

Materials by Design and Condensed Matter Connections to High Energy Physics

Mike Norman

Director, Materials Science Division

PI, Center for Emergent Superconductivity

Argonne National Laboratory

December 8, 2014

Outline

- 1. Low Temperature Superconducting Detectors (TES, etc.)
- 2. Superconducting RF Cavities, Magnets & Undulators
- 3. Wide Band Gap γ -ray Detectors
- 4. Monopoles, Anapoles, Skyrmions, Majoranas & Higgs
- 5. AdS/CFT and Tensor Networks

with special thanks to Val Novosad (TES), Thomas Proslier & Mike Pellin (SRF), Mercouri Kanatzidis (wide band gap), Wai Kwok & Ulrich Welp (SC wires & magnets)

Low Temperature Detectors (Joel Ullom, NIST, Aug. 2012 BES Workshop)

Superconducting Tunnel Junctions (STJs)

- absorption of photon breaks Cooper pairs: $\Delta \simeq 1 \text{ meV}$
- junction formed from pair of superconducting electrodes separated by an insulator
- signal = electronic tunneling across junction
- ~40 pixel measurements from LLNL group, 100 pixels at AIST

Transition Edge Sensors (TESs)

Thermal sensors

Microwave Kinetic Inductance Detectors (MKIDs)

- -pair breaking changes surface
 impedance of superconductor
 -film embedded in μwave resonator
 - UCSB (Mazin) separate absorber

Magnetic MicroCalorimeters (MMCs)

- Deposited energy changes paramagnetic or diamagnetic response
- SQUID sensor sees this as change in flux
- No Johnson noise

Bolometric detector - thermal detector

EM Radiation ____ Temperature Change ____ Electrical signal

It takes time & expertise to make a deployable device

Evolution of CMB TES detectors

Requires new approach for higher focal plane density

Neutrinoless double beta decay with CUORE (The Cryogenic Underground Observatory for Rare Events)

- CUORE is funded by the US (DOE and NSF) and EU (INFN)
- 988 x 750 gram crystals of natural TeO₂ with thermistors
- Future R&D: Better background suppression and particle identification
- "Thermal" + "light" detectors to distinguish between
 0vββ events and α particles
- SC detectors as a candidate technology: ultimate energy resolution, scalable, multiplexing with SQUIDs, thermal and/or optical sensitivity
- Materials with T_c 10-15 mK are needed

D. R. Artusa et al., http://arxiv.org/abs/1407.1094

Scheme of R & D detector activities for CUORE-IHE

Energy discrimination with TES for X-ray scattering

Joel Ullom, NIST, Aug. 2012 BES Workshop

> Will allow for a 100 fold improvement in signal to noise ratio

Improved resolution from superconductor-insulator transition?

transition to superconducting state (TiN)

Superconducting Radio-Frequency (SRF) Cavities

SRF Cavity Needs:

- Higher Gradients, Currents
- Lower operational costs
 - Operating Temperature
 - Dissipation
- Lower Capital Costs Nb, fabrication, etc.

RF electromagnetic field inside the cavity: screening currents -> dissipation -> performance

- Performance limitations: fundamental understanding of dissipation mechanisms
- Atomic Layer Deposition: synthesizing new materials and application to RF cavities

Niobium surfaces are complex and poorly controlled at the nanometer scale

Probe the surface superconductivity (by tunneling, etc.)

A basis to build new cavity layered structures that might allow for transformationally higher field gradients

Gurvevich, Appl. Phys. Lett. (2006)

•Layered structures raise the critical magnetic field at which vortex losses form.

- •ALD allows fabrication with atomic scale precision without regard to the aspect ratio.
- •We need to develop ALD synthetic chemistries for superconducting material growth.

Material science fundamentals

Surface treatments RF testing

Superconductors at Work

Medical MRI Motors, Generators & Wind turbines Transportation MagLev Magnetic Energy Storage

Power Cables, Electric Grid

Fusion Energy

Superconducting RF cavities

Envisioned specifications for technical applications

Application	Operating Field (Tesla)	Operating Temp. (K)	Key requirements	Wire needed per device (kA-m)
Cables	0.01 to 0.1 (ac) 0.1 to 1 (DC)	70 to 77	Low ac losses (ac) High currents (dc)	40,000 to 2,500,000
Wind/Off-shore Generators	1 to 3	30 to 65	In-field I _c	2,000 to 10,000
Transformers	0.1	65 to 77	Low ac losses	2,000 to 3,000
Fault current limiters	0.1	65 to 77	Thermal recovery High volts/cm	500 to 10,000
SMES	2 to 30 T	4 to 50	In-field I_c	2,000 to 3,000
Automotive motors	2 to 5	30 to 65	Low ac losses In-field I _c	500 to 1,000
Aerospace	2 to 5	30 to 50	Light weight In-field I _c	1,000 to 2,000
Magnets/coils	5 to 30	4.2 to 40	In-field I _c	200 to 2,000
MRI, NMR, HEP, Fusion reactors	5 to 30	4.2 K to 30	In-field I _c Long lengths Persistent joints	2000 - 100,000+

Typical operational parameters in various superconductor applications V. Selvamanickam, HTS4 Fusion Workshop, May 26-27, 2011, Karlsruhe, Germany

TARGET 'Sweet spot' for rotating machines and high field magnets 10 MA/cm² at T ~ 30K in several H = 2 – 30 Teslas

Doubling J_c in a Few Seconds with Oxygen Irradiation

2500 fold increase in defect creation: 1x10¹³ O²⁺/cm²

• No reduction in T_c

A. Kayani (WMU)

- Doubling of J_c after 37 sec with a 17 nA beam current
- Largest enhancement in high fields: rotating machinery, transformers, magnets

Viable reel-to-reel manufacturing process

Undulators

Undulators: sources of partially coherent, tunable X-rays commonly used in linear accelerators and storage rings

Based on deflection of relativistic electrons in a periodic magnetic structure

Magnetic deflection parameter K

$$K = 0.93B_0[T]\lambda_u[cm]$$

Emitted wavelength

$$\lambda = \frac{\lambda_u}{2\gamma} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right)$$

After: D. T. Attwood, http://ast.coe.berkeley.edu/sxreuv/

Range of tunability, brilliance of X-ray beam increase with K

Highest possible on-axis magnetic field B₀

Addition of 15% zirconium to MOCVD grown YBCO: Dense array of self-assembled BaZrO₃ nano-rods

V. Selvamanickam (Univ. Houston)

~ 17 nm spacing, ~ 5 nm diameter

Research samples reach the requirements for undulators

effective pinning of extended vortex sections

Possible operation of HTSC at temperatures above 4.2 K

Complex, expensive cryogenics for current NbTi-undulators

Y. Ivanyushenkov (ANL)

~ 10 K: higher cooling power, simpler and cheaper operation

Metal chalcogenide - metal halide hybrid: high density wide band gap materials for γ-ray detection

For example:

 $\mathsf{BiBr}_3\,(\mathsf{E}_{\mathsf{g}} \sim 2.2 \; \mathsf{eV}) + \mathsf{Bi}_2\mathsf{S}_3\,(\mathsf{E}_{\mathsf{g}} \sim 1.1 \; \mathsf{eV}) \xrightarrow{} 2\mathsf{BiSBr}\,(\mathsf{E}_{\mathsf{g}} \sim 1.95 \; \mathsf{eV})$

BiSBr has a high density of 6.7 g/cm³ and a band gap of 1.95 eV

Accomplishments - crystal growth and characterization

- Initiated synthesis and growth experiments in the SbSeX and Hg₃Q₂X₂ (Q = S, Se, Te; X = Cl, Br, I) family of promising materials.
- Hg₃Te₂Br₂ phase possess the highest density in the Hg₃Q₂X₂ family of 7.78 g/cm³ and an optical band gap of 2.5 eV.
- Single crystal growth of SbSeI: 8 mm x 10 mm in dimensions.
- Single crystal growth for Hg₃Te₂Br₂ up to 3 x 3 x 2 mm³ in dimensions.

Single crystals of Hg₃Te₂Br₂ grown by vapor transport (grid is 1 mm)

Kanatzidis & Chung (ANL)

Evolutionary search for new superconductors (FeB series)

Predicted Superconductivity in *oP*10-FeB₄ (15-20K)

Kolmorgorov et al, PRL (2010)

Synthesized and found to have a T_c of 3K (only known "hit" from a materials genome approach)

Gou et al, PRL (2013)

24

A possible search strategy for new superconductors

Yellow – the "metal", Red – the "ligand", Blue, Green – the "spacer"

But an increased T_c leads to a reduced phase stiffness

$$\frac{T_{\phi}}{T_{p}} \propto \frac{n_{s}^{*} v_{F}}{\gamma T_{p}^{2}}$$
$$T_{c} = \min\{T_{\phi}, T_{p}\}$$
$$J_{c} \propto n_{s}^{*} T_{p}$$
$$\gamma = \sqrt{\frac{M}{m}}$$

Beasley, MRS Bulletin (2011)

Envisioned limit 100 Theoretical limit (2G) J_c (MA/cm²) 10 Cabler Transformers Rotatin machines Present performance H = 0T = 77 K0.1 20 0.1 10 40 60 80 100 120 0.01 1 0 H (T) T (K) Decreasing Anisotropy & Increasing Pair Density (Cumulative) T_{c} $n_{\rm s}^*$ X 10 $n_{s}^{*} x_{2}$ $J_{\rm c}$ $T_{\rm p}$ \rightarrow $J_{c}^{_{YBCO}}$ ncreasing Pairing Interaction - Tp 90 K 90 K 90 K 90 K 90 K 1 2 10 (YBCO) 1 72 K 180 K 180 K 180 K 180 K 2 2 4 20 54 K 270 K 270 K 270 K 270 K 3 6 30 3 36 K 180 K 360 K 360 K 360 K

4

4

40

8

Monopoles, Anapoles, Skyrmions, Majoranas and Higgs Welcome to the New World of Condensed Matter Physics

Higgs modes in superconductors and charge density waves

Transfer of weight from SC to CDW Higgs modes with decreasing T in NbSe₂ (Raman scattering)

Measson et al, PRB (2014)

 $\int_{-4}^{-2} \int_{-2}^{0} \int_{2}^{2} \int_{4}^{2} \int_{6}^{8} \int_{1}^{1} \int$

Matsunaga et al, PRL (2013)

CDW order parameter domain creation and annihilation in TbTe₃ as revealed by pump-probe studies (Kibble-Zurek mechanism)

Multipole expansion of magnetic free energy in a solid where m is the magnetic dipole moment; a the magnetic monopole; t the toroidal (anapole) moment; q the magnetic quadrupole

$H_{\text{int}} = -\boldsymbol{m} \cdot \boldsymbol{H}(0) - a(\nabla \cdot \boldsymbol{H})_{r=0} - \boldsymbol{t} \cdot [\nabla \times \boldsymbol{H}]_{r=0}$ $-q_{ij}(\partial_i H_j + \partial_j H_i)_{r=0} - \dots$

+ monopole

- monopole

z anapole

z² quadrupole

Dubrovik & Tugushev, Phys Rep (2000) Di Matteo, J Phys D (2012) Spaldin *et al*, PRB (2013) Toroidal moments have been observed in LiCoPO₄ (used as a cathode in Li-ion batteries!) by optical second harmonic generation

Van Aken et al., Nature (2007)

Magnetic Monopoles in Spin Ice

Leonard: Are you really going to be on NPR?

Sheldon: Yes, they're interviewing me by phone from my office regarding the recent so-called discovery of magnetic monopoles in spin-ices. It's pledge week and they're trying to goose the ratings with a little controversy.

Magnetic Monopole Defects in Artificial Spin Ice imaged with Lorentz TEM

Phatak et al, PRB (2011)

Emergent E₈ Symmetry in an Ising Spin Chain (CoNb₂O₆)

Skyrmions in Co doped FeSi (top) and Sc doped Ba ferrite (bottom) imaged by Lorentz TEM

Yu *et al,* Nature (2010) Yu *et al,* PNAS (2012) A junction between a topological insulator (or a wire with strong spin-orbit coupling) and a superconductor might localize a Majorana mode at their junction

Kitaev, Phys Usp (2001) Fu & Kane, PRL (2008) Lutchyn *et al*, PRL (2010) Oreg *et al*, PRL (2010)

Majorana Fermions in an InSb nanowire on NbTiN?

Topological Quantum Computing by Braiding Majorana Fermions

$$\Psi \mapsto \exp\left(i\frac{\pi}{4}\sigma_z\right)\Psi$$

Kitaev, Phys Usp (2001) Nayak *et al*, RMP (2008) Alicea, RPP (2012) Beenakker, ARCMP (2013)

Holographic Approach - AdS/CFT

Map a strong coupling QFT on the boundary of an AdS₄ space-time to a weak coupling gravity dual in the interior with μ and T determined by a "black brane" at the center

Applications to Condensed Matter Physics (?) (well, there have always been those resistant to change!)

Scalar fields near the "black brane" can condense (holographic superconductivity) leading to a change from $AdS_2 \times R^2 \rightarrow AdS_4$

This change in geometry causes the "light cone" for spinors to open up (plot 2) giving rise to quasiparticles, with a Majorana coupling of the spinors to the scalar opening up a Bogoliubov gap (plots 3 and 4)

Can AdS/CFT help with condensed matter gauge theories?

(slave bosons for Kondo lattice, RVB for cuprates, etc.)

- 1. AdS/CFT large N limit is different from a typical condensed matter physics large N limit
- 2. Condensed matter gauge fields are typically constraint fields

In particular, they do not have a "kinetic" energy (that is, one is at "infinite" coupling)

3. Can we find an AdS dual to such theories?

Nayak, Phys Rev Lett (2000) Lee, Nagaosa, Wen, Rev Mod Phys (2006)

iPEPS simulations of t-J model for doped cuprates (lower variational free energy than fixed node QMC)

U – uniform antiferromagnet (AF) + d-wave superconductor (dSC)
 W5 – modulated AF + dSC + charge density wave (CDW)
 W5AP – modulated AF + antiphase dSC + CDW

Corboz et al, PRL (2014)

Tensor Networks for Lattice Gauge Theories

H – Hilbert space
H_P – physical Hilbert space
D – low energy sector
(area law for entanglement)

Tagliacozzo *et al*, PRX (2014); Rico *et al*, PRL (2014); Buyens *et al*, PRL (2014); Banuls *et al*, JHEP & PoS (2013)