

DOE Second-Generation Dark Matter Program Status

HEPAP Meeting Gaithersburg, MD March 12, 2013

Michael Salamon DOE/Office of High Energy Physics

DOE Generation-1 Dark Matter Direct Detection Experiments

PASAG Report (2009)

"The panel evaluated the scientific opportunities available under the different budget scenarios. The opportunities include the following:

For dark matter direct detection, next-generation (G2) facilities capable of reaching sensitivity levels better than 10⁻⁴⁶ cm² (about a factor of 400 better than present-day limits and a factor ~10 better than expected for the experiments already under construction)... Details are different for different technologies. G2 experiments would have typical target masses of approximately one ton, with a construction and operation cost in the range of \$15M-\$20M."

Recommendation: In all budget scenarios, "Two G2 experiments and the 100-kg SuperCDMS-SNOLAB experiment are supported."

Recommended G2 construction start in FY13.

The three generations

a primary selection criterion

- DOE/HEP Funding Opportunity Announcement (FOA) for G2 DM experiment R&D:
 - "For the purposes of this FOA, a second-generation experiment is one that, in the absence of detection, improves our current knowledge of a relevant dark matter particle parameter by roughly one order of magnitude or more. For WIMPs, this parameter could be (but is not restricted to) the WIMP-nucleon cross section limit. In the case of axions, the parameter could be (but is not restricted to) a limit on the photon-axion coupling constant...any viable dark matter species may be the object of an investigation."

Mission Need Statement (CD-0) Cost Profile (approved September 2012)

FY13	FY14	FY15	FY16
R&D only	fabrication	fabrication	fab/commission
\$7M	\$13M	\$9M	\$9M

R&D: \$7M Fabrication: \$31M Total: \$38M

DOE "First Generation" (G1) DM Experiments

COUPP Bubble Chamber – at SNOLAB - commissioning

Large Underground Xenon (LUX) detector – Sanford Lab, Homestake mine, commissioning

Axion Dark Matter eXperiment (ADMX) Phase-2a at U.Washington -commissioning; start science run

in summer

Cryogenic Dark Matter Search (CDMS) at Soudan mine germanium detectors - operating

FIG. 5: (a) The DARKSIDE-50 internal detector. (b) The DARKSIDE-50 detector within the active liquid scintillator neutron veto and the passive shield. DarkSide-50 – Dual-Phase liquid argon TPC at LNGS; commissioning

Moving forward: the problem

- The DM community wanted to press forward with a G2 program
- However, the various technologies were (are) in differing stages of maturity.
- Some hold great promise, but have yet to fully demonstrate the level of performance required for G2 selection
- Only a few G2 experiments will be selected to become projects, so need to make the most informed selections.

Moving forward: the solution

- Conduct the selection in two phases:
 - First phase (FY13): Selection several experiment proposals for one year of R&D funding only
 - No equipment purchases, fabrication.
 - Pre-conceptual experiment design activities.
 - Activities for the reduction of scientific, technical, cost risk.
 - Experiments with DOE TPC < \$5M are exempt from restriction on fabrication (they are below the project threshold)

• Second phase (FY14-FY16): Have downselection in FY14, selecting

- 2-3 G2 experiments from the R&D pool to enter into project phase
 - Final R&D report used as basis for downselection.
 - Evaluation based on updated experiment concept, risk reduction.
 - External scientific review; internal technical and cost risk review planned.
 - Each experiment becomes a project within the G2 DM Program, with independent project life cycles (e.g. CD-1, CD-2/3a, etc. gates).
 - Project phase planned to start in FY14/Q2
 - CD-4 is to be reached by end of FY16.
 - •Final selection of G2 projects done in coordination with NSF.

G2 DM FOA

- The recent G2 DM solicitation provides one year (FY13) of R&D funding only
- Application requirements in the FOA:
 - Statement of science goals and justification of G2 status
 - Description of experiment performance requirements
 - Technical description of experiment that documents how it will meet its performance requirements
 - An estimate (not budget) of total costs of experiment, inlcuding design, equipment, fabrication, management.
 - Project schedule estimate
 - List of current technical risks with a plan for mitigation.
 - A detailed description of the proposed research and concept development work, including scientific, technical and cost risk reduction to be conducted during the one year of R&D support.
- Received 13 proposals in July 2012.
- R&D final reports due FY14/Q1.

Panel Review

- 13 proposals received: 10 for WIMPs, 3 for axions
- 14 panelists (one being Chair), each panelist writing a review for 3 proposals.
 - 5 of the 13 panelists were from outside the U.S. (Nearly all the members of the U.S. direct-detection DM community were on one or more proposals.)
- Each proposal also 2 mail-in written reviews, \rightarrow 5 reviews/proposal
- Panel met for 3 days in Gaithersburg in mid-September 2012
- Made strong recommendation that all "must-fund" proposals be funded, even if it required significant reductions to all the selected proposals' budgets.
- Such deep cuts could not be made without compromising the R&D programs of the topped ranked proposals, so only the highest ranked of the "must-funds" were selected.

Proposal Scoring by Panel

Selected Proposals

- **ADMX-Gen 2** (Axion Dark Matter Experiment)
 - Axion detection via the Primakov process
 - Planned location = U. Washington surface lab
 - DOE G1 expt: ADMX-IIa
- LZ
 - LXe TPC scintillation + ionization
 - Planned location = SURF/Davis Campus 4850L
 - DOE G1 expt: LUX

• SuperCDMS-SNOLAB

- Ge crystals phonon + ionization
- Planned location = SNOLAB
- DOE G1 expt: SuperCDMS-Soudan

• DarkSide-G2

- LAr TPC -- scintillation + ionization
- Planned location = LNGS
- DOE G1 expt: DarkSide-50

• **COUPP-500** (Chicagoland Observatory for Underground Particle Physics)

- CF₃I (spin-independent) and C₃F₈ (spin-dependent) bubble chamber visual + acoustic
- Planned location = SNOLAB
- DOE G1 Expt: COUPP-60

Gen 2 ADMX: Ultrasensitive Search for Dark-Matter Axions

The dilution refrigerator in Gen 2 ADMX significantly speeds the dark-matter search, so that Gen 2 ADMX has the sensitivity to either detect the dark-matter QCD axion or reject the hypothesis at high confidence. This is called the "Definitive Search".

LZ Experiment

- Builds upon the experience from the Large Underground Xenon (LUX) detector
 - Dual-phase, ~ 350 kg of liquid Xenon
 - Installed at the Sanford Underground Research Facility (SURF)
 - Full of Xenon since early February, commissioning underway
- LZ Collaboration and Detector
 - Collaboration of 20 institutions from United
 States, United Kingdom and Portugal
 - Collaboration growing beyond LUX
 - Can utilize SURF infrastructure, water tank
 - Much increased Xenon volume ~ 8 tonnes
 - Powerful active scintillator veto
 - Conceptual design and key R&D underway
 - Goal: CD-1 quality design by end 2013.

LZ Experiment Reach

SuperCDMS SNOLAB

- Next-generation (G2) dark matter direct detection experiment designed for background-free, competitive sensitivity for 100 GeV WIMPS
- Will also provide world-leading sensitivity to low-mass (3-10 GeV) and high mass (>1 TeV) WIMPs

SuperCDMS SNOLAB

- 200 kg Ge target mass with interleaved charge and phonon sensors to reject surface events (iZIPs)
- Cryogenics system designed to hold up to 400 kg at <40 mK
- State-of-the-art passive and active shielding against backgrounds
- Location at SNOLAB, the deepest, cleanest underground lab

DarkSide – G2 summary

Two-phase liquid argon TPC ~ argon mass 5 tonnes, fiducial mass 2.8 tonnes

Successor to DarkSide-10 and DarkSide-50; planned for operation at L.N.G.S. in Italy

TPC surrounded by **existing veto system** of 4 meter diameter active liquid scintillator veto inside a 10 meter high, 11 meter diameter, active water tank.

TPC design features: low radioactivity argon (< 0.65% atmospheric argon), minimum radioactivity detector – in particular PMTs, high light yield, low noise electronics, powerful data-acquisition

DarkSide-G2 predicted sensitivity for 14 tonne-yrs with <0.1 background event. (extrapolation based on DS-10 data)

COUPP-500

- >10¹⁰ γ/β insensitivity
- >99.3% acoustic α -discrimination
- Multi-target Capability SD- and SI-coupling High- and low-mass WIMPs
- Easily scalable, Inexpensive to replicate
- COUPP-60 turning on March 2013
- Growing Collaboration Newly merged with PICASSO

G2 Funding

Funding: DOE Available vs. DOE Request Total planned DOE G2 DM funds summed over FY14-FY15 = \$31M

Funding Issues

- Most of the selected G2 candidates also will ask for NSF funding after the current R&D phase.
- Some of the "low cost" experiments, those under \$5M total, plan to submit a much larger request to NSF.
- The number of R&D proposals selected was based on the funds available for R&D in FY13, not on the total estimated project cost of the project candidates.
- There is a significant gap between the total available funding and potential need.

G2 DM Program Timeline

- Past:
 - "DOE Funding Opportunity Announcement for Second Generation Dark Matter Experiments" issued March 2012.
 - Proposals submitted in July 2012
 - Panel review held in Gaithersburg, MD in mid-September 2012.
 - DOE G2 DM CD-0 in September 2012
 - Most selections made in December 2012, some funding out in January 2013.
- Present:
 - Formal announcement of selections at this HEPAP meeting.
- Future:
 - R&D reports due in FY14/Q1 (exact date to be fixed soon)
 - Downselection in FY14/Q1, coordinated with NSF
 - Funding starts for fabrication in FY14/Q2, assuming we are not in a Continuing Resolution
 - Fabrication complete, commissioning near end of FY16.
 - Funding problem?