

on behalf of the U.S. ATLAS HL-LHC Project Management Team

November 21-22, 2019

U.S. ATLAS HL-LHC Project Status, HEPAP November 22, 2019

Gustaaf Brooijmans

U.S. ATLAS HL-LHC Status

Gustaaf Brooijmans **Deputy Project Manager**

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

HEPAP

Outline

- U.S. participation in HL-LHC and ATLAS
- ATLAS HL-LHC upgrade and U.S. scope
- U.S. Project team
- Current stage in U.S. approval process
- Major risks
- DOE and NSF funding profiles Closing

• 2013 European Strategy Report:

Europe's top priority should be the exploitation of the full potential of the <u>LHC</u>, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030.

• 2014 P5 prioritized roadmap for HEP for the coming decade:

- Recommendation 10: Complete the LHC phase-1 upgrades and continue the strong collaboration in the LHC with the phase-2 (HL-LHC) upgrades of the accelerator and both general-purpose experiments (ATLAS and CMS). The LHC upgrades constitute our highest-priority near-term large project.
- In 2015 endorsed by a subcommittee of the NSF MPS Advisory Committee:
 - The subcommittee strongly supports the NSF investment in the LHC phase-2 upgrades as a way to enable and participate in fundamental discoveries.

European Strate

January 2015

Science Factory!

HL-LHC Timeline

2010			2011			2012			2013										
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	C
		Run 1: 7-8 TeV, 0.7×10 ³⁴ (µ≈23), 25 fb ⁻¹) -1	LS1									
	2020			020	2021			2022			2023								
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	C 4	Q1	Q2	C
	LS2				Rur	n 3: 1	14 Te	eV, 2	2-3×	10 34	· (μ≈	55-8	30),	300	fb-1				

- planned for 2024-2026
 - LS3 is the milestone that drives the construction completion schedule

• HL-LHC upgrades to be installed during "Long Shutdown 3", currently

The ATLAS HL-LHC Upgrade

- HL-LHC will deliver 3-4 times more luminosity than original design, at 5-7 times instantaneous rate
- To realize full physics potential, ATLAS will
 - Replace the inner detector with a full silicon tracker
 - Replace the trigger system to use more, better information in trigger decisions
 - Increase readout bandwidth
- U.S. participates in all principal elements, bringing often unique expertise in their realization

25m-

U.S. Involvement in ATLAS

- ATLAS is a large international collaboration
 - ~3000 authors, experiment will have a 40+ year lifetime
 - U.S. is about 20% of collaboration (18.2% "fair share" as of 9/9/2019, compared to 17.1%/18.6% in 2018/2017)
 - Significant influence on processes & decisions, but non-negligible fraction of construction responsibilities of interest to multiple countries
 - Negotiations converged with writing of MoUs (now being signed)
 - U.S. holds ~25% of the Level 1, 2 and 3 leadership positions on the international HL-LHC ATLAS upgrade
 - Reflects the broad and well-recognized expertise in the U.S., and its strong historical engagement in the experiment
 - U.S. contributions to HL-LHC have been carefully crafted to adhere to the funding guidance while maximizing impact
 - Factors considered include physics goals, ATLAS needs, U.S. expertise and historical role, past institutional performance, junior colleague development, etc.

Inner Tracker (ITk)

- New all-silicon tracker
 - ~165 m² of strips (vs 68 m² now)
 - ~13 m² of pixels (vs 2 m² now)
- U.S. will deliver
 - Half of the barrel strip detector
 - The inner pixel system, i.e. everything within ~15 cm of the beam
 - Most carbon fiber mechanical structures
- Relies on unique U.S. expertise, in particular
 - Complex ASIC design
 - Design and construction of large carbon fiber structures
 - Efficient production lines

DOE Scope

Calorimeters

rimeter Cells

- Full replacement of calorimeter electronics, both on- and off-detector
 - All data shipped off-detector at bunch crossing rate (40 MHz)
 - Calorimeters themselves are kept
- U.S. will deliver
 - Front-end readout electronics for both liquid Argon and scintillating Tile calorimeters
 - LAr off-detector electronics at the interface to the DAQ system
 - Half of on-detector low voltage power supplies for Tile calorimeter
- Also here unique U.S. expertise
 - Complex ASICs
 - High precision analog electronics

Muon System

- Full electronics replacement, both on- and off-detector
- Additional chambers to close gaps in coverage
- U.S. will deliver
 - Half of new chambers
 - On- and off-detector electronics
- Relies on U.S. expertise in
 - Chamber construction
 - ASIC design

TDC Chip

Chamber Construction

NSF Scope

Chamber Service Module

Trigger and Data Acquisition

- Big increase in rates and bandwidth:
 - 100 kHz \Rightarrow 1-4 MHz hardware trigger accept rate
 - $1 \text{ kHz} \Rightarrow 10 \text{ kHz}$ output to tape
 - Highly interconnected system with many latest generation FPGAs
- U.S. to deliver (hardware and firmware):
 - Hardware Global Trigger Event Processor
 - ~Half of Hardware Track Trigger
 - Detector-to-DAQ interface (FELIX)
- Relies heavily on U.S. expertise with implementation of high end FPGAs
 - And US industrial know-how

U.S. ATLAS Organization

- Central project office hosted at **Brookhaven National Lab**
 - Columbia University is the principal institution for the MREFC, with NSF-focused project office that complements that at BNL
- Project office structure based on experience with original ATLAS construction, Phase-I upgrade, ...
 - Experienced team in project management, development and execution
- U.S. ATLAS HL-LHC project team functions in a fully integrated fashion, managing both DOE- and NSF-funded scope

U.S. ATLAS HL-LHC Upgrade Project Office

J. Kotcher (BNL), Project Manager G. Brooijmans (Columbia), Deputy PM, Project Development H. Evans (Indiana), Deputy PM, Technical Coordination M. Tuts (Columbia), NSF Principal Investigator P. Novakova (BNL), Assistant PM, Project Controls G. Redlinger (BNL), Risk Manager J. Hobbs (SBU), Operations Cooperative Agreement PI L. Stiegler (BNL), ES&H Liaison C. Gortakowski (BNL), QA/QC Liaison **Budget & Administration:** R. Freedman (BNL), Administrative Assistant A. Garwood (Columbia), Administrative Assistant

C. Butehorn (BNL), Budget Oversight

Organization to Level 3

U.S. Context

- DOE scope (ITk and Trigger and Data Acquisition) funding guidance is \$163M (incl. \$10M for I&C)
 - Critical Decision 0 was approved April 13, 2016
 - Critical Decision 1 received ESAAB approval September 23, 2018
 - IPR and CD-3a review July 9-11, 2019, CD-3a received ESAAB approval October 11, 2019
 - Planning for CD-2/3 in December 2020
- NSF scope (trigger improvements, including sending all calorimeter data offdetector), funded through MREFC to start April 2020 at \$75M (plus \$11M in R&D) funds 2016-2020)
 - (MREFC request is \$150M shared between ATLAS and CMS)
 - Preliminary Design Review January 16-18, 2018
 - NSB approval to enter Final Design Phase given July 18, 2018
 - Final Design Review held September 11-13, 2019
 - To be presented to NSB for project start at February 4-5 NSB meeting
- Overall a ~\$250M project, all cutting-edge technology

Risk and Contingency

• Project is generally in the "late prototype" phase

- meet our requirements/specifications
- And there are some large "global" risks
 - Escalation rate
 - Loss of scientific ("uncosted") effort due to research program funding tightness
 - 0 cutting-edge technology
 - Represent ~35%/20% of "technical" labor in DOE/NSF scope Ο
 - Commodity volatility
 - CERN delay
- At this time, we have ~37% contingency on the cost-to-go
 - upgrade

Technological risk has been largely eliminated, i.e. we know our technology choices will allow us to

But the devil is in the details: still lots of room for things to need additional time and money (e.g. additional ASIC prototyping round, production QC taking more effort than expected, ...)

Crucial to our mission: students and postdocs learn to develop and build detectors, work with

Prudent number, but not overly so, given experience from original construction and Phase-I

Project Funding, DOE Scope

Total Project Cost (from simulation @ 90% CL) Funding Guidance — Total Project Cost Cum (from simulation @ 90% CL) — Funding Guidance Cum

• Funding guidance (red) matches project cost (blue) profile well

- Cost profile obtained from base cost + simulations to determine contingency profile
- ~\$10M "buffer" in FY20-22 corresponds to ~6 months of execution

U.S. ATLAS HL-LHC Project Status, HEPAP November 22, 2019

Profile at 90% CL vs. Funding

Project Funding, NSF Scope

Profile at 77.5% C

- **President's Budget Request**
 - MREFC is shared with CMS, which needs a little more than half early on
 - Also here some buffer between the funding and simulated profiles

CL vs.	Fundir	ng						
		Cumulative AY\$ \$80,000,000	Total Deliverable Base Cost					
		\$70,000,000	Total Project Cost (from simulation @ 77.5% CL)					
		\$60,000,000	ista riojest sost (rioni sinalation e 77.576 et)					
		\$50,000,000	FDR Cost Profile					
		\$40,000,000	—Cumulative President's Budget Request x 0.5					
		\$30,000,000	-Cumulative FDR Cost Profile					
		\$20,000,000	—Cumulative Total Project Cost (from simulation					
		\$10,000,000	@ 77.5% CL)					
Y26	FY27	\$0	—Cumulative Deliverable Base Cost					

• "FDR Cost Profile" is our proposed funding profile, initially slightly below 50% of the

Closing

- U.S. ATLAS HL-LHC project exploits U.S. expertise to make key contributions to ATLAS detector upgrade
 - \$250M project, all high tech

 - Huge science output
- Project is on strong footing, finishing prototyping phase
 - February 2020
 - DOE CD-2/3 planned for late CY 2020 • CD-3a in hand for long-lead items
- Project schedule driven by LHC Long Shutdown 3

Fantastic opportunity for young people to work on cutting-edge technology

• NSF Final Design Review passed, NSB approval for construction expected in

Construction will run 2020-2025, followed by installation and commissioning

DOE Cost Table

WBS	FY16+17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	Grand Total
Deliverables Only											
6.01 - Pixel	658	1,145	4,091	5,907	7,062	4,815	2,338	1,482	230	-	27,730
6.02 - Strips	1,587	3,789	5,481	6,789	6,252	5,824	4,983	2,925	789	-	38,419
6.03 - Global Mechanics	541	890	2,140	4,501	1,637	860	198	-	-	-	10,768
6.04 - LAr	219	376	957	643	1,147	889	1,157	508	248	-	6,145
6.07 - Data Handling/DAQ	64	277	1,055	1,507	1,866	2,371	2,587	2,138	-	-	11,866
6.09 - Common Costs		85	85	85	951	951	951	951	-	-	4,060
6.10 - Project Office	313	1,317	1,615	1,777	1,812	1,879	1,946	1,993	1,955	2,013	16,619
Total Deliverable Base Cost	3,382	7,879	15,424	21,210	20,727	17,590	14,161	9,998	3,222	2,013	115,607
Total Deliverable Base CTG	-	-	8,814	21,210	20,727	17,590	14,161	9,998	3,222	2,013	97,735
Risk-Based Cont. (MC)	-	-	606	3,647	3,547	2,898	3,206	3,724	1,392	28	19,048
Maturity-Based Cont. (MC)	-	-	2,013	2,564	2,134	3,380	3,595	3,698	149	-	17,532
Total MC Cont.	-	-	2,619	6,211	5,681	6,277	6,800	7,422	1,541	28	36,580
PM Cont.	-	-	5,000	9,500	9,200	8,500	3,000	1,300	400	8	36,908
Fractional Cont. on CTG	-	-	0.567	0.448	0.444	0.483	0.212	0.130	0.124	0.004	0.378
Total Deliverable Cost	3,382	7,879	20,424	30,710	29,927	26,090	17,161	11,298	3,622	2,021	152,515
DOE Guidance (no I&C)	4,515	12,000	27,500	23,460	25,040	25,910	17,200	12,400	3,890	600	152,515
Guidance + Carryover	4,515	13,133	32,754	35,790	30,120	26,102	17,213	12,452	5,044	2,021	
Balance/Carryover	1,133	5,254	12,330	5,080	192	13	52	1,154	1,421	0	
TPC: Deliverables + I&C											
I&C Base Cost	-	-	-	-	307	979	1,590	2,324	3,107	1,139	9,447
I&C Cont.	-	-	-	-	3	11	110	176	193	61	553
Total I&C Cost					310	990	1,700	2,500	3,300	1,200	10,000
Total Deliverable Cost	3,382	7,879	20,424	30,710	29,927	26,090	17,161	11,298	3,622	2,021	152,515
Total Project Cost	3,382	7,879	20,424	30,710	30,234	27,069	18,751	13,622	6,729	3,160	162,515

U.S. ATLAS HL-LHC Project Status, HEPAP November 22, 2019

NSF Cost Table

All Costs in k\$	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	
6.4 LAr	\$1,080	\$4,985	\$3,785	\$5,102	\$3,540	\$325	\$44	\$0	
6.5 Tile	\$818	\$2,255	\$1,051	\$368	\$0	\$0	\$0	\$0	
6.6 Muon	\$2,455	\$3,483	\$3,256	\$2,130	\$369	\$0	\$0	\$0	
6.8 Trigger	\$841	\$1,584	\$1,839	\$1,940	\$6,545	\$1	\$0	\$0	
Total Deliverable Base Cost	\$5,194	\$12,306	\$9,931	\$9,541	\$10,454	\$327	\$44		
6.9 Common Costs	\$310	\$103	\$103	\$103	\$103	\$207	\$0	\$0	
6.10 PMO	\$751	\$1,277	\$1,075	\$1,105	\$1,084	\$856	\$337	\$0	
Total Base Cost	\$6,255	\$13,686	\$11,109	\$10,749	\$11,641	\$1,389	\$381		
Total Project Cost (from									
simulation @ ~77.5% CL)	\$8,204	\$15,124	\$12,453	\$11,441	\$21,937	\$4,506	\$1,322	\$12	
Yearly Contingency (from									
simulation @ ~77.5% CL)	\$1,949	\$1,438	\$1,344	\$692	\$10,296	\$3,117	\$941	\$12	
FDR Cost Profile	\$11,700	\$17,500	\$14,500	\$14,000	\$15,000	\$1,800	\$500	\$0	
Available Yearly Contingency -									
FDR Cost Profile	\$5,445	\$3,814	\$3,391	\$3,251	\$3,359	\$411	\$119	\$0	
Yearly fractional contingency	87%	28%	31%	30%	29%	30%	31%		

