{"'v"' W]
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’\‘ n  (Gas jet triggered injections provides
for enhanced stability & tuning

Input Parameters: N, =2 x 10'8cm3,a, = 1 (25TW), Laser pulse length = 45 fs
IhCMeV/SRHI

[mrad]

Jet Pressure 150 psi

100 200 300 400 500 600 700 800 900 1000
[MeV]
600-

= Pointing + 0.8 mrad >500- i

=400-
$300-
= Peak energy 300MeV * 7MeV W 500- )

©
g 100-

O - . '
100 150 200
Jet Pressure (psi)

= Divergence <3mrad

000 O0gyo




oo ‘"N'\ Staging laser accelerators is

required to reach TeV

-

Laser Stage1

m- Coupler

Laser

~

Stage 2

\_

Accelerator length will be determined by staging technology:

Number of stages

ﬁn
Q
o)
©
)
(7))
(o] 41
c 10
=
o
o 1000}
(¢}]
8 100
m b
Y
(o
. 10
(¢}]
E
1 e aasaaal o et M | MR |
g 1016 10"7 10'% 10"
n (cm3)

[
S
(=]

Total main linac length (m)

Accelerator length:
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’\‘ r Staging: solving the issue of
depletion of laser energy

InjectorIcapiIIary =

Y
Renewable mirrors Structure-to-structure

]
laser — 10 i ' ' ' i \

c . Regular mirror
e < 10°1
(@) [
c L
A4 (0] [
liquid —I i
capillary stage jet =2 i
ERN!
8 i
= Reflectivity and flatness L 1
. . Plasma mirror |
= Preserve quality of electron beam ,

= Non-contaminating, renewable

[

200 200 600 800 1000 /o,
Laser Power, TW




/\‘ A Prototype water jet plasma mirror is
_| ‘ being tested in vacuum

BERKELEY LAB

@L\SIS Jet with a guiding struc@

S:\.c’\
N o

Reflectivity
© © © o o
N w £ (3] (=2}

o
-

o

g

2 4 6 8 10 12 14
Intensity, x1075 W/cm?
= 70% maximum reflectivity

= Pressure in the chamber limited by water vapor sat. pressure (~20 torr)



/\I A Lay-out for proof-of-principle staging
| | experiments

Double capillary
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/\‘ A BELLA laser will enable 10 GeV module
and high energy staging experiments

= 10 GeV module (2-stage)

= Theory and simulations 40 J in ~ 40-100 fs laser pulse
= BELLA Project: 1 PW, 1 Hz laser

Laser

Wi

i

1000 TW <100 cm
40 fs

= Long scale length plasma channels

= Energy spread and emittance studies; pump depletion

= Tapered channels to optimize laser to e-beam efficiency
= Higher order laser mode drivers for emittance control

= X-ray FEL driver; coherent THz; ultra-fast magnetic switching; gamma-rays

= Positron production; plasma wakefield acceleration
= Detector testing

35
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f\ A‘ BELLA Project underway: state-of-the-art

N facility for laser based accelerator science

= High rep rate (1 Hz), Petawatt class laser (>40 J in < 40 fs)
= Laser bay and target area
= Laser diagnostics

BELLA Laser

————
p—
-

Facility
Infrastructure

Diagnostics /
= 3 years for project Optical Transport 36




r_:}‘ |.ﬁ Lasers approach 100 kW average power
N Pulses need to be shortened below ps

BERKELEY LAB

High Average Power Short Pulse Lasers - 2008

100000 — 10 W
. Nd:Glass/IFE — 1 KW
10000 AA |
100 kW
_ Yb:YAG ceramics ! !
= 1000 |
>
5 Collider Need
) o)
2 100 _Yb:S-FAP A
o oA A FE designin |
1", ]
S burst mode ~|
e 10
1 - \
Godzilla
Chihuahua
0.1
1 10 100 1000 10000 100000

Repetition Rate (Hz)
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/\l A Critical Technology: High average power,
rrerrrnr ] . 0 . .
’N high peak power lasers, high wall plug efficiency
c . 10° F 1 .
= Large core single mode fibers : 67 kW ]
= Multiplexing, coherent addition s 1.2 kW _ //,
: : ERT 1.46 kKW
= Ceramic materials £ 7 F e vanagitani, Ueda | 5 kW
% 10* £ Self-energy driven | L @®
%D i ivIetIlod 1;}i]11g ® 110w
Fiber laser progress 2 kW = - ? Nano-crystalline powder/ """" ' E
5 1E . |
184 ﬂ%+£ Turning points
ot L ———= G ——— TuI
103 - —®— Tkesue
S 102
bt 10! Year
0 L] ]
2 o High power diodes _ Emo
S 1072 High efficiency pumping e
102
104
10°

1985 1990 1995 2000 2005 2010
Year

Courtesy: B. Byer and C. Barty

Prospect for kJ,
picosecond, multi-
kHz systems at
30-50 % wallplug ‘
seems pOSSib|e "60% electrical-optical

efficiency
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m Summary

BERKELEY LAB

= TeV collider is extremely challenging (for any technology), let alone multi-TeV

= Steady, phased approach is needed to address major technological

challenges

= BELLA and FACET now launched: cornerstone facilities for AA R&D

= Address key technological challenges for collider designs
= Will keep plasma based accelerator R&D in US competitive with rest of world
= Train students and postdocs

= Important spin-off applications

= Workshop on laser technology for driving future accelerators planned

with ICFA and ICUIL blessing 39
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= Backup material on BELLA/LOASIS

40
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BERKELEY LAB

= Battaglia gave talk at CD-0

review:
= Need for Test Facilities

= Pair production expt’'s on
BELLA

= See CD-0 talks

Summary of Beam Test Facilities

T T e N R P T
[ Jewa [womo fsoraes [+ < < |
AL M [eap o120 1006 | Coninos |

Bl s PR oo
[P P T Ty
e

<2010 [PETRA-III|

e e e (0415

LAWRENCE BERKELEY NATIONAL LABORATORY

A Detector test facility at BELLA: one stop
shopping for 0.1 — 10 GeV electrons

Pair Production Experiment at BELLA ”\ ‘.h

BERKELEY LAS

I\‘dkj or source of background at ILC is'due 'to paifs produced in intense beam interaction;

i 20pm pixels
‘ ‘ { Tesponse to

£ ALS heam after
‘ Al seraper

» Study detector response to pair background:
need to characterise cluster shape of low momentum electrons (0.05-0.5 GeV) and
validate simulation to assess occupancy level and pair hit rejection feasibility;

» Study pair production in dedicated experiment and validate simulation code:
Bethe-Heitler process e™y = e” e* e colliding BELLA beam with intense laser,
important experiment to gather data to compare with simulation.

LAWRENCE BERKELEY NATIONAL LABORATORY

~

A 10 GeV beam in the TeV era ceceend] f
—_—

10 GeV-e beam ideal for detector beam test characterisation & calibration;

* Need large enough energy-to minimise multiple scattering (~1/p) and have
dynamic range to calibrate response; :

e'e > HZ->bbp*pn

* Despite large/c.m energies, energy of at ILC at 0.5 TeV

final state particles remain low]|due to

large number of partons/hadrons

produced: RE p

Tracks /0.32 GeV

"o
b L PR

wH Mf**; "
* Need beamline with bend Section +
to suppress laser background and

optics to reduce beam intensity and magnify-beam spot
(from 10%-10° e=bunch*en pmi spot to few 10?-103 e~ cm?);

* Narrow, intense beam essential|for-pair generation experiment.

LAWRENCE BERKELEY NATIONAL LABORATORY
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BERKELEY LAB

Focused Intensity (W/cm®)

~

’\‘ A BELLA laser will provide access to

\r"‘ ultra-relativistic physics

g

Electron
Characteristic

i \ ey —> « Schwinger critical field
Nonlinear QED: Eel =2m ¢ Fleclroweak Era « Vacuum breakdown

* Non-linear QED

/J  QuarkEra * Accessible by Compton

scattering part of BELLA

beam against 10 GeV beam

H

'. ’ »
Laser Intensity Linut: [= 2 4 /
a ¢

Positron-
Electron Era

Relativistic Optics: v_~¢

IT“|

p
Bound Electrons: F:E'
‘ rF‘

« Ultra-high gradient acceleration

CPA
R e e R * Photon and Particle Foundry

mode-locking
o— Q-switching Alomic Era * AMO science

| | | | |

I | | | | ° HEDP

1960 1970 1980 1990 2000 2010

Year « Pathway to Ultra-relativistic physics

Focused Intensity vs. Year
(after T. Tajima and G. Mourou, PRSTAB2002)
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/\‘ A Unique bunch parameters enable wide
\H range of forefront applications

= Bunch properties:

= Ultra-short electron bunches, high peak current (multi-kA)
= |ntrinsic synchronization with laser pulse

= Direct use of e-bunches:

Ultrafast pulse — use electron accelerator

= Domain switching in ferromagnets -
= Radiation sources: 3 @* il Je e
= Coherent terahertz emission -

C. H. Back et al., Science 285, 864 (1999)

= XUV generation
= X-rays and gamma rays
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cocceed) ‘..“.‘ Development of XUV/soft x-ray FEL

BERKELEY LAB

FEL output:
A=31 nm
103 phot./pulse
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XUV
radiation

T-REX laser system

ok ~ 108 W/cm? Plasma capillary technology
40 TW, 40 fs
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World-wide effort aimed at FEL using laser accelerator
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M: s of research:

" Injectors (conventional and all-optical) ® Free-electron laser (FEL)
® Laser-plasma wake-field acceleration ® Beam fransport systems -
® Plasma capillaries ® Diagnostics P LAS M O N -X
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Advanced Laser-Plasma High-energy Accelerators towar@sris-harys2005
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$BSEZ [OPS  Strathclyde Electron and Terahertz to Optical Pulse Source




