Advanced Accelerator R&D:

FACET and BELLA

Wim Leemans

Lawrence Berkeley National Laboratory HEPAP Meeting May 21-22, 2009

Thanks to Tor Raubenheimer & Mark Hogan for FACET material

- Collider size set by maximum particle energy and maximum achievable gradient limited by breakdown
- Motivates R&D for ultra-high gradient technology

Ultra-high gradients could result in smaller accelerators

m-scale 100 micron-scale 15 10 5 18

10 – 40 MV/m

10 – 100 GV/m

Plasmas sustain extreme fields => compact accelerators

Summer – somewhere on California Coast

Operation in bubble or blow-out non-linear regime: most experiments to date

Distance = $0 \text{ mm} = 0 \text{ Z}_{R}$ $Energy_{front} = 0$ MeV

High gradients

 Can produce narrow energy spread beams

BUT

- Limited control
- Self-trapping (dark current)
- Can easily go unstable
- Does not work well for positrons

Courtesy of W. Mori, UCLA

Channel guided laser plasma accelerators achieve high quality, up to GeV beams

2004 result

2006 result

S. Mangles et al., Nature 431, p535 (2004) J. Faure et al., Nature **431**, p541 (2004)

A GeV module...

SLAC/UCLA/USC Experiments @ FFTB Studied all aspects of beam-plasma interaction

 G. Dugan, "Advanced Accelerator System Requirements for Future Linear Colliders," in Proceedings of AAC 2004, p.29

Conventional technology:

• Current generation of future linear collider designs based on existing technology (e.g., ILC): $E_{cm} \sim 0.5$ TeV; gradient ~ 0.03 GV/m; ~ 30 km (\sim multi-\$B).

Higher energy collider with existing technology: 5 TeV → >100 km, > tens of \$B

Primary Issues for any Plasma-based LC

- Need to understand acceleration of electrons & positrons
- * Luminosity drives many issues:

 - Well defined cms energy
 small energy spread
 - Small IP spot sizes → small energy spread and small Δε
- These translate into requirements on the plasma acceleration
 - High beam loading of e+ and e- (for efficiency)
 - Acceleration with small energy spread
 - Preservation of small transverse emittances maybe flat beams
 - Bunch repetition rates of 10's of kHz
- Multiple stages allow better beam control and use of drive-beam
 - possible to demonstrate single stage before full system test

PAC 2009 Vancouver, B.C.

FACET @ SLAC

Example: PWFA-Linear Collider Concept

- Developed a concept for a 1 TeV plasma wakefield-based linear collider
 - Use conventional Linear Collider concepts for main beam and drive beam generation and focusing and PWFA for acceleration
 - Makes best use of PWFA R&D and 30 years of conventional rf R&D
 - Concept illustrates
 focus of PWFA
 R&D program
 - High efficiency
 - Emittance pres.
 - Positrons
 - PWFA concept could be used to upgrade LCLS or simply other e- acc.

New SLAC Experimental Facility: FACET

- New FACET facility will provide high quality 25 GeV e+ & ebeams for studies of plasma wakefield acceleration
 - Plasma wakefield acceleration could reduce cost/GeV significantly for linear colliders and could provide an easy upgrade for FEL facilities
 - FACET will also be used to develop beam-driven dielectric acceleration and plasma focusing concepts as well as other beam physics studies
 - Beams of e+ / e- at 25 GeV with 20kA and 10x10 um spot sizes

- Unique facility is only possible because of SLAC linac

Short Bunches Bring Large Gradients and Long, Uniform High-Density Plasmas

Single FFTB Bunch Sampled All Phases of the Wake Resulting in ~ 200% Energy Spread

PAC 2009 Vancouver, B.C.

Short bunches and their Tera-Hz radiation open new possibilities to study ultrafast magnetization switching

Energy-doubling for existing facilities such as FEL's Generation of THz radiation for materials studies

Short bunches and their Tera-Hz radiation open new possibilities to study ultrafast magnetization switching

Energy-doubling for existing facilities such as FEL's Generation of THz radiation for materials studies

possibilities to study ultrafast magnetization switching

Energy-doubling for existing facilities such as FEL's Generation of THz radiation for materials studies

PWFA Experimental Program

Experimental Tasks and Milestones	FY09	FY10	FY11	FY12	FY13	FY14	FY15	FY16	
Accelerate e- bunch with sufficient charge		FACET	FACET						
Accelerate e- bunch achieving low energy spread			FACET	FACET					
Accelerate e- bunch with high efficiency			FACET	FACET					
Demonstration of electron acceleration: high η , low ΔE \bigstar									
Emittance preservation of e- bunch			FACET	FACET	FACET				
Demonstration of a single stage of an electron PWFA-LC 🛛 ★									
Acceleration of e+ bunch by e+ drive			FACET	FACET	FACET				
Initial test of e+ acceleration in e- wakes				FACET	FACET				
Emittance preservation of e+ bunch				FACET	FACET		FACET		
Upgrade Sector-20 chicane						Ç			
Accelerate e+ by e- drive; charge, low dE/E						FACET	FACET		
Accelerate e+ by e-, high efficiency, low emittance						FACET	FACET		
Selection of optimum positron acceleration mechanism for a PWFA-LC									
Upgrade injector with rf gun					$\mathbf{>}$				
Plasma cell with jet and power removal	Study	Study	Eng.	Eng.	FACET	FACET	FACET		
Design plasma cell with needed stability and cooling									

FACET FACILITY FOR ADVANCED ACCELERATOR EXPERIMENTAL TESTS

SLAC WEB OPEOPLE

SLAC NATIONAL ACCELERATOR LABORATORY

Laboratory to Receive \$68.3 Million

in Recovery Act Funding - March 23,

New Accelerator Technique Doubles

Particle Energy in Just One Meter -

Search

SLAC National Accelerator

News and Events

February 14, 2007

About FACET

- Home
- What Is FACET?
- Research

Facility

Applications

Upgrade Schedule

Organization

News and Events

Contact

SLAC Links SLAC Home SLAC Today SLAC Space For Staff

For Users

Directorates

What Is FACET?

Advanced accelerator research promises to improve the power and efficiency of today's particle accelerators, enhancing applications in medicine and high-energy physics, and providing potential benefits for research in materials, biological and energy science. Experiments on future acceleration techniques require highquality, forefront facilities.

FACET—Facilities for Accelerator science and Experimental Test beams at SLACwill study plasma acceleration, using short, intense pulses of electrons and

positrons to create an acceleration source called a plasma wakefield accelerator. FACET will meet the Department of Energy Mission Need Statement for an Advanced Plasma Acceleration Facility.

2009

» more

Research

With FACET, the SLAC linac will support a unique program concentrating on second-generation research on plasma wakefield acceleration. **Plasma Wakefield** Acceleration THz Radiation Plasma Focusing Dielectric Wakefield Acceleration » more

SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Dept. of Energy

Office of Science

http://FACET.slac.stanford.edu

» more

BELLA @ LBNL

Laser

Draft concept has been developed for a Laser Plasma Linear Collider

Injector techniques

Capillary

- Staging techniques
- Bunch properties
- 10 GeV module
- Collisions, synchrotron losses, efficiency

Electron

500-1000 m, 100 Stages

Laser in coupling

Positron

500-1000 m, 100 Stages

10 GeV

Gas Jet

"Electrons" accelerating on a wave: controlled injection

Longitudinal density tailoring allows trapping control

- As laser propagates through down-ramp
 - Plasma wavelength increases so wave period and laser period match

leading to

- Efficient wave generation
- Slower phase velocity that enables trapping

Geddes et al., PRL V 100, 215004 (2008); S.V. Bulanov et al., PRL 78, (1997)

Gas Jet Nozzle Machined Into Capillary Can Provide Local Density Perturbation

Laser-machined gas jet e beam 1mm Measured surface profile laser Density profile in of the capillar jet region 0.2mm

Gas jet triggered injections provides for enhanced stability & tuning

Input Parameters: $N_e \approx 2 \times 10^{18} \text{ cm}^{-3}$, $a_0 \approx 1$ (25TW), Laser pulse length $\approx 45 \text{ fs}$ [nC/MeV/SR]

Staging: solving the issue of depletion of laser energy

Prototype water jet plasma mirror is being tested in vacuum

- 70% maximum reflectivity
- Pressure in the chamber limited by water vapor sat. pressure (~20 torr)

BELLA laser will enable 10 GeV module and high energy staging experiments

- 10 GeV module (2-stage)
- Theory and simulations 40 J in ~ 40-100 fs laser pulse
- BELLA Project: 1 PW, 1 Hz laser

- Long scale length plasma channels
- Energy spread and emittance studies; pump depletion
- Tapered channels to optimize laser to e-beam efficiency
- Higher order laser mode drivers for emittance control
- X-ray FEL driver; coherent THz; ultra-fast magnetic switching; gamma-rays
- Positron production; plasma wakefield acceleration
- Detector testing

BELLA Project underway: state-of-the-art facility for laser based accelerator science

- High rep rate (1 Hz), Petawatt class laser (>40 J in < 40 fs)</p>
- Laser bay and target area
- Laser diagnostics

Lasers approach 100 kW average power Pulses need to be shortened below ps

asers: high average power

High Average Power Short Pulse Lasers - 2008

Critical Technology: High average power, high peak power lasers, high wall plug efficiency

Summary

- TeV collider is extremely challenging (for any technology), let alone multi-TeV
- Steady, phased approach is needed to address major technological challenges
- BELLA and FACET now launched: cornerstone facilities for AA R&D
 - Address key technological challenges for collider designs
 - Will keep plasma based accelerator R&D in US competitive with rest of world
 - Train students and postdocs
 - Important spin-off applications
- Workshop on laser technology for driving future accelerators planned
 with ICFA and ICUIL blessing

Backup material on BELLA/LOASIS

Detector test facility at BELLA: one stop shopping for 0.1 – 10 GeV electrons

- Battaglia gave talk at CD-0 review:
 - Need for Test Facilities
 - Pair production expt's on BELLA
 - See CD-0 talks

	Summary of Beam Test Facilities												
	Lab	Facility	Beam	E (GeV)	Rep (Hz)	Availability							
	CERN	SPS X7	е,π,μ,р	up to 250	0.01-0.05	depending on LHC							
-		SPS H2	е,π,μ,р	up to 200	0.01-0.05	" "							
	FNAL	MTBF	е,π,μ,р	up to 120	0.0016	Continuous							
	SLAC	ESA	e	1.0 - 28.5	10	<2008 [LCLS]							
	<u>LBNL</u>	BELLA	<u>e</u> -	<u>0.1 – 10</u>	<u>1.0</u>	<u>This Proposal</u>							
	DESY	DESY-II	e	1.0 - 6.0	12.5	<2010 [PETRA-III]							
	KEK	PS	π+	1.0 - 4.0		decommisioned							
		Fuji TBL	e⁻	0.3 - 3.4		>2008							
	LBNL	ALS BTF	e -	1.2 - 1.5	0.5-1.0	<2008 [Top Off Mode]							
	IHEP	Linac	e ⁻ .e ⁺	0.4 - 1.3	1.5	available							
	LAWRENCE BERKELEY NATIONAL LABORATORY												

• Study <u>detector response</u> to pair background: need to characterise cluster shape of low momentum electrons (0.05-0.5 GeV) and validate simulation to assess occupancy level and pair hit rejection feasibility;

• Study <u>pair production</u> in dedicated experiment and validate simulation code: Bethe-Heitler process $e^- \gamma \rightarrow e^- e^+ e^-$ colliding BELLA beam with intense laser, important experiment to gather data to compare with simulation.

LAWRENCE BERKELEY NATIONAL LABORATORY

A 10 GeV beam in the TeV era

e⁺e⁻ → HZ→bbμ⁺μ⁻

at ILC at 0.5 TeV

10 GeV e beam ideal for detector beam test characterisation & calibration;

• Need large enough energy to minimise multiple scattering (~1/p) and have dynamic range to calibrate response;

 Despite large c.m energies, energy of final state particles remain low due to large number of partons/hadrons produced:

• Need beamline with <u>bend section</u> to suppress laser background and

<u>optics</u> to reduce beam intensity and magnify beam spot (from 10^8-10^9 e⁻ bunch⁻¹ on μ m spot to few 10^2-10^3 e⁻ cm⁻²);

Narrow, intense beam essential for pair generation experiment.
 Lawrence Berkeley National Laboratory

BELLA laser will provide access to ultra-relativistic physics

(after T. Tajima and G. Mourou, PRSTAB2002)

Unique bunch parameters enable wide range of forefront applications

- Bunch properties:
 - Ultra-short electron bunches, high peak current (multi-kA)
 - Intrinsic synchronization with laser pulse
- Direct use of e-bunches:
 - Domain switching in ferromagnets
- Radiation sources:
 - Coherent terahertz emission
 - XUV generation
 - X-rays and gamma rays

Development of XUV/soft x-ray FEL

.....

World-wide effort aimed at FEL using laser accelerator

