ATLAS DETECTOR STATUS AND PHYSICS HIGHLIGHTS

Stephanie Majewski, University of Oregon

HEPAP Meeting, Mar 31 - Apr 1, 2016

2015 DATA-TAKING

- ► Compared to 2012... $\sqrt{s}: 8 \rightarrow 13 \text{ TeV}$ bunch spacing: 50 \rightarrow 25 ns
- 3.2 fb⁻¹ of 25 ns data good for physics (including new innermost pixel layer)
- Data-taking efficiency: 92%
 Data good for physics: 87%
- Excellent trigger performance and stability
- ► Successful heavy ion run as well! 0.67 nb⁻¹ @ $\sqrt{s_{NN}} = 5.02$ TeV

NEW ATLAS RESULTS FOR WINTER CONFERENCES

Торіс	Document type	Short title	Reference and Link	Release conference
Top physics	Conference Note	ttV cross section at 13 TeV	ATLAS-CONF-2016-003 ₪	Moriond EW
Top physics	Conference Note	ttbar cross section in the e+mu channel at 13 TeV	ATLAS-CONF-2016-005 ₫	Moriond EW
Higgs physics	Conference Note	HH to bb+2-photons	ATLAS-CONF-2016-004 ₫	Moriond EW
Higgs physics	Conference Note	Search for 2-photons + MET	ATLAS-CONF-2016-011	Moriond EW
Higgs physics	Conference Note	Search for H->ZZ->IInn	ATLAS-CONF-2016-012	Moriond EW
Higgs physics	Conference Note	Search for A->Zh	ATLAS-CONF-2016-015	Moriond EW
Higgs physics	Conference Note	Search for H->ZZ->Ilqq	ATLAS-CONF-2016-016	Moriond EW
SUSY	Conference Note	Direct stop production in the 1-lepton channel	ATLAS-CONF-2016-007 ⊮	Moriond EW
SUSY	Conference Note	Direct stop production in the 2-lepton channel	ATLAS-CONF-2016-009	Moriond EW
SUSY	Paper	Search for SUSY in the 2 same-sign lepton and 3 lepton channels	arXiv:1602.09058	Moriond EW
SUSY	Paper	Search for SUSY with large jet multiplicities and MET	arXiv:1602.06194	Moriond EW
Exotics	Conference Note	lepton+jets TeV-gravity	ATLAS-CONF-2016-006 ⊮	Moriond EW
Exotics	Conference Note	Z+gamma resonances	ATLAS-CONF-2016-010	Moriond EW
Exotics	Conference Note	Search for vector like quarks in lepton+jets	ATLAS-CONF-2016-013	Moriond EW
Exotics	Conference Note	Search for high mass ttbar resonances	ATLAS-CONF-2016-014	Moriond EW
Exotics	Conference Note	HH->4b search	ATLAS-CONF-2016-017	Moriond EW
Exotics	Conference Note	Search for resonances in diphoton events	ATLAS-CONF-2016-018	Moriond EW
Standard Model physics	Paper	Measurement of charged particle multiplicities	arXiv:1602.01633 _ଔ	Moriond EW

http://twiki.cern.ch/twiki/bin/view/AtlasPublic/Winter2016-13TeV

PHYSICS HIGHLIGHTS: INCLUSIVE CROSS-SECTIONS

PHYSICS HIGHLIGHTS: SEARCHES

➤ 13 TeV proton-proton CM energy → large cross-section increase for high-mass states!

- Presented in December, event selection similar to SM Higgs:
 - ► 2 photons, $E_T/m_{\gamma\gamma}$ > 0.4, 0.3
 - ► p_T-dependent isolation, purity ~90%
- Bkg fit: simplest functional form chosen that minimizes spurious signal in bkg-only simulation
- Excess found in diphoton mass spectrum (search optimized for scalar resonance)
 - local significance 3.6σ (3.9σ) for narrow
 4 MeV (45 GeV) width
- Global significance 2.0σ (2.3σ)
 S. Majewski, Univ. of Oregon

- Presented in December, event selection similar to SM Higgs:
 - ► 2 photons, $E_T/m_{\gamma\gamma}$ > 0.4, 0.3
 - ► p_T-dependent isolation, purity ~90%
- Bkg fit: simplest functional form chosen that minimizes spurious signal in bkg-only simulation
- Excess found in diphoton mass spectrum (search optimized for scalar resonance)
 - local significance 3.6σ (3.9σ) for narrow
 4 MeV (45 GeV) width
- Global significance 2.0σ (2.3σ)
 S. Majewski, Univ. of Oregon

- (new!) spin-2 analysis w/ looser selection:
 - ► 2 photons, each with $E_T > 55$ GeV
 - uses Randall-Sundrum graviton as kinematic benchmark
 - dimensionless coupling k/\overline{M}_{pl} : 0.01-0.3 k = curvature scale of extra dimension
- ► Most significant excess in diphoton mass spectrum at $k/\overline{M}_{pl} = 0.2$, $\Gamma = 48$ GeV
 - > local significance 3.6σ
- Global significance 1.8σ

➤ If the bump is a resonance, what can other channels tell us?

1. $S \rightarrow ZZ, \gamma Z$: a must implied by $S \rightarrow \gamma \gamma$. 2. $S \rightarrow W^+W^-$ (or correlations of 1) would tell that $SU(2)_L$ is involved. 3. $S \rightarrow hh$ (or correlations of 1,2) would tell that H is involved. 4. $S \rightarrow t\bar{t}, b\bar{b}, \dots$ DM,? would point to different directions.

A. Strumia, Moriond EW 2016

(also an outline for the flurry of searches I will present next)

PHYSICS HIGHLIGHTS: ZY RESONANCE SEARCH

- 2 same-flavor, opposite sign electrons or muons consistent with Z (±15 GeV)
- ► $\epsilon(pp \rightarrow X \rightarrow Z\gamma)$: 1.9-2.9%

- 1 trimmed, large-R jet with
 p_T > 200 GeV and within
 ±15 GeV of Z boson mass
- ► $\epsilon(pp \rightarrow X \rightarrow Z\gamma): 7.7-11\%$

ATLAS-CONF-2016-010 PHYSICS HIGHLIGHTS: ΖΥ RESONANCE SEARCH

Iargest deviation from background: 2σ @ 350 GeV

► observed limits range from 295 fb @ $m_X = 340$ GeV to 10 fb @ $m_X = 2.15$ TeV

PHYSICS HIGHLIGHTS: ZZ RESONANCE SEARCHES

- ► searches for heavy Higgs-like boson (or RS graviton, or heavy vector triplet) in $ZZ \rightarrow \ell\ell\ell\ell$, $\ell\ell qq$, $\ell\ell vv$ final states
- high-mass signal regions include merged jets
- (new!): intermediate mass range analysis includes merged and resolved signal regions

PHYSICS HIGHLIGHTS: WZ/WW RESONANCE SEARCHES

- ► WZ/WW $\rightarrow \ell \ell q q$, $\ell v q q$, v v q q, q q q q
- Results interpreted in terms of heavy vector triplet model
 (8 TeV signal: extended gauge model, excluded 1.3-1.5 TeV)
- ➤ Data excesses (2-2.5σ) at ~ 2 TeV in Run 1 not confirmed, more data needed to (dis-)prove them

ATLAS-CONF-2016-014

PHYSICS HIGHLIGHTS: TTBAR RESONANCE SEARCHES

- ATLAS
- e/µ+jets, dedicated isolation variables, large-R jet for top tagging
- narrow-width top-color Z', $\Gamma/m=1.2\%$
- not yet stronger than full combination of 0L, 1L, 2L channels from 8 TeV

S. Majewski, Univ. of Oregon

PHYSICS HIGHLIGHTS: GLUINO SEARCHES

- ➤ For m_{g̃} ~ 1.5 TeV, the production crosssection increase from 8 to 13 TeV is 35!
- Many signal regions depending on jet multiplicity (2-10) and #b-tagged jets

sensitivity also to squark production

16

DETECTOR PREPARATIONS FOR 2016 RUN

- Year-end technical stop: ATLAS subsystems performed repairs and upgrades, both sides of the detector were opened
- ► U.S. groups integral to all subsystems

YEAR-END TECHNICAL STOP ACTIVITIES

Inner Detector

- successful first year for IBL, new innermost pixel layer installed at R=3.3 cm from beam
 - low-voltage current increase due to irradiation, close to safety limit; will run at 15°C at start of 2016

run

 transition radiation tracker (TRT) gas leaks require calibration and tuning of gas system, configuration of xenon + argon finalized

IBL insertion May 2014

19

YEAR-END TECHNICAL STOP ACTIVITIES

- Calorimeters
 - ► Tile (hadronic) fixed 2 dead modules, now 100% operational
 - Liquid Argon: fixes for smoother running
 - completed installation of current-controlled high voltage modules in hadronic end cap
 - ► LAr purity monitoring found to be correlated with "noise bursts" in the detector; plan to only run purity monitoring outside of physics data-taking

S. Majewski, Univ. of Oregon

20

YEAR-END TECHNICAL STOP ACTIVITIES

- Muon systems: mostly standard maintenance
 - Thin-gap chamber replacement
 - improvements to cathode strip chamber readout system firmware
 - fixes of gas leaks, front-end electronics, and alignment sensors for monitored drift tubes
 - repairs of leaks in resistive-plate chamber gas inlets
- Forward detectors
 - New ATLAS Forward Proton detector (1 arm) installed @ 220 m from interaction point to study diffractive processes

S. Majewski, Univ. of Oregon

YEAR-END TECHNICAL STOP ACTIVITIES

- C-side opening: endcap toroid magnet bellows for current feedthrough
 - ► likely happened in 2013
 - current leads not damaged
 - original bellows covered to mitigate failure risk

Location at top of ECT-C

YEAR-END TECHNICAL STOP ACTIVITIES

- A-side opening (unplanned): Tile calorimeter cooling system leak started Feb 8th, impacting 12 sectors
 - system runs at negative pressure;
 leak caused air to enter circuit and
 increase pressure to 1 Bar
 - problem (wrong connector) quickly found and fixed after opening on Feb 15th
 - parasitically, other Tile channels fixed and LAr front-end board replaced (optical transmitter)
 - crane error (by 19 mm) caused some cable damage upon opening; repaired within one day

S. Majewski, Univ. of Oregon

Discovered small dimple and scratches on C-side beam pipe bellows; suspect

- incorrect tooling used to compress bellows
- initial tests found no leak, but to be safe, collar/clamp installed -

YEAR-END TECHNICAL STOP ACTIVITIES

► After A-side opening issue, CERN vacuum ctromagnetic Calorim group inspected both A & C sides

S. Majewski, Univ. of Oregon

24

PREPARING FOR 2016...

- ► Trigger/DAQ:
 - trigger menu optimized for 2016 high pileup running conditions
 - ► FTK (full-scan tracking at 100 kHz) to be commissioned for the barrel in 2016; 65nm CMOS chip delivered to CERN
- ► Reprocessed 2015 data (2 billion events) w/ same reconstruction as 2016 data within 2 weeks

reconstruction improvements:

Iumiblock IBL/pixel alignment

► local occupancy measurement

► improved tau ID & flavor-

Reprocessing, User analysis

using TRT

tagging

PREPARING FOR 2016...

Side C opening for beampipe safety \rightarrow ~1 week behind (previous version of) schedule

PREPARING FOR 2016...

- Impressive suite of searches and measurements based on 2015 dataset
 - ATLAS has submitted >500 papers on collision data to peer-reviewed journals
- Year-end technical stop activities complete, ATLAS datataking restarted, switched to 24-hour operation (beam splashes on 25 March!)
- Stable beams expected end of April
- LHC outlook for 2016: peak luminosity 1x10³⁴ cm⁻² s⁻¹, 25 fb⁻¹ delivered

ADDITIONAL SLIDES

Торіс	Document type	Short title	Reference and Link	Release conference	
Standard Model physics	Paper	Measurement of the ZZ Production Cross Section	arXiv:1512.05314	End of Year Event (15th Dec)	
Higgs physics	Conference Note	Higgs 4-lepton cross-section measurement	ATLAS-CONF-2015-059	End of Year Event (15th Dec)	
Higgs physics	Conference Note	Higgs 2-photon cross-section measurement	ATLAS-CONF-2015-060	End of Year Event (15th Dec)	
Higgs physics	Conference Note	Search for MSSM Higgs decays to tautau	ATLAS-CONF-2015-061	End of Year Event (15th Dec)	
Higgs physics	Conference Note	Higgs cross-section combination	ATLAS-CONF-2015-069 ₫	End of Year Event (15th Dec)	
SUSY	Conference Note	Search for SUSY with events with 0-leptons, jets and MET	ATLAS-CONF-2015-062	End of Year Event (15th Dec)	
SUSY	Conference Note	Search for sbottom with two b-jets and MET	ATLAS-CONF-2015-066	End of Year Event (15th Dec)	
SUSY	Conference Note	Search for gluino-mediated stop and sbottom with events with b-jets, jets and MET	ATLAS-CONF-2015-067	End of Year Event (15th Dec)	
SUSY	Conference Note	Search for SUSY with events with 1-lepton, jets and MET	ATLAS-CONF-2015-076	End of Year Event (15th Dec)	
SUSY	Conference Note	Search for SUSY with events with 0-leptons, multijets and MET	ATLAS-CONF-2015-077	End of Year Event (15th Dec)	
SUSY	Conference Note	Search for SUSY with events with two same-sign leptons, jets and MET	ATLAS-CONF-2015-078	End of Year Event (15th Dec)	
SUSY	Conference Note	Search for SUSY with events with two opposite-sign leptons, jets and MET	ATLAS-CONF-2015-082	End of Year Event (15th Dec)	
B-physics and light states	Conference Note	Studies of B+ mass performance	ATLAS-CONF-2015-064	End of Year Event (15th Dec)	
Top physics	Conference Note	ttbar+jets cross-section measurement	ATLAS-CONF-2015-065	End of Year Event (15th Dec)	
Top physics	Conference Note	t-channel single top cross-section measurement	ATLAS-CONF-2015-079	End of Year Event (15th Dec)	
Exotics	Paper	Search for new phenomena with photon+jet events	arXiv:1512.05910	End of Year Event (15th Dec)	
Exotics	Conference Note	Search for new physics in the lepton+MET channel (W')	ATLAS-CONF-2015-063	End of Year Event (15th Dec)	
Exotics	Conference Note	Search for diboson resonances in the MET+jet channel	ATLAS-CONF-2015-068	End of Year Event (15th Dec)	
Exotics	Conference Note	Search for new physics in the dilepton channel (Z')	ATLAS-CONF-2015-070	End of Year Event (15th Dec)	
Exotics	Conference Note	Search for diboson resonances in the Ilqq channel	ATLAS-CONF-2015-071	End of Year Event (15th Dec)	
Exotics	Conference Note	Search for new physics with LFV decays to e+mu	ATLAS-CONF-2015-072	End of Year Event (15th Dec)	
Exotics	Conference Note	Search for diboson resonances in fully hadronic channels	ATLAS-CONF-2015-073	End of Year Event (15th Dec)	
Exotics	Conference Note	Search for diboson resonances in W/Z+Higgs channels	ATLAS-CONF-2015-074	End of Year Event (15th Dec)	
Exotics	Conference Note	Search for diboson resonances in the Inqq channel	ATLAS-CONF-2015-075	End of Year Event (15th Dec)	
Exotics	Conference Note	Search for dark matter in the MET+W/Z channel	ATLAS-CONF-2015-080	End of Year Event (15th Dec)	
Exotics	Conference Note	Search for new physics decaying to two photons	ATLAS-CONF-2015-081	End of Year Event (15th Dec)	
Exotics	Paper	Search for new physics with multi-jet signatures	arXiv:1512.02586	End of Year Event (15th Dec)	
Exotics	Paper	Search for new physics in dijet mass and angular distributions	arXiv:1512.01530	End of Year Event (15th Dec)	

<u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/December2015-13TeV</u>

PHYSICS HIGHLIGHTS: TOP CROSS SECTIONS

YY mass resolution for narrow resonance: 2 GeV - 13 GeV for masses from 200 GeV to 2 TeV

^(c) S. Majewski, Univ. of Oregon ^(d)

- S TeV data re-analyzed with 13 TeV-style photon energy calibration, same selection
- in spin-0 analysis: 1.9σ local @ 750 GeV for Γ/m = 6% (no excess in spin-2 analysis)
- ► for s-channel resonance, σ_{gg} (σ_{qq}) increases by a factor of 4.7 (2.7)

ATLAS-CONF-2015-59, ATLAS-CONF-2015-60, ATLAS-CONF-2015-69 PHYSICS HIGHLIGHTS: HIGGS DISCOVERY CHANNELS

► 13 TeV data analyzed in two discovery channels:

- ► fully inclusive channels, still statistics-limited $N_{4\ell} = 1.0^{+2.3}_{-1.5}$ $N_{\gamma\gamma} = 113 \pm 74(\text{stat})^{+43}_{-25}(\text{sys})$
- combined observed significance: 1.4σ (expected: 3.4σ) compatibility with SM: 1.3σ

DETECTOR STATUS

Oct 2015 (Oct 2012)

Subdetector	Number of Channels	Approximate Operatio	nal Fraction	
Pixels	92 M	98.2%	(95.0%)	
SCT Silicon Strips	6.3 M	98.6%		
TRT Transition Radiation Tracker	350 k	97.3%		
LAr EM Calorimeter	170 k	100%	(99.9%)	
Tile calorimeter	4900	99.2%	(98.3%) → r	10 now
Hadronic endcap LAr calorimeter	5600	99.6%		
Forward LAr calorimeter	3500	99.8%		
LVL1 Calo trigger	7160	100%		
LVL1 Muon RPC trigger	370 k	99.75%		
LVL1 Muon TGC trigger	320 k	100%		
MDT Muon Drift Tubes	357 k	99.7%		
CSC Cathode Strip Chambers	31 k	98.4%	(96.0%)	
RPC Barrel Muon Chambers	370 k	96.6%		
TGC Endcap Muon Chambers	320 k	99.6%	(98.2%)	

DATA QUALITY

Inner Tracker Calorime		neters	Muon Spectrometer				Magnets			
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
93.5	99.4	98.3	99.4	100	100	100	100	100	100	97.8
All Good for physics: 87.1% (3.2 fb ⁻¹) 95.5% in 2012										
Luminosity weighted relative detector uptime and good data quality (DQ) efficiencies (in %) during stable										

Luminosity weighted relative detector uptime and good data quality (DQ) efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at $\sqrt{s}=13$ TeV between August-November 2015, corresponding to an integrated luminosity of 3.7 fb⁻¹. The lower DQ efficiency in the Pixel detector is due to the IBL being turned off for two runs, corresponding to 0.2 fb⁻¹. Analyses that don't rely on the IBL can use those runs and thus use 3.4 fb⁻¹ with a corresponding DQ efficiency of 93.1%.

Some DQ issues will be recovered with reprocessing for 2015+2016 analyses (e.g., use of IBL-off data, LAr noise bursts)

INSERTABLE B-LAYER (IBL)

- During October 2015, observed higher than expected front-end low voltage currents
 - depends on temperature and dose rate
 - origin: NMOS transistor trap defects that are built up at the Si-SiO₂ interface, inducing leakage current
 - known effect, but larger than expected
- Task force launched to study, reproduce in lab
- Work done to make tracking/object ID robust against partial (or full) switch-off

time [days]

TRANSITION RADIATION TRACKER

► Xenon vs. Argon configuration for 2016

YEAR-END TECHNICAL STOP ACTIVITIES

AFP

Additional details of forward detector work:

- ALFA: new electronics, firmware, software for movement system; noisy LVDT (distance measuring device exchanged)
- LUCID: replaced photo multiplier tubes with ²⁰⁷Bi calibrated ones
- ZDC: taken out of the pit for refurbishments;
 will be back for heavy ions

LHC EXPECTATIONS FOR 2016

Energy	6.5 TeV
Bunch spacing	25 ns
Bunch population	~1.2e11
Max bunches/injection	288
Max. number bunches	2748
Nc GPDs	2736
Emittance exit SPS	2.7 mm.mrad
Emittance into SB	3.4 mm.mrad
Beta* GPDs	40 or 50
Crossing angle GPDs	185 or 165

- Plan to run proton-proton through Oct 2016
 - Reasonable lumi expectation:
 25 fb⁻¹
- ► Heavy ion run Nov/Dec
- Mid-Dec: start extended year-end technical stop