

Test Beam Facilities for HEP Detectors

Petra Merkel, Fermilab HEPAP Meeting December 5-6, 2024

Outline

- Applications for test beam facilities for HEP detectors
- General requirements
- Overview of worldwide facilities

 N.B.: Fermilab's FTBF covered in separate talk
- Future needs

<u>Snowmass White Paper: "Test Beam and Irradiation Facilities"</u> <u>https://arxiv.org/abs/2203.09944</u>

Applications for test beam facilities

- Allow HEP community to test the performance of their detectors (sensors, electronics, materials) under realistic conditions. Need to qualify new technologies!
- Crucial especially for collider and neutrino detector technologies
 - HL-LHC upgrade, desired features: (O)MHz proton beam with MIP energies and high-quality tracking telescopes
 - Neutrino community: R&D for DUNE, Hyper-K and hadron production measurements with target materials; test beams are also used to measure response of detectors to particles of interest, providing data for detector calibration (->physics)
- Synergies with EIC and satellite experiments

General requirements

 There is interest in beam energies from MeV to hundreds of in all particle species

→ Test beam facilities should be versatile, offering as much variety in beam shape, intensity and particle composition as possible

- Neutrino detectors:
 - Experiments are generally interested in charged particles and neutrons with momenta ranging from 100 MeV to a few GeV
 - Accelerator-based neutrino experiments also benefit from hadron production experiments that provide data necessary for neutrino flux calculations and measurement of nuclear processes
 - benefit from medium to long-term installations
- In all cases there should be robust instrumentation to finely control and characterize the beam

Current facilities (from Snowmass white paper)

Facility		Particles	Energy Range	Availability
	Beams			
CERN/PS	2	$e,h,\mu(sec.)$	0.5-10 GeV/c	9 mos/yr
CERN/SPS	4	$p(\text{prim.}); e,h,\mu(\text{sec.});$	20-400 GeV/c	9 mos/yr
		e,h(tert.); Pb(prim);	proton equiva-	
		other ion species	lent	
CERN/CLEAR	1	e-	50-250 MeV/c	8-9 mos/yr
DAFNE Frascati	1	e^+/e^- (prim. and sec.);	25-750 MeV/c	25-35 wks/yr
		photons	,	, -
DESY (Ham-	3	$e^+/e^-(sec.); e^-(prim.)$	1-6 GeV/c; 6.3	11 mos/yr
burg, GE)		planned)	GeV/c	,
ELPH (Sendai,	2	photons (tagged); e ⁺ ,e ⁻	0.7-1.2 GeV/c;	2 mos/yr
JP)		(conversion)	0.1-1 GeV/c	70
ELSA (Bonn,	1	e-	1.2-3.2 GeV/c	$\sim 30 \text{ days/yr}$
GE)			,	
FTBF (Fermi-	2	p (prim.); e,h, μ (sec.); h	120 GeV/c; 1-66	8 mos/yr
lab, US)		(ter.)	GeV/c; 200-500	70
, ,			MeV/c	
IHEP (Beijing,	2	e (prim.); e,p, π (sec.)	1.1-2.5 GeV/c;	3 mos/yr
CN)			0.1-1.2 GeV/c	
IHEP (Protvino,	5	p,C-12 (prim.);	70 (6-300)	2 mos/yr
RU)		p,K,π,μ,e (sec.)	GeV/c; 1-45	, -
			GeV/c	
MAMI (Mainz,	3	e ⁻ ,photons	< 1.6 GeV/c	$\sim 30 \text{ days/yr}$
GE)			,	- , -
NSRL	1	p, heavy ions	0-1 GeV/n	10 mos/yr
(Brookhaven,				
US)				
piEI,ppiMI,etc.	2-4	π, μ, e, p	50-450 MeV/c	6-8 mos/yr
(PSI, CH)			,	, -
PIF (PSI, CH)	1	р	5-230 MeV/c	11 mos/yr
RCNP (Osaka,	7	p,heavy ions,n, μ^+	24-400 MeV/c	7-8 mos/yr
JP)			,	, -
SLAC (Stan-	0	e (prim.); e (sec.)	2.5-15 GeV/c; 1-	currently no
ford, US)			14 GeV/c	beam
SPRING-8	2	photons (tagged), e ⁺ ,e ⁻	0.4-2.9 GeV/c	>60 days/yr
(Compton Facil-		(conv.)	/	
ity, JP)				
- / /	1	1	1	I

Table 1: Overview of existing test beam facilities

Most relevant facilities for US community

Facility	# of	Particles	Energy Range	Availability
	Beams			
CERN/PS	2	$e,h,\mu(sec.)$	0.5-10 GeV/c	9 mos/yr
CERN/SPS	4	$p(\text{prim.}); e,h,\mu(\text{sec.});$	20-400 GeV/c	9 mos/yr
		e,h(tert.); Pb(prim);	proton equiva-	
		other ion species	lent	
CERN/CLEAR	1	e ⁻	50-250 MeV/c	8-9 mos/yr
DESY (Ham-	3	$e^+/e^-(sec.); e^-(prim.,$	1-6 GeV/c; 6.3	11 mos/yr
burg, GE)		planned)	${\rm GeV/c}$	
FTBF (Fermi-	2	p (prim.); e,h, μ (sec.); h	120 GeV/c; 1-66	8 mos/yr
lab, US)		(ter.)	GeV/c; 200-500	
			MeV/c	
NSRL	1	p, heavy ions	0-1 GeV/n	10 mos/yr
(Brookhaven,				NASA is main customer
US)				
SLAC (Stan-	0	e (prim.); e (sec.)	2.5-15 GeV/c; 1-	currently no
ford, US)		N= // N /	14 GeV/c	beam
approx -	-	• / •> I		• /

Key facilities for current collider experiment developments

- FNAL/FTBF:
 - 2 beamlines

shutdown 1/2027-7/2030 construction for LBNF/PIPII

shutdown 9/2026-7/2029

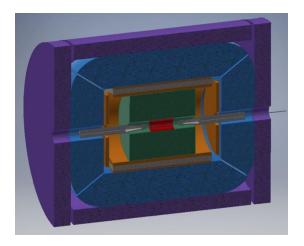
construction for HL-LHC upgrade

- 120 GeV p (pri.), 1-66 GeV e/h/ μ (sec.), 200-500 MeV h (ter.)
- availability ~8 mo/yr
- CERN/SPS:
 - 4 beamlines

- 20-400 GeV p(pri.), e/h/ μ (sec.), e/h (ter.) and ions

- availability ~9 mo/yr
- DESY/DESY II:
 - 3 beamlines
 - 1-6 GeV e⁺/e⁻
 - availability ~11 mo/yr

shutdown 2030-2032 construction for PETRA IV/DESY IV

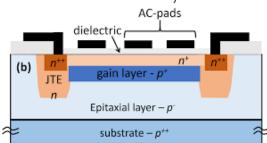

New and planned facilities

• LESA at SLAC:

- parasitically use LCLS II SRF Linac, extract dark current with kicker
- delivers low current 4-8 GeV CW e- beam, 25 ns beam pulses
- together with LDMX
- expect first test beam experiments in Spring'25
- FNAL:
 - taskforce working on plans for test facilities at PIP II (see Evan's talk)
- DESY:
 - planning upgraded test beam facility at PETRA IV (not yet approved)

Future needs

- A broad array of test beam capabilities are required to develop the next generation of detectors for tracking, calorimetry, and particle identification
- Beams of different particle species at a wide range of energies are critical to test the response and performance of different detector technologies, where well-calibrated instrumentation such as trigger hodoscopes, tracking telescopes, and Cherenkov detectors is often required to analyze and understand the performance of the device under test
- Developing O(1ps)-timing detectors requires test beams with high repetition rate and extremely short pulses
- Developing rad-hard detectors would benefit from colocation of test beam and irradiation facilities for ease of handling/storage and faster turnaround times



Future needs: precision timing detectors

- Future collider detectors will require 1-5 ps time resolution
- Testing the timing precision of these detectors is challenging because it requires some external time reference of comparable or better precision. A beam with very short pulses and an adaptable repetition rate, where the accelerator RF provides an extremely precise time reference, would be highly advantageous.
- The critical capabilities required are
 - 1. pulses of ps length or less
 - 2. the availability of a clean time reference from the accelerator
 - 3. the ability to set the repetition rate low enough to disambiguate the effects of different beam pulses. At the same time, the ability to deliver a high (and controlled) repetition rate is valuable for testing detectors' responses to the high event rates expected in many next-generation experiments.

🛠 Fermilab

10

Summary

- Test beam facilities are a crucial tool in the development of new technologies for HEP experiments
- Versatility in particle content, energy, time structure is a must
- As a worldwide community we need to make sure that sufficient beam time is available at all times
- The test beam landscape is volatile. If I forgot any existing beams or plans for new facilities, let's discuss!

