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BRN to Assure a Secure Energy Future BESAC
(2002)

BRN for Hydrogen Economy (2003)

BRN for Solar Energy Utilization (2005)

BRN for Superconductivity (2006)

BRN for Solid State Lighting (2006)

BRN for Advanced Nuclear Energy Systems
(2006)

BRN for Geosciences (2007)

BRN for Clean and Efficient Combustion (2007)
BRN for Electrical Energy Storage (2007)

BRN for Catalysis for Energy Applications
(2007)

BRN for Materials under Extreme Environments
(2007)

New Science for Sustainable Energy Future
(2008)

BRN for Carbon Capture (2010)

Computational Materials Science and
Chemistry (2010)

Science for Energy Technology (2010)

Controlling Subsurface Fractures and Fluid
Flow (2015), Next Gen Tools(2016)

BRN for Environmental Management, Energy-
Water-Nexus (2016)

BRN for Quantum Materials (2016)
BRN for Synthesis Science (2016)

BRN for Next Generation Electrical Energy
Storage (2017)

BRN for Future Nuclear Energy (2017)

BRN for Catalysis Science to Transform
Energy Technologies (2017)

BRN for Microelectronics (2018)

http://science.energy.gov/bes/community-

resources/reports/
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Basic Research Needs — Use Inspired Basic Research

Transformative, not incremental research
directions

Fundamental science challenges to move the
technology forward

New techniques and methods

10-30 years out
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BRN for Microelectronics Workshop — Motivation

« Semiconductor-based microelectronics are critical to the U.S. economy,
scientific advancement, and national security

— Semiconductor products are currently the third largest class of U.S. exports
(behind aircraft and automobiles)

— U.S. companies account for more than 50% of the world market by revenue

— Semiconductor industry directly employs ~250,000 people; ~1 million
associated jobs

* The decades long success of Moore’s Law was driven by innovation
— Materials and chemical sciences
— Computer science
— Electrical engineering
— Fabrication technologies
 Additional innovation needed to keep up with dramatic market growth

7 T i Offiegrds:  sIA “Made in America: The Facts about Semiconductor Manufacturin%” Aug. 2015 &
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Motivation: CMOS scaling slowdown

FINFET

Global Foundries

14n

FinFET

Intel Technol. & Manufacturer’s Day, 2017

http://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-
Bohr-2017-Moores-Law.pdf

http://www.swtest.org/swtw_library/2015proc/PDF/SWTW2015_Key!
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Physics gets in way Source Drain
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bulk https://www.quora.com/What-is-a-FinFET-transistor
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Impact to computational materials science--example

Current trends will increase the length
scales-accessible by large-scale molecular JLos Alamos

NATIONAL LABORATORY

dynamics simulations

“2018"

1 01 5 System peak 2 Peta 1Exa
Power 6 MW -~ ~20 MW

System memory 03PB 5P8 1264 PB
% Node performance 126 GF 05TFor7TF 1TF or 10x

| 012 ~ N Node memory BW 25GBis  0.1TBs or 10x 0.4 TB/s or 10x
Node concurrency 12 O(100) O(1k) or 10x

Total Node Interconnect BW 15GBs 20 GB/s or 10x 200 GB's or 10x
System size (nodes) 18,700 50,000 or 1/10x O(100,000) or 1/10 x

1 09 MTTI O{1day) O(1 day)
Source: DOE Exascale Initiative Technical Roadmap

10° Clock speeds and bandwidths will
not increase substantially, so the
timescale challenge is going to

become increasingly critical.

Number of Atoms

Time/length scales
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Rise of data intensive & edge computing: future Compact Muon
Solenoid (CMS) computing needs at Large Hadron Collider (LHC)

CPU by Type
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A data storage and
movement problem
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* Exa-byte scale disk and tape storage,

50x w.r.t. now

* CPU needs 5M cores, 20

X w.r.t. now

* transfer of exa-byte-sized data samples
across the Atlantic at 250-500 Gbps,
(today: 40Gbps allocated by ES Net)
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(From talk by L Bauerdick, Fermilabs, conveyed by S. Habib, ANL)
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Rise of data intensive & edge computing

Need for new computing paradigms

Memory bottlenecks
Data transport
Low power computing

One approach

Memory/storage

processor;

Memory/storage

processo

processors

near-memory
processor based
systems
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Future Computing Technologies are Important to DOE
as well as many other Federal Agencies

« High-performance computing & simulation underpin DOE missions in
energy, environment, and national security
— Historical role of computing in DOE
— DOE/vendor synergies in deploying computing technologies

« Future computing technologies (e.g., quantum, neuromorphic,
probabilistic, etc.) hold promise for next-generation DOE mission
applications

— DOE research and facilities (e.g. HEP experiments, ASCR HPC, BES light
sources) will depend on advanced computing and sensing technologies

— Likely will augment, not replace, conventional supercomputing

— Could open new avenues for use of computing in science
(data analytics, machine learning, artificial intelligence, ...)

* New directions for applied mathematics and computer science are likely
to emerge that could enable new science across DOE-SC
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Call To Action

Significant challenges as CMOS extends below 5nm
The end to Moore’s Law will impact U.S. industry and competitiveness

The importance of this issue and its technical complication will require
Innovative approaches to keep the U.S. in a leadership position

Solving a problem of this scale will require “whole of government”
approach and a robust public/private partnership to apply the best
research from industry, academia and government research facilities to
allow the U.S. to successfully make this technology transition

DOE, and particularly the Office of Science, will play a significant role in
this effort

DOE-SC was charged with organizing a Basic Research Needs
Workshop to define the highest priority research directions
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Basic Research Needs for Microelectronics — Charge

A thorough assessment of the scientific issues associated with advanced
microelectronics technologies for applications relevant to the DOE mission.

Identify critical scientific challenges, fundamental research opportunities, and priority
research directions that require further study as a foundation for advances in
microelectronics over the next decade and beyond.

Particular emphasis on energy-relevant applications, and areas that are aligned with the
missions and needs of ASCR, BES, HEP including data management and processing,
power electronics, and high performance computing.

Examine extension of CMOS and beyond CMOS technologies, beyond exascale
technologies. however Quantum Information Science is outside the scope of this
workshop.

focus on a co-design innovation ecosystem in which materials, chemistries, devices,
systems, architectures, and algorithms are researched and developed in a closely
integrated fashion.
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Innovation Opportunity Space

Materials Research

Device Physics

Design and Fabrication

Computer Engineering: architectures and micro-architectures
Computer Science & Applied Math

Other Considerations

— Outside the box: Alternative materials, devices, fabrication techniques
and architectures are likely to result

— Use-inspired science: Function and application need to be considered
at early stages
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Basic Research Needs for Microelectronics Workshop participation

77 panelists, ~70 observers

Other Fed
Agencies
4%

By affiliation By expertise

Systems: circuits, micro-architecture, architecture, algorithms, software
Hardware: devices, materials, physics, chemistry
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PLENARY TALKS TO SET THE SCENE AND PRESENT CHALLENGES

e Justin Rattner ( Intel, ret)

e Mike Witherell ( LBNL)

 Bill Chappell ( DARPA)

e Tsu-Jae King Liu ( UC Berkeley )
e Dushan Boroyevich ( VA Tech)
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Panels

Panelists were invited for their expertise — and are assigned to a particular
panel that will determine priority research directions in the breakout
sessions

1) Big data collection, analytics, processing for SC facilities
Leads: Kirsten Kleese van Dam (BNL) and Sayeef Salahuddin (UC Berkeley)

2) Co-design for high performance computing beyond exascale
Leads: James Ang (PNNL) and Thomas Conte (Georgia Tech)

3) Power control, conversion and detection
Leads: Debdeep Jena (Cornell U) and Robert Kaplar (SNL)

4) Crosscutting themes — may roam and join other panels
Leads: Harry Atwater (Caltech) and Rick Stevens (ANL)
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Oct 22-25

First cut

Themes

Panel
discussions

Co-

chairs+D
OE team

Target dates:
Brochure ready on DOE website: Dec, 2018
BRN report ready for publication: Feb 2019

Revised
2"d round
panel
discussions

Co-

chairs+D
OE team
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Principles of co-design underpin all five priority research directions (PRDs)
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CoDesign

Physics of logic, memory, and transport

Mitiscale

Fundamental materials science/chemistry
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PRD 1 (DRAFT): Flip the current paradigm: Define innovative materials, device, and
architecture requirements driven by applications, algorithms, and software

*Develop an “end-to-end” co-design framework
*Applications €= Algorithms <= System SW €= System
HW

Applications

Algorithms

Stacked PIMS B, C,
D,EF,GHL)

PIMS 30 storage
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PRD 2 (DRAFT): Revolutionize memory in computing

Typical access latency in processor cycles (@ 4 GHz)

Memory System High-Performance Disk

L1(SRAM) EDRAM |DRAM | 1 Flash HDD |
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PRD 3 (DRAFT): Reimagine information flow unconstrained by interconnects

Data movement is growing exponentially

pl/bit not ramping down significantly

Worthy Goal: Tbyte/sec-mm channel capacity for <100

fl/bit

/ . .
h Final
M8 £ P Passivation
] |
s
| I ;i
r-.'j “6
— ‘s
—H “
— = =
M1 |—I I—| !
£
=il | =
_H isolatiol ) isolatio
L—\ ’Photodlude' ‘J\
\ Active Area
_— E I N-Well

Transistors
https://www.researchgate.net/figure/General-structure-of-130-nm-
technology-with-Back-end-of-line-metallization-and-
dielectric_figll_ 224918168

I T T e
Y e £ A

https://images.anandtech.com/doci/8367/14nmIinterconnect.jpg

&, U.S. DEPARTMENT OF Office of

@ EN ERGY Science

Argonne°

NATIONAL LABORATORY



PRD 4 (DRAFT): Redefine computing by leveraging unexploited physical phenomena

Finding and understanding physical phenomena that can express computation
New ways of reasoning about computation

Leveraging physical processes to compute (“analogous computing”)

NvN Optimizers, both continuous and integer

Artificial Neural Networks
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input layer
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PRD 5 (DRAFT): Reinvent the electricity grid through new materials, devices, and
architectures

Substation in a Suitcase

Silicon Carbide IGBT;
15 kV, 100 A;
50 kHz from Cree Inc.

IGBT

100 Ibs

8000 Ibs, 60 Hz Dtstnbutton Transformer
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