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Executive Summary 

Background and Motivation 

The pursuit of fusion energy has required extensive experimental and theoretical science activities to 
develop the knowledge needed that will enable design of successful fusion power plants. Even today, 
following decades of research in many key areas including plasma physics and material science, much 
remains to be learned to enable optimization of the tokamak or other paths to fusion energy. Data 
science methods from the fields of machine learning and artificial intelligence (ML/AI) offer 
opportunities for enabling or accelerating progress toward the realization of fusion energy by 
maximizing the amount and usefulness of information extracted from experimental and simulation 
output data. Jointly supported by the Department of Energy Offices of Fusion Energy Science (FES) 
and Advanced Scientific Computing Research (ASCR), a workshop was organized to identify Priority 
Research Opportunities (PRO’s) for application of ML/AI methods to enable accelerated solution of 
fusion problems. The resulting “Advancing Fusion with Machine Learning Research Needs 
Workshop,” held in Gaithersburg, MD, April 30 – May 2, 2019, brought together ~ 60 experts in 
fields spanning fusion science, data science, statistical inference and mathematics, machine learning, 
and artificial intelligence, along with DOE program managers and technical experts, to identify key 
PRO’s. 

Priority Research Opportunities 

The goals of the ML workshop were to assess the potential for application of ML/AI methods to 
achieve transformative impacts on FES research, and identify research needs, opportunities, and 
associated gaps in ML and AI areas that would help address fusion energy problems through targeted 
partnerships between fusion scientists and applied mathematicians or computer scientists. 

Seven PROs were identified, including three in each of two broad categories: Accelerating Science, 
and Enabling Fusion (see the PRO summary table). The seventh, cross-cutting, PRO consists of 
research and development to provide computational and database resources that support the 
execution of the other six PRO’s. The PRO’s identified are: 

PRO 1: Science Discovery with Machine Learning includes approaches to bridge gaps in 
theoretical understanding through identification of missing effects using large datasets; accelerating 
hypothesis generation and testing; and optimizing experimental planning to help speed up progress in 
gaining new knowledge. This approach to supporting and accelerating the scientific process itself has 
already proven to be among the most successful applications of ML/AI methods in many fields. PRO 
1 research activities may result in theory-data hybrid models describing such important physics areas 
as tokamak confinement, resistive magnetohydrodynamic stability, and plasma-wall interactions. 
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Priority planning of magnetic confinement experiments can help maximize the effective use of limited 
machine time. 

PRO 2: Machine Learning Boosted Diagnostics involves application of ML methods to maximize 
the information extracted from measurements, enhancing interpretability with data-driven models, 
systematically fusing multiple data sources, and generating synthetic diagnostics that enable the 
inference of quantities that are not directly measured. For example, the additional information 
extracted from diagnostic measurements may be included as data input to supervised learning (e.g. 
classification) methods, thus improving the performance of such methods for a host of cross-cutting 
applications. Examples of potential research activities in this area include data fusion to infer detailed 
3D MHD modal activity from many diverse diagnostics, enhancing 3D equilibrium reconstruction 
fidelity, extracting meaningful physics from extremely noisy signals, and automatically identifying 
important plasma states and regimes for use in supervised learning. 

PRO 3: Model Extraction and Reduction includes construction of models of fusion systems and 
plasmas for purposes of both enhancing our understanding of complex processes and the acceleration 
of computational algorithms. Data-driven models can help make high-order behaviors intelligible, 
expose and quantify key sources of uncertainty, and support hierarchies of fidelity in computer codes 
for whole device modeling. Furthermore, effective model reduction can shorten computation times 
for multi-scale/multi-physics simulations. Work in the areas covered by this PRO may enable faster 
than real-time execution of tokamak simulations, derivation and improved understanding of empirical 
turbulent transport coefficients, and derivation of accurate but rapidly-executing models of plasma 
heating and current drive effects for RF and other sources. 

PRO 4: Control Augmentation with Machine Learning identifies three broad areas of plasma 
control research that will benefit significantly from augmentation through ML/AI methods. 
Control-level models, an essential requirement of model-based design for plasma control, can be 
improved through data-driven methods, particularly where first-principle physics descriptions are 
insufficient. Real-time data analysis algorithms designed and optimized for control through ML/AI 
can enable such critical functions as evaluation of proximity to MHD stability boundaries and 
identification of plasma responses for adaptive regulation. Finally, the ability to optimize plasma 
discharge trajectories for control scenarios using algorithms derived from large databases can 
significantly augment traditional design approaches. The combination of control mathematics with 
ML/AI approaches to managing uncertainty and ensuring operational performance may enhance the 
already central role control solutions play in establishing the viability of a fusion power plant. 
 
PRO 5: Extreme Data Algorithms includes two principal research and development components: 
methods for in-situ, in-memory analysis and reduction of extreme scale simulation data, and methods 
for efficient ingestion and analysis of extreme-scale fusion experimental data into the new Fusion Data 
ML Platform (see PRO 7). These capabilities, including improved file system and preprocessing 
capabilities, will be necessary to manage the amount and speed of data that is expected to be generated 
by the many fusion codes that use first-principle models when they run on exascale computers. In 
particular, the scale of data generation in ITER is anticipated to be several orders of magnitude greater 
than encountered today. ML-derived preprocessing algorithms can increase the throughput and 
efficiency of collaborative scientific analysis and interpretation of discharge data as it is produced, 
while further enhancing interpretability through optimized combination with simulation results. 
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PRO 6: Data-Enhanced Prediction will develop algorithms for prediction of key plasma 
phenomena and plant system states, thus enabling critical real-time and offline health monitoring and 
fault prediction. ML methods can significantly augment physics models with data-driven prediction 
algorithms to provide these essential functions. Disruptions represent a particularly essential and 
challenging prediction requirement for a fusion power plant, since without effective avoidance or 
effects mitigation, they can cause serious damage to plasma-facing components. Prevention, 
avoidance, and/or mitigation of disruptions will be enabled or enhanced if the conditions leading to 
a disruption can be reliably predicted with lead time sufficient for effective control action. In addition 
to algorithms for real-time or offline plasma or system state prediction, data-derived algorithms can 
be used for projection of complex fault and disruption effects for purposes of design and operational 
analysis, where such effects are difficult to derive from first principles. 

PRO 7: Fusion Data Machine Learning Platform constitutes a unique cross-cutting collection of 
research and implementation activities aimed at developing specialized computational resources that 
will support scalable application of ML/AI methods to fusion problems. The Fusion Data Machine 
Learning Platform is envisioned as a novel system for managing, formatting, curating, and enabling 
access to fusion experimental and simulation data for optimal usability in applying ML algorithms. 
Tasks of this PRO will include the automatic population of the Fusion Data ML Platform, with 
production and storage of key metadata and labels, as well as methods for rapid selection and retrieval 
of data to create local training and test sets. 

Foundational Activities and Conclusion 

In addition to these seven PROs, a set of foundational activities and resources were identified as 
essential to the execution of effective ML/AI research that would address fusion problems. These 
foundational activities and resources include experimental fusion facilities and ongoing research, 
advances in theoretical fusion science and computational simulation, high performance and exascale 
computing resources, established and supported connections among university, industry, and 
government expert groups in the relevant fields, and establishing connections to ITER and other 
international fusion programs. 

The set of high-impact PROs identified in the Advancing Fusion with Machine Learning Research 
Needs Workshop, together with the foundational activities highlighted, will significantly accelerate and 
enhance research towards solving outstanding fusion problems, helping to maximize the rate of 
knowledge gain and progress toward a fusion power plant. 
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Summary of Priority Research Opportunities identified in Advancing Fusion with Machine 
Learning Research Needs Workshop 
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Section I   
Introduction 

I.1.1 Background and Motivation 

Dealing with all aspects associated with the generation, movement, and analysis of large sets of data 
(“big data”) has emerged as a critical issue for fusion and plasma science research. This need is driven 
by new modes and opportunities of research coupled with the emergence of more powerful 
computers, and has led to rapid growth in the adoption of artificial intelligence (AI) techniques and 
methodologies, including Machine Learning (ML), in the research areas supported by the Department 
of Energy (DOE) Office of Science (SC) program in Fusion Energy Sciences (FES). Examples of big 
data science drivers for FES include: 

• Collaborations by U.S. scientists on a new generation of overseas superconducting fusion 
experiments whose pulse lengths are at least an order of magnitude longer than those of current 
experiments and with additional diagnostic capabilities, leading to a considerable increase of the 
volume of experimental data, culminating with the anticipated operation of the world’s first 
burning plasma experiment – ITER – in 2025; 

• Increases in the repetition rate of powerful laser systems coupled to x-ray drivers in the area of 
high energy density laboratory plasmas (HEDLP). The upgrade of the Linac Coherent Light 
Source (LCLS) at SLAC will increase the repetition rate from 1 kHz to 1 MHz. Future 
experiments at the Matter in Extreme Conditions (MEC) instrument will have to deal with big 
data acquired at a rate of terabytes per second compared to the current rate of megabytes per 
second. 

• Increases in the fidelity and level of integration of fusion and plasma science simulations needed 
to resolve multiphysics and multiscale problems, which are enabled by advances in high 
performance computing hardware and associated progress in computational algorithms, and 
which are accompanied by orders of magnitude increases in the volume of generated data. This 
need is also expected to increase as the fusion energy sciences program focuses on the 
development of modeling capabilities and preparing to take advantage of the soon-to-be 
available exascale computing systems. 

• The potential of ML methodologies to address critical challenges in fusion energy science, such 
as the prediction of potentially disruptive plasma phenomena in tokamaks. 

• The potential of ML and AI to optimize the performance of fusion experiments using real-time 
analysis of diagnostic data, and through expanded integration of first principles and reduced 
plasma models into advanced control algorithms. 



 

 6 

At the same time, the DOE SC program in Advanced Scientific Computing Research (ASCR) has 
been supporting foundational research in computer science and applied mathematics to develop 
robust ML and AI capabilities that address the needs of multiple SC programs. 

Because of their transformative potential, ML and AI are also among the top Research and 
Development (R&D) priorities of the Administration as described in the July 31, 2018, OMB Memo 
on the FY 2020 Administration R&D Budget Priorities [OMB FY20 Budget], where fundamental and 
applied AI research, including machine learning, is listed among the areas where continued leadership 
is critically important to our nation’s national security and economic competitiveness. 

Finally, the Fusion Energy Sciences Advisory Committee (FESAC), in its 2018 report on 
“Transformative Enabling Capabilities (TEC) for Efficient Advancement Toward Fusion Energy,” 
[FESAC 2018], included the areas of mathematical control, machine learning, and artificial intelligence 
as part of its Tier 1 “Advanced Algorithms” TEC recommendation. 

I.2.1 Purpose of Workshop and Charge 

The fusion and plasma science communities, recognizing the potential of ML/AI and data science 
more broadly, have organized a number of information-gathering activities in these areas. These 
include IAEA Technical Meetings on Fusion Data Processing Validation and Analysis, Scientific 
Discovery through Advanced Computing (SciDAC) project meetings focused on ML, and a mini-
conference on “Machine Learning, Data Science, and Artificial Intelligence in Plasma Research” held 
during the 2018 meeting of the APS Division of Plasma Physics (DPP). However, a need remained to 
assess the potential for ML/AI impacting key research problems in these communities in order to 
identify gaps and opportunities, and derive maximum benefit from synergies. This report describes 
the results of a joint FES/ASCR DOE-sponsored Research Needs Workshop on Advancing Fusion 
with Machine Learning, held April 30 – May 2, 2019, in Gaithersburg, MD. 

The objectives of the workshop were to: 

• Identify areas in the fusion science supported by FES (including burning plasma science / 
materials science, and discovery plasma science) where application of ML and AI can have 
transformative impacts; 

• Identify unique needs, research opportunities, and associated gaps in ML and AI that can be 
addressed through targeted partnerships between fusion and plasma scientists on the one hand 
and applied mathematicians or computer scientists on the other, to broaden the applicability of 
ML / AI solutions across all areas under the FES mission; 

• Identify synergies and leverage opportunities within SC and DOE and also outside DOE, 
including private industry; and 

• Identify research principles for maximizing effectiveness of applying ML methods to fusion 
problems. 

The workshop identified a set of seven Priority Research Opportunities (PROs) that can inform future 
research efforts in ML/AI and build a community of next-generation researchers in this area. Section 
II following describes these PRO’s in detail. Section III describes foundational and supporting 
programmatic activities that are essential to enable effective application of ML/AI methods to 
research areas identified. Section IV provides a summary of key results and conclusions from the 
study. Workshop details are described in Appendix A1. 
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Section II   
Priority Research Opportunities 

The Priority Research Opportunities identified in the workshop and below are areas of research in 
which advances made through application of ML/AI techniques can enable revolutionary, 
transformative progress in fusion science and related fields. These research areas balance the potential 
for fusion science advancement with the technology requirements of the research. Each description 
includes a summary of the research topic, a discussion of the fusion problem elements involved, 
identification of key gaps in relevant ML/AI methods that should be addressed to enable application 
to the PRO, and identification of guidelines that can help maximize the effectiveness of the research 
in each case. 

II.1 PRO 1: Science Discovery with Machine Learning 

The scientific process constitutes a virtuous cycle of data interpretation to generate models and 
hypotheses, application of models to design experiments, and experimental execution to generate the 
data to test hypotheses and revise models. The introduction of ML and AI into the scientific process 
for hypothesis generation and the design of experiments promises to significantly accelerate this cycle. 
Traditionally, bottlenecks in the scientific process have included insufficient data, insufficient access 
to experimental facilities, and the speed at which data can be analyzed to generate revised models and 
the next hypotheses. Machine learning has already demonstrated promise in accelerating the analysis 
of data and the generation of data-driven models (e.g. [Moosavi 2019, Gopalaswamy 2019]), but the 
anticipated increase in our ability to generate data and the latency of human-in-the-loop hypothesis 
generation and experimental design will continue to limit our scientific throughput. The vision of this 
PRO is an integrated process that helps guide, optimize, automate and improve the effectiveness of 
laboratory and numerical experiments, and augments data analysis and hypothesis generation to 
accelerate scientific discovery. 
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Fig. II.1-1. Scientific Discovery with Machine Learning includes approaches to 
bridging gaps in theoretical understanding through the identification of missing effects 

using large datasets; accelerating hypothesis generation and testing; and optimizing 
experimental planning to help speed up progress in gaining new knowledge. 

II.1.1 Fusion Problem Elements 

The ultimate goal of plasma confinement research is the attainment of the conditions needed for 
sustained, controlled fusion. Unfortunately, the high-dimensional space of parameters describing 
possible plasma confinement conditions makes the optimization of performance difficult, and our 
incomplete understanding of the many competing physical processes further hampers our progress. 
The scientific process of making a hypothesis, performing experiments to test it, and improving the 
understanding of the underlying physics based on the results is well established. However, in fusion, 
performing experiments is often costly and rare, and although experimentation is guided by 
simulations and physics knowledge, the characteristic time scale of each cycle of the scientific process 
can be weeks to years. The ability to prioritize and plan experiments in order to maximize potential 
knowledge gain and optimize the effectiveness of costly operations can significantly accelerate 
convergence toward viable fusion energy. Integration of human assessments and statistical inference 
from data mining has accelerated progress in the confinement of merged compact toroid plasmas 
[Baltz 2017]. Machine learning approaches applied to design, selection, and steering of tokamak 
experiments hold promise for similar advances in key plasma performance metrics. 

The process of science discovery in fusion (and beyond) is frequently challenged by gaps between the 
current understanding of first principles and the observed behavior of experimental systems. Machine 
learning methods can help bridge such gaps by identifying aspects of missing physics and producing 
hybrid models that can be used in both guiding experiment and completing theory. Gaps in 
understanding in fields ranging from plasma transport theory to resistive MHD instabilities may 
benefit from such approaches. 

Progress could also be greatly accelerated if analysis and interpretive simulation could be performed 
in closer to real time. By building data-driven models based on prior experiments, existing simulations, 
and incoming experimental results that could be refined iteratively, we could more efficiently explore 
the space of possible plasma confinement conditions. Experimentalists would be able to make better 
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use of the limited facility availability by learning on the fly and adjusting their experimental conditions 
with greater speed and intent. By taking a step further and incorporating AI into the process, 
experimentation could be accelerated even more through the freedom of intelligent agents to pose 
new hypotheses based on the entirety of available data and even to run preliminary experiments to 
further aid experimentalists. 

II.1.2 Machine Learning Methods 

ML and related fields, like data mining, provide methods for classification, regression, clustering, 
feature identification, and dimensionality reduction. Fusion experimental campaigns could benefit 
greatly from the ability to automatically classify or cluster experimental results; build predictive models 
from data that can be interrogated to identify fruitful future directions for experiments; identify 
features or anomalies that correlate with improved fusion performance; and identify lower 
dimensional (invariant manifold) structure in high dimensional data. 

For example, random forest algorithms have been applied to the development of porous materials to 
identify effective input variables and accelerate progress toward desirable performance [Moosavi 
2019]. Deep learning techniques have also amplified small signals in large datasets to illuminate 
correlations and trends otherwise not visible [Slon 2018, Kates-Harbeck 2019]. 

Machine learning has already exhibited utility in optimizing fusion experiments, with demonstrated 
improvements to fusion performance in both magnetic [Baltz 2017] and inertial [Gopalaswamy 2019] 
confinement approaches. Techniques applied have included algorithms for directing the experimental 
conditions themselves, as well as hybrid ML models that combine simulation and experimental data 
and which were sufficiently generalizable to guide the optimization of new experiments. Statistical and 
reinforcement learning techniques [Minh 2015] for reasoning and planning could be leveraged to take 
these existing efforts to the next level, where intelligent agents aid the experimentalist by taking learned 
features, correlations, etc. and proposing the most beneficial next experiments – perhaps even 
conducting some preliminary experiments without human intervention. 

Beyond accelerating the experimental process, ML techniques could also uncover the physics of the 
gap between physics models and experimental data. The use of hybrid models, i.e., transformation 
layers that map simulation predictions to experimental reality [Gaffney 2019, Kegelmeyer 2018], can 
yield insights into the physics that is missing from simulations [Gopalaswamy 2019]. Separately, one 
could use ML to reveal correlations in the differences between modeled and measured data to discover 
features that provide insight into physics missing in existing models. 

A range of ML algorithms for feature identification and selection and for data reduction will be 
applicable here. These include, for example, Principal Component Analysis (PCA) and its variants, 
random forests, and neural network-based autoencoders, with the objective of identifying correlations 
between identified features. For example, autoencoders could be combined with physically meaningful 
latent variables in order to generate falsifiable hypotheses, e.g., to test scaling laws, which in turn can 
be used to generate experiments. 

II.1.3 Gaps 

Perhaps the biggest obstacle in applying new techniques from data science for hypothesis generation 
and experimental design is the availability of data. First, despite the sense that we are awash in data, in 
reality, we often have too little scientific data to properly train models. In fusion, experimental data is 
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limited by available diagnostics, experiments that cannot be reproduced at a sufficient frequency, and 
a lack of infrastructure and policies to easily share data. Furthermore, even with access to the existing 
data, there is still the obstacle that these data have not been properly curated for easy use by others 
(see PRO 7). 

Beyond building the necessary infrastructure, there are other beneficial circumstances that will help 
apply data science to hypothesis generation and experimental design. First, new sensors and 
experimental capabilities, like high repetition rate lasers, promise to increase the experimental 
throughput rate. ML techniques like transfer learning are also showing some promise in fine-tuning 
application-specific models on the upper layers of neural networks developed for other applications 
where data is abundant [Gaffney 2019, Kegelmeyer 2018]. Finally, fusion has a long history of 
numerical simulation, and there have been recent successes in using simulation data constrained by 
experimental data to build data-driven models [Peterson 2017]. 

 
Fig. II.1-2. A supervised machine learning algorithm trained on a multi-petabyte dataset of inertial 

confinement fusion simulations has identified a class of implosions predicted to robustly achieve high 
yield, even in the presence of drive variations and hydrodynamic perturbations [Peterson 2017]. 

Aside from the availability of data, there is still much work to be done in ML and AI to improve the 
techniques and make their use more systematic. It is well known that many ML methods have low 
accuracy and suffer from a lack of robustness - that is, they can be easily tricked into misclassifying an 
image or fail to return consistent results if the order of data in the training process is permuted 
[Szegedy 2014, Nguyen 2015]. Furthermore, most learning methods fail to provide an interpretable 
model - a model that is easily interrogated to understand why it makes the connections and correlations 
it does [Doshi-Velez 2017]. Finally, there are still open questions as to the best way to include known 
physical principles in machine learning models [Karptne 2017, Raissi 2019, Zhu 2019]. For instance, 
we know invariants such as conservation properties, and we would want any learned model to respect 
these laws. One approach to ensuring this might be to add constraints to the models to restrict the 
data to certain lower-dimensional manifolds. How this can be done efficiently in data-driven models 
without injecting biases not justified by physics is an important open research question that still needs 
to be addressed. 
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II.1.4 Research Guidelines and Topical Examples 

The principal guideline for ML and AI hypothesis generation and experimental design is caution. As 
noted above, there are still many gaps in our knowledge and methods, and skepticism is healthy. Like 
their simulation counterparts, the data-driven models must be verified to ensure proper 
implementation before any attempt at validation is done, and numerical simulation to generate the 
training data can play a role in this process since the numerical model is known. Validation against 
independent accepted results must be done before using the developed techniques to ensure their 
validity; it is important to verify that the correlations learned by (for example) the autoencoder are real 
and meaningful. Finally, the uncertainty of data-driven models, a function of the uncertainty of the 
data and the structure of the assumed model, should also be quantified. 

It is important that the community develops metrics to measure the success and progress for research 
under this PRO related to the new science delivered. Certainly, the rate and quality of data generated 
through ML- and AI-enabled hypothesis generation and experimental design are two important 
metrics that can be quantified. It will be more difficult to measure the transformation of that data into 
knowledge, since this step will still involve human insight and creativity. 

Modern ML and AI techniques are not sufficiently mature to be treated as black box technologies. 
Both the fusion and the data science communities will benefit from close collaboration. In particular, 
since statistics is foundational to both data science and experimental design, there is an urgent need 
to engage more statisticians in bridging the communities, as well as to advance the techniques in ways 
that accommodate the characteristics of the fusion problems. There will also be an immediate need 
for data engineers who can help build the infrastructure to efficiently and openly share data in the 
fusion community, as it exists, e.g., in the high energy density (HED) and climate communities. Such 
an effort by its very nature will require close collaboration between the fusion scientists and computer 
scientists with expertise in data management. 

Data engineering will continue to be a challenge for the fusion community, which has not yet defined 
community standards or adopted completely open data policies. This PRO will require large amounts 
of both simulation and experimental data to have significant impact. These problems are not unique 
to the PRO, however (nor to the fusion community), and will need to be addressed if ML and AI are 
to deliver their full promise for the Fusion Energy Sciences. 

II.2 PRO 2: Machine Learning Boosted Diagnostics 

Accurately and rapidly diagnosing magnetic confinement plasmas is extremely challenging, and will 
become more challenging for burning plasmas and power plants due primarily to increased neutron 
flux and reduced access. Applications of machine learning methods can “boost,” or maximize the 
information extracted from measurements by augmenting interpretation with data-driven models, 
accomplishing systematic integration of multiple data sources, and generating synthetic diagnostics 
(i.e. inference of quantities that are not or cannot be directly measured). Among the additional 
information extractable from diagnostic measurements through machine learning classifiers are 
metadata features and classes that can enable or improve the effectiveness of supervised learning for 
a host of cross-cutting applications (synergistic with a machine learning data platform: PRO 7). 
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II.2.1 Fusion Problem Elements 

The advancement of fusion science and its application as an energy source depends significantly on 
the ability to diagnose the plasma. Thorough measurement is needed not only to enhance our scientific 
understanding of the plasma state, but also to provide the necessary inputs used in control systems. 
Diagnosing fusion plasmas becomes ever more challenging as we enter the burning plasma era, since 
the presence of neutrons and the lack of diagnostic access to the core plasma make the set of suitable 
measurements available quite limited. Hence there is a need in general to maximize the plasma and 
system state information extracted from the available diagnostics. 

 
Fig. II.2-1. The shot cycle in tokamak experiments includes many diagnostic data handling and analysis 

steps that could be enhanced or enabled by ML methods. These processes include interpretation of 
profile data, interpretation of fluctuation spectra, determination of particle and energy balances, and 

mapping of MHD stability throughout the discharge. 

Thorough measurements of the intrinsic quantities (pressure, density, fields) and structures (instability 
modes, shapes) of a fusion plasma are essential for validation of models, prediction of future behavior, 
and design of future experiments and facilities. Many diagnostics deployed on experimental facilities, 
however, only indirectly measure the quantities of interest (QoI), which then have to be inferred (Fig. 
II.2-1). The inference of the QoI has traditionally relied on relatively simple analytic techniques, which 
has limited the quantities that can be robustly inferred. For instance, x-ray images of compressed 
inertial confinement fusion cores are typically used only to infer the size of the x-ray emitting region 
of the core. Similarly, the presence of magnetohydrodynamic (MHD) activity internal to magnetically 
confined plasmas is inferred based on the signatures of this activity measured by magnetic sensors 
located outside the plasma. However, it is clear that these measurements encode information about 
the 3D structure of the core, albeit projected and convolved onto the image plane and thereby 
obfuscated (Fig. II.2-2). The use of advanced ML/AI techniques has the potential to reveal hitherto 
hidden quantities of this type, allowing fusion scientists to infer higher level QoI from data and 
accelerating understanding of fusion plasmas in the future. 
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Fig. II.2-2. Maximizing the information extracted from the large number of diagnostics 
in tokamak experiments requires extensive real-time and post-experiment analysis that 
could be enhanced or enabled by ML methods (PCA = Principal Component Analysis). 

Another example is the challenge of reconstructing three-dimensional plasma equilibrium states in 
tokamaks and stellarators consistent with observed diagnostics. Reconstructed three-dimensional 
plasma profiles have a number of important uses, such as, study of 3D effects (edge-localized modes), 
inputs to disruption codes, real-time feedback controls and others. In the absence of accurate forward 
models, computationally expensive loop refinement techniques [Cianciosa 2017, Seal 2017, Lazerson 
2015] are presently the standard techniques for plasma reconstructions. Advanced ML/AI techniques 
have the potential to not only discover non-trivial and complicated data-driven physics models 
otherwise inaccessible via traditional first-principle methods, but also accelerate the discovery process 
after the models are trained. 

ML can also contribute to mapping from very noisy signals to meaningful plasma behaviors. These 
relationships are non-trivial and analytical forward models constructed using first-principle physics are 
rarely adequate to capture the complicated interplay of device diagnostics on the internal plasma states. 
ML approaches are ideal for these purposes as they do not assume a priori knowledge of inter-
dependencies; on the contrary, the correlations and non-trivial dependencies of the measured 
diagnostics on the internal plasma state are learned from the experimental data directly using ML 
approaches which are designed to discover non-linear inter-dependencies and input-output mappings 
that cannot be constructed via traditional forward-only analytical methods. Since the number of 
diagnostic signals collected during experimental campaigns is very large, systematic ML analysis can 
help to identify the important signals and reduce the size of the critical data stream for a given process. 

Diagnostic data from fusion experiments tends to lack detailed metadata and contextual information 
that would enable automated comprehensive analysis and integration of data from multiple devices. 
For example, tokamak plasma discharges typically transition among several confinement regimes (e.g. 
ohmic, L-mode, H-mode, I-mode…), but the data are not routinely tagged with this information. 
Manual inspection is typically required for such identification. Similarly, many MHD instabilities can 
be excited in the course of an evolving discharge, but these are not routinely identified to tag discharge 
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data for later large-scale analysis. ML methods can be applied to create classifiers for such phenomena, 
enabling complex interpretation of diagnostic signals in real-time, between discharges, or 
retrospectively. 

This research area can make substantial use of simulations to interpret and aid in boosting diagnostics. 
Simulated data can be used to generate classifiers to interpret data and generate metadata, to produce 
models to augment raw diagnostic signals, and to produce synthetic diagnostic outputs. Thus, a key 
challenge related to the fusion problems addressed with this PRO is production of the relevant 
simulation tools to support the research process. 

II.2.2 Machine Learning Methods 

There are a number of existing ML approaches to create new diagnostics out of noisy plasma 
measurement. One approach is to treat desired higher-level diagnostics as hidden random variables 
and then use Bayesian methods to infer the most likely values of these variables given the noisy 
measurements [Svennson 2007]. Such higher-level diagnostics may include physics variables that are 
not well measured by current diagnostics. Having such physics variables is critical to understanding 
complex plasma behaviors. 

In some cases, the forward models that could be used to interpret the measured signals are quite 
expensive, which has the practical impact that reconstructions of the physics parameters is a 
specialized activity and only a small fraction of the data is fully analyzed. Machine learning could aid 
this analysis through generating surrogates for these models, and through amortized inference 
techniques that would accelerate the inverse mapping between observables and the quantities of 
interest. 

Even in traditional analysis of detector data, low resolution and signal quality can be a barrier to 
analysis. Noise reduction and super-resolution techniques can prove invaluable in this sphere. The 
typical workflow for noise reduction and super-resolution is a semi-supervised learning approach, 
where synthetic clean and high-resolution data is created, and downscaled and corrupted in 
preparation for training [Dong 2016]. 

Generation of useful metadata from raw diagnostic signals requires applying varying levels of 
algorithmic sophistication. Some features that are not yet identified in existing datasets can be 
extracted and associated with relevant signals through application of well-defined algorithms or 
heuristics. For example, determination of tokamak plasma temperature edge pedestal characteristics 
can be done with automated heuristic algorithms that identify the location of the pedestal and fit local 
profiles to selected nonlinear functions. Other features may be available in electronically-accessible 
logs or online documentation. However, identification of many features of interest now requires 
human inspection and/or complex processing of multiple signals. For example, Thomson scattering 
spectra often must be examined for validity, high signal-to-noise, and low contamination from other 
light sources before fitting to extract electron temperature and density. Identifying the presence of a 
tearing mode island benefits from human inspection of multiple measurements to correlate magnetic 
signatures, profile measurements, confinement impacts, and other characteristics that reflect mode 
growth. 

Machine learning (ML) methods can enable automation of such complex inspection procedures by 
emulating or replacing the assessment skills of human analysts. Sophisticated mathematical algorithms 
that may execute a series of analyses to arrive at a classification decision can be encapsulated in more 
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efficient, faster executing forms that will enable large-scale application to very large fusion datasets. 
Application of specific classification algorithms can produce critical metadata that in turn will enable 
extensive supervised learning studies to be accomplished. Unsupervised learning methods will also 
allow identification of features of interest not yet apparent to a human inspector. For example, 
tokamak safety factor profiles of certain classes may be signatures of tearing-robust operating states. 
A currently unrecognized combination of pressure profile and current density profile may correlate 
with an improved level of confinement. 

Development and application of such algorithms to US fusion data across many devices provides the 
opportunity to study and combine data from a wide range of plasma regimes, size and temporal scales, 
etc… This capability will accelerate and improve access to machine-independent fundamental 
understanding of relevant physics. 

In addition to formal machine learning methods, sophisticated simulations will be required to produce 
the classifiers and models needed to augment and interpret raw diagnostic signals, as well as to produce 
synthetic diagnostic outputs. A key aspect of the research in this PRO will therefore include 
coordinating the use of appropriate physics model-based simulation datasets with application of 
machine learning tools. 

II.2.3 Gaps 

The fundamental issue in ML/AI boosting of diagnostics is the difficulty of validating the inferred 
quantities and physics phenomena. This emphasizes the importance of formulating the ML/AI 
problem in a way that is physically constrained (i.e. informed by some level of understanding of the 
relevant physical dynamics). Additionally, since the relevant ML models must often be trained on 
simulation data, which are themselves approximations of physical reality, it is crucial to realize that 
any phenomena not accounted for in the simulations cannot be modeled by these methods. 

Specialized tools are needed for the many types of signal processing required for this PRO. These will 
require dedicated effort due to the range of solutions and level of specialization involved (e.g. tailoring 
for data interpretation algorithms for each device individually). Providing the ability to fuse multiple 
signals reflecting common phenomena and verify such mappings, as well as interpreting and fusing 
data from multiple experimental devices, will also be required. 

In particular, enabling cross-machine comparisons and data fusion will require standardizing 
comparable data in various ways. Exploiting previous efforts (e.g. IMAS and the ITER Data Model 
[Imbeaux 2015]), or developing new approaches to standardizing data/signal models is an important 
enabler of data fusion and large scale multi-machine ML analysis. Normalization of quantities to 
produce machine-independence is one approach likely to be important. 

II.2.4 Research Guidelines and Topical Examples 

Effectiveness of research in this PRO can be maximized by: 

• Checking proposed approaches by application to artificial known data such as that produced by 
simulations 

• Developing and confirming methods for identifying physically interesting phenomena and 
screening for unphysical outputs 
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• Developing tools for and generating a large number of simulations to enable boosting of data 
analysis, enable generation of synthetic diagnostics, and contribute to deriving classifiers for 
automated metadata definition 

• Addressing specific needs of fusion power plant designs, with relevant limitations to diagnostic 
access and consistency with high neutron flux impacts on diagnostics. Quantifying the degree to 
which machine learning-generated and/or other models can maximize the effectiveness of 
limited diagnostics for power plant state monitoring and control. 

II.3 PRO 3: Model Extraction and Reduction 

Machine learning methods have the potential to accelerate and, in some cases, extend our simulation-
based modeling approaches by taking advantage of the large quantity of data generated from 
experiments and simulations. In this context, extraction methods may discover models to understand 
complex data generating mechanisms, e.g., development of macroscopic descriptions of microscopic 
dynamics. Similarly, the goal of model reduction is to isolate dominant physical mechanisms for the 
purpose of accelerating computation. These reduced models can be used to accelerate simulations for 
scale bridging, complex multicomponent engineered systems (e.g. tokamaks), uncertainty 
quantification, or computational design. 

II.3.1 Fusion Problem Elements 

Progress in fusion research and engineering relies heavily on complex modeling for analysis and design 
of experiments as well as for planning and designing new devices. Modeling for fusion is particularly 
challenging due to the vast range of coupled physics phenomena and length/time scales. The multi-
scale/multi-physics modeling results in significant computational burdens, leading first-principle 
modeling efforts down the path to exascale computing and motivating the development of reduced 
models to make applications more practical. In order to maintain high fidelity, these reduced models 
are still typically quite computationally intensive, making activities like design optimization and 
uncertainty quantification challenging. Furthermore, gaps in theory exist that make direct application 
of first-principle modeling difficult, leading to the need for empirical models for certain phenomena. 

The broadest fusion modeling approach, referred to as whole device modeling, aims to perform time-
dependent predictive device modeling to assess performance for physics and engineering design, as 
well as to provide interpretive analysis of experimental results, combining models and diagnostics to 
estimate the state of the system during a discharge. These applications require uncertainty 
quantification and often numerical optimization. Due to the range of applications and requirements 
(e.g., scoping future machines, planning a specific plasma discharge, real-time forecasting of plasma 
behavior) there are a variety of accuracy and calculation time requirements, motivating the 
development of model hierarchies: targeting high fidelity accuracy to faster-than-real-time execution. 

Model-reduction aims to lower the computational cost of models while still capturing the dominant 
behavior of the system. This can be used to facilitate scale bridging and time scale separation, e.g., by 
generating fast surrogate models of phenomena at small spatial/temporal scales that can be used 
within models for larger spatial/temporal scales. As an example, in the area of studying plasma-driven 
degradation of divertor and first wall materials in tokamaks, molecular dynamics simulations provide 
insight into microscopic mechanisms and can be linked to ab initio simulations through interatomic 
potentials, which are surrogate models for the energy of the quantum mechanical system 
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 (see Wood 2019). More generally, surrogate models can be used to generate model closures for 
microscopic descriptions. These are conventionally constructed by phenomenological constitutive 
relations. However, coupling to higher fidelity codes through the use of surrogate models could yield 
better, faster solutions to the closure problem. While typical methods of model reduction often require 
careful consideration of the trade-off between computational cost and the accuracy lost by neglecting 
terms in a model, machine learning tools provide efficient methods for fitting and optimizing reduced 
models based on data developed by high fidelity codes, which can in many cases enable reduced 
models with significantly less computational cost while maintaining high fidelity. 

Despite significant advances in theory-based modeling, gaps in understanding exist that could, in some 
cases, be filled with dynamic models or model parameters derived from experimental data. For 
example, empirical models for turbulent transport coefficients, fast ion interactions, and plasma 
boundary interactions could enable locally accurate modeling despite the difficulty of accurately 
modeling these coupled phenomena from first principles. This activity, often referred to as model 
extraction or discovery, can take the form of parametric models, e.g., fitting coefficients of linear 
models, or non-parametric models, e.g., neural networks. Extracted models are a key aspect of the 
scientific method and, interpretability of the resulting model can help guide experiments and physics 
understanding and provide a link between theory and experimental data. 

Building on this idea of model extraction, ML can augment the experiment/theory scientific workflow 
with direct integration of models as a tool to drive innovation by bridging the data heavy experimental 
side and the theory side of the scientific enterprise. Figure II.3-1 depicts this interaction explicitly. 
Note the importance of the iteration between theory and experiment, while this is representative of 
the scientific method, returning to theory from a data driven model is a step often skipped but essential 
to generate knowledge from ML techniques. 

 
Fig. II.3-1. Machine learning-driven models can augment the scientific method by 

bridging theory and experiment. (Image courtesy C. Michoski, UT-Austin). 
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II.3.2 Machine Learning Methods 

Model reduction 

Many of the existing and widely used machine learning tools can be directly applied to model reduction 
in fusion problems. The specific tools to be used will depend on the type of model and the planned 
applications of the reduced model. For models that are approximately static, flexible regression 
approaches like artificial neural networks and Gaussian process regression can readily be used. The 
flexibility of these approaches can enable fitting of available data to an arbitrary accuracy, such that 
the approach is only limited by the availability of high fidelity model data and the constraints on model 
complexity (computational cost to train and/or evaluate). Hyperparameter tuning methods, e.g., 
genetic algorithms and Markov chain Monte Carlo (MCMC) methods, can be used to optimize the 
trade-off of model accuracy and complexity. For high dimensional problems, it may be desirable to 
extract a reduced set of features from the input and/or output space, which can be accomplished with 
methods like Principal Component Analysis, autoencoders, or convolutional neural networks (e.g. 
[Atwell 2001, Hinton 2006, Lee 2018, Kates-Harbeck 2019]). For developing reduced models of 
dynamic systems, approaches to identifying stateful models, including linear state-space system 
identification methods and recurrent neural networks, like long short-term memory networks can be 
used. 

 
Fig. II.3-2. ML techniques applicable to model derivation 1) Sparse regression [Image courtesy of E.P. 

Alves and F. Fiuza, SLAC], and 2) Operator Regression [Patel 2018]. 
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Model Extraction 

Machine learning methods also enable extraction of powerful models from experimental data. By 
performing advanced data analytics, new and hidden structures within the data are extracted to develop 
an accurate modeling framework, e.g. [Iten 2018, Tartakovsky 2018]. This can lead to discovery of 
new physics through direct use of data to determine analytic models that generate the observed 
physics, e.g. [Berg 2019, Pang 2018, Long 2017, Raissi 2018]. In this way parsimonious parameterized 
representations are discovered that minimize the mismatch between theory and data, but also 
potentially reveal hidden physics at play within the integrated multiphysics and engineering systems. 
Machine learning can also provide data-enabled enhancement [Michoski 2019]. In this process, ML 
can be used to take theoretical models and enhance them with data, or experimental data acquisition 
can be enhanced with theory and models. Similarly, data from empirical models can be used to enrich 
theoretical computational models. 

This area presents a number of opportunities for development of novel methods for determining 
governing equations of physical phenomena. The current approach to deriving governing equations 
is to develop a hypothesis based on theoretical ideas. This hypothesis is checked, and challenged 
against experimental data. This process iterates to some informal notion of convergence. Note that 
typically data is not actively integrated in a way that maximizes its utility. Approaches developed in 
response to this PRO will allow the data to accelerate the development of an unknown model. 

The specific models developed will be highly dependent on the end goal of the model itself. For 
instance, there may be cases where the model is used as a black box for making predictions. In this 
instance, the range of veracity of the model would be based on a rigorous verification/validation 
exercise. In other cases, the model will be used to enhance understanding of the underlying 
mechanisms. Here it is important that the model is interpretable so that a governing equation can be 
discovered. In either case, embedding known physics in the learning process as a constraint or prior 
will be essential to guarantee that the developed model represents a physical process. 

While still in its infancy, there has been some limited development of these types of methods. Note 
that one intriguing potential of the methods themselves is that, in principle, they are not limited to a 
particular model that we want to learn (e.g. in some cases they go beyond parameter fitting), and that 
they should be able to extract the unknown operator directly. However, careful validation of the 
recovered model is necessary to guarantee physical consistency and absence of unphysical spurious 
effects. For ease of presentation, we reduce the approaches to two broad classes of methods; symbolic 
and sparse regression, and operator regression, see Fig. II.3-2. 

Sparse regression techniques use a dictionary of possible operators and nonlinear functions to 
determine a PDE or ODE operator that best matches the observations. It may seem that a simple 
regression approach (e.g. linear regression) maybe sufficient for this application. However, this type 
of approach may yield an unwieldy linear combination of operators whose relative combinations must 
be weighed against each other for successful interpretation. The key to sparse regression is to select 
the minimal set of terms that match the observed data. In [Brunton 2016], compressive sensing is used 
to discover the governing equations used in nonlinear dynamical systems.  

An early version of the operator regression is [Rassi 2018] where the authors introduce a Physics 
Informed Neural Networks (PINNs) technology. In this approach, a neural network is trained to 
match observed function values with a penalization of the model residual to ensure the function 
satisfies a known PDE (e.g. the physics constraint), and/or a physical property (e.g. mass 
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conservation). An alternative idea is to learn the discrete form of the operators. In this way the terms 
(coefficient functions, spatial operators, etc…) of the PDE are determined by an ML regression over 
the data. Recent work in [Patel 2018] explore learning the coefficients of a Fourier expansion where 
the coefficients are represented by a neural network. An alternative approach to operator learning in 
the presence of spatially sparse experimental data is based on using Generalized Moving Least Squares 
(GMLS) techniques. These provide, in general, approximations of linear functionals (e.g., differential 
or integral operators) given measurements or known values of the action of the functional on a set of 
points. In the simple case of approximation of a function, where the functionals are Dirac’s deltas, 
given a set of sparse measurements, GMLS does not provide a surrogate (e.g. a polynomial) in a closed 
form, but a tool to compute a value of such function at any given point. Specifically, such surrogate is 
a combination of polynomial basis functions with space-dependent coefficients [Mirzaei 2012]. 

Machine Learned Interatomic Potentials 

Interatomic potentials (IAP) represent an important advance for improving the quality of microscopic 
models used in fusion device simulation. The growth of computational power and algorithmic 
improvements have greatly increased our ability to accurately calculate energies and forces of small 
configurations of atoms using quantum electronic structure methods (QM) such as Density Functional 
Theory (DFT). Nonetheless, the O(N^3) scaling of these methods with the number of electrons 
makes it impractical to apply QM methods to systems bigger than a few hundred atoms. Molecular 
dynamics simulations retain linear scaling in the number of atoms by writing the energy and forces as 
some kind of tractable function of the local atomic environment. Conventional potentials use model 
forms based on particular chemical and physical concepts (Embedded Atom Method, Bond Order). 
These produce compact computationally-efficient force models that provide good qualitative models, 
but they cannot match QM results over a reasonably broad range of configurations. In recent years, 
machine-learning data-driven approaches have emerged as an alternative. A very general set of local 
descriptors, rather than a strict mathematical function, is used as the model form. This means that the 
limiting source of error is the availability of high-accuracy training data rather than the functional form 
that describes the IAP. The ML-IAP approach is especially useful for systems involving strong 
electronic bonding interactions between atoms of different chemical elements, because such 
interactions are difficult to capture using simple IAP models designed for pure elements. A rapid 
exploration of different regression methods (ANNs, GP, parametric regression), different local 
descriptors (Two-body and Three-body Symmetry Functions, Moment Tensors, Fourier Invariants), 
and different kinds of training data has occurred, and many promising approaches have been identified 
(GPA, ANN, SNAP, Moment Tensors). 

One potential approach is to use machine learning techniques to construct these surrogates. Two 
classes of technique have been identified, first a top-down training technique that solves an inversion 
problem for IAP parameters from physical properties. In the bottom-up training, the ML model is 
trained to reproduce higher-accuracy results from a more expensive calculation (e.g. Density 
Functional Theory). 

II.3.3 Gaps 

The approaches discussed above demonstrate that ML offers powerful new tools to tackle critical 
problems in fusion plasma research. Thus, from both the computational modeling, and fusion energy 
science perspectives, this is an exciting new research topic that remains largely unexplored for basic 
plasma and fusion engineering. Ultimately this could prove to revolutionize the process of scientific 
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discovery and improve the fusion communities’ toolset by better integrating data from disparate 
components of an engineered device. Given these opportunities, there are a number of challenges that 
must be addressed. 

An often-neglected task is the analysis of robustness and numerical convergence of the surrogate. As 
in any other discretization technique, we need to make sure that the surrogate 1) matches expected 
results (e.g. linear solution of a diffusion problem for constant source terms), 2) converges to “exact” 
or manufactured solutions as we add training points to the learning set, or increase the complexity of 
the surrogate (e.g. increase the number of layers in a neural network). However, this is an idealized 
scenario; in fact, we cannot guarantee convergence of a neural network with respect to hyper 
parameters. In this regard, a sensitivity analysis to network parameters (e.g., layers, nodes, bias) would 
improve the understanding of how such parameters affect the learning process and interact with each 
other. Further, understanding how the machine learning models are robust with respect to noisy and 
uncertain data will be essential. Quantifying the effect of this model and being able to answer the 
question of “how much data is required” will guide the application of these methods to regimes where 
they can be most effective. 

A way to achieve these goals is to test the ML algorithm on manufactured solutions and compare 
consistency tests and numerical convergence analysis with standard discretization methods, for which 
the behavior is well understood. An even better approach would be a mathematical analysis of the 
algorithm that would provide rigorous estimates of the approximation errors. 

According to the ML method being used, the enforcement of physics constraints is pursued in 
different ways. For PINNs, they are added as penalization terms to the “loss” function so that the 
mathematical model and other physical properties are (weakly) satisfied through optimization. For 
GMLS, the physics can be included in the functional basis used for the approximation, e.g. basis 
functions could be divergence free in case of incompressible flow simulations. In the Fourier learning 
approach conservation properties can be enforced using structural properties when the model form 
is chosen. Simply learning the divergence of the flux, as opposed to the ODE source effectively 
enforces conservation. Additionally, the loss function can also be modified to enforce that physical 
properties are weakly satisfied. 

When the set of model parameters to be estimated becomes large, the learning problem could become 
highly ill-conditioned or ill-posed (as for PDE constrained optimization); this challenge can be 
overcome by adding regularization terms to the loss function (in case of optimization-based 
approach), by increasing the number of training points or improving their quality (e.g. better location). 
Moreover, with larger parameter sets, and physics defined on large 3D and 2D domains, 
computational cost for the training can be a significant factor. These challenges are familiar to PDE-
constrained optimization that can suffer from very long runtimes because of the need to solve the 
underlying PDE multiple times. This is especially relevant for simulations of transient dynamics where 
each forward simulation itself can be a large computational burden. 

Finally, given the intrinsic need for data in generating these models, the quality and quantity of fusion 
science data is critical for designing and applying methods. A critical piece will be to instrument 
diagnostics with good meta data and precisely record the type of data being recorded, the particulars 
of the experiment (see PRO 2, ML Boosted Diagnostics, and PRO 5, Extreme Data Algorithms), the 
frequency of collection, and other relevant descriptions of the data. 



 

 22 

II.3.4 Research Guidelines and Topical Examples 

Guidelines to help maximize effectiveness of research in this area include: 

• Tools must be made for a broad community of users, with mechanisms for high availability, 
open evaluation, cooperation, and communication 

• Explicit focus on assessments and well-defined metrics for: model accuracy, stability and 
robustness, regions of validity, uncertainty quantification and error bounds 

• Methods for embedding and controlling relative weighting on physics constraints should be 
addressed 

• Methods for managing uncertainty when combining data 
• Tools for validation and verification for models 
• Open-data provision for trained models used in publication 
• Incorporation of end-user demands for interpretability, ranges of accuracy 
• Development of benchmark problems for initiating cross-community collaboration 

Candidate topics for model extraction and reduction research include: 

• Extraction of model representations from experimental data, including turbulent transport 
coefficient scalings 

• Generation of physics-constrained data-driven models and data-augmented first-principle 
models, including model representations of resistive instabilities, heating and current drive 
effectiveness, and divertor plasma dynamics 

• Reduction of time-consuming computational processes in complex physics codes, including 
whole device models 

• Determination of interatomic potential models and materials characteristics 

II.4 PRO 4: Control Augmentation with Machine Learning 

The achievement of controlled thermonuclear fusion critically depends on quantifiably effective and 
robust control of plasma operating characteristics to maintain an optimal balance of stability and 
fusion performance. This optimal operating point must be sustained for months in a successful power 
plant, with vanishingly small probability of termination from system faults, plasma fluctuations, and 
plasma instabilities. Such a demanding level of performance and reliability in a mission-critical fusion 
power plant can only be provided by the methods of mathematical control design, which can be 
significantly augmented by machine learning. This research opportunity involves the development of 
ML methods and their application to the derivation of models required for high reliability control; 
development of real-time data analysis/interpretation systems to optimize measurements for control; 
and the design of optimized trajectories and control algorithms. 

II.4.1 Fusion Problem Elements 

For an economical fusion power plant, fusion gain Q – defined as output fusion power divided by the 
input power – has to be large. Unfortunately, any attempts to increase n (density), T (temperature), or 
𝜏" (confinement time), render plasma less stable and we hit stability limits as illustrated in Figure II.4-
1. The achievement of a commercially feasible fusion power plant requires the optimization of the 
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properties of the plasma by controlling it to high performance and away from instabilities which can 
be damaging to the plant. Achieving these two goals (high performance and stable operations) 
simultaneously requires a control system that can apply effective mathematical algorithms to all the 
diagnostic inputs in order to precisely adjust the actuators available to a fusion power plant. 

 
Figure II.4-1. Left: High performance for tokamak is achieved at the edge of the stable 
operation regime shown for a standard tokamak. Right: Various plasma stability limits 

are reached when components of fusion gain (Q), are increased [Zohm 2014]. 

In addition to regulation of nominal scenarios and explicit stabilization of controllable plasma modes, 
proximity to potentially disruptive plasma instabilities must be monitored and regulated in real-time. 
Robust control algorithms are required to prevent reaching unstable regimes, and to steer the plasma 
back into the stable regimes should the former control be unsuccessful. On the rare occasion when 
the plasma passes these limits and approaches disruption, the machine investment must be protected 
with a robustly controlled shut-down sequence. These tasks all require robust real-time control 
systems, whose design is complex. The lack of a complete forward model for which a provably stable 
control strategy can be designed makes the task harder and motivates the use of reduced models that 
capture the essential dynamics of complex physics (e.g., the effect of plasma microturbulence on 
profile evolution). ML-based approaches have great potential in the development of real-time systems 
that incorporate fast real-time diagnostics in decision making and control of long-pulse power plant-
relevant conditions. 

Parallels to many of these challenges may be seen in the development of controllers in autonomous 
helicopters, snake robots, and more recently self-driving cars. In each case, a complex dynamical 
system with limited models and complex external influences has benefited from a variety of ML-based 
controller development [Abbeel 2007, Coates 2008, Tesch 2013, Minh 2013, Silver 2017, Haarnoja 
2018, Kendall 2018]. 

A significant challenge to achievement of effective fusion control solutions is optimal exploitation of 
diagnostics data. In order to extract maximum information from the diagnostic signals available in a 
fusion experiment or power plant, a large volume of data must be processed on the fast time scales 
needed for fusion control. This implies the need for tools for fast real-time synchronous acquisition 
and analysis of large data sets. Sending all the information gathered from available diagnostics to a 
central processing system is not feasible due to bandwidth issues. ML offers methods to analyze the 
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large quantities of data locally, thus sending along only the relevant information such as physics 
parameters or state/event classification (labels). 

Another fusion control problem amenable to ML techniques is the need for appropriate control-
oriented models for control design. Such models reduce the complexity of the representation while 
capturing the essence of the dynamic effects that are relevant for the control application. Plasma 
models created to gain physics insight into fusion plasma dynamics are generally complex and not 
architected appropriately for control design purposes. They usually include a diversity of entangled 
physics effects that may not be relevant for the spatial and temporal scales of interest for control while 
omitting the ones that are. Additionally, the underlying differential equations of these complex models 
are not written in a form suitable for control design. Uncertainty measures, crucial for building and 
quantifying robustness in control design, are also generally missing from such physics models. Plasma 
and system response models for control synthesis in general should have the following characteristics: 

• Should be dynamic models that predict the future state of a plasma or system given the current 
state and future control inputs 

• Should have quantified uncertainty and uncertainty propagation explicitly included 
• Should span the relevant temporal and spatial scales for actuation and control 
• Should be fully automatic in nature (no need for physicists to adjust parameters to converge or 

give reasonable results) 
• Should be lightweight in computational and data needs since they may have to execute often 

with limited real-time resources 

There are several approaches to developing control-oriented models, ranging from completely 
physics-based (white box) models to completely empirical models extracted from input-output data 
(black box models), with models in between that use a combination of some physics and empirical 
elements (grey box models). ML methods can contribute significantly to both generation and 
reduction of control-oriented models, augmenting available techniques for deriving both control 
dynamics and uncertainty quantification. However, recent work [Maboudi 2017] suggests that such 
models need to preserve inherent constraints such as mass or energy conservation requiring the 
development and analysis of appropriate constrained training and inference. 

A third challenge to fusion control with strong potential for application of ML solutions is the design 
of optimized trajectories and control algorithms. High dimensionality, high uncertainty, and 
potentially dynamically varying operational limits (e.g. detection and response to an anomalous event), 
complicate these calculations. For both fusion trajectory and control design, information is combined 
from a wide range of sources such as MHD stability models, empirical stability boundaries (e.g. 
Greenwald limit), data-based ML models for plasma behavior, fluid plasma models, and kinetic plasma 
models. ML techniques are effective in finding optimal trajectories and control variables in these high-
dimensional global optimization problems with a diverse set of inputs, and may thus be advantageous 
for fusion’s unique control challenges. 

Not all fusion or plasma control problems require continuous real-time solutions. A significant 
challenge to sustained high performance tokamak operation is determination of exception handling 
algorithms and scenarios. Exceptions (as the term is used for ITER and power plant design) are off-
normal events that can occur in tokamaks and require some change to nominal control in order to 
sustain operation, prevent disruption, and minimize any damaging effects to the device [Humphreys 
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2015]. Because chains of exceptions may occur in sequence due to a given initial fault scenario, there 
is potential for combinatorial explosion in exception handling actions, complicating both design and 
verification of candidate responses. Data-driven methods may enable statistical and systematic 
approaches to minimize such combinatorial problems. 

II.4.2 Machine Learning Methods 

Potentially effective ML approaches to the fusion control issues addressed in this PRO include: 1) 
Hardware/software combinations for fast analysis of sensor data at the source using ideas of Edge-
computing for ML, custom computing using FPGAs etc.; 2) Analysis of sensor data using ML and 
physics knowledge to abstract physics information in real or near real time; and 3) ML-based reduction 
of the data in various ways to reduce the data transfer. Figure II.4-2 illustrates the elements of PRO 4 
and their relationship to the plasma control design and implementation process. 

 
Figure II.4-2. Schematic of the interactions among different elements 

of PRO 4 and the roles they play in the plasma control process. 

II.4.3 Gaps 

Several gaps exist in capability and infrastructure to enable effective use of ML methods for control 
physics problems. These include availability of appropriate data, and structuring of valuable physics 
codes to enable application to control-level model generation. 
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A key limitation that needs to be addressed to enable ML approaches for control is the annotation 
and labeling of data for application of relevant supervised regression problems. It is anticipated that a 
nearly automated labeling method for many events of interest is going to be developed. However, the 
sensitivity of the ML methods to incorrect labeling may be problematic. Frameworks to sanity check 
the ML mappings against expected physics trends are not necessarily available and need to be 
developed. Depending on the ML representation used, the navigation problem may or may not have 
an effective off-the-shelf algorithm, which might warrant modification of optimization/ML/AI 
approaches. 

Because control design fundamentally relies on adequate model representations, the nature of codes 
used in generating such models sensitively determines the effectiveness of model-based control. In 
the case of data-driven approaches, codes and simulations that provide data for derivation of control-
oriented models must be configured to enable large-scale data generation, and appropriate levels of 
description for control models that respect constraints from physics [Raissi 2019]. The relevant codes 
should also generate uncertainty measures at the same time, a capability missing from many physics 
codes and associated post-processing resources at present. Methods of obtaining control with 
quantified stability margins and robustness for these types of combined continuous and discrete 
systems needs to employed. 

II.4.4 Research Guidelines and Topical Examples 

Effectiveness of research in this PRO can be maximized by: 

• Ensuring research focuses on interpretations of measurements that maximize the specificity of 
control-related phenomena. For example, models or predictive algorithms that provide outputs 
specific to particular instabilities or plasma phenomena to be controlled are most likely to enable 
effective control ([Berkery 2017, Glasser 2018]). 

• Providing variables that quantify relative stability, controllability, or proximity to operational 
boundaries 

• Creating real-time calculable quantities wherever possible, that provide sufficient lead time for 
control action ([Fu 2019]) 

• Linking derived results to specific relevant temporal and spatial scales for actuation and control 
that will lead to well-defined control actions 

• Following machine learning procedures that enable physics constrained extrapolation to 
different operating regimes, system conditions, or fusion devices 

• Developing robust ML training methods with quantified stability margins and uncertainty that 
would perform robustly under the dynamic nature of the fusion plasma 

II.5 PRO 5: Extreme Data Algorithms 

There are two components to the Extreme Data Algorithm priority research opportunity: a) in-situ, 
in-memory analysis and reduction of extreme scale simulation data as part of a federated, multi-
institutional workflow, and b) ingestion into the new Fusion Data ML Platform (PRO 7) and analysis 
of extreme scale fusion experimental data for real- or near-real time collaborative experimental 
research. The former research (a) is required because multiple fusion codes are expected to use first-
principle models on Exascale computers with the size and the speed of the data generation being 
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beyond the capability of the filesystem, rendering post-processing problematic. The workflow 
applying these multiple fusion codes will involve multiple, distributed, federated research institutions, 
requiring substantial coordination (see Fig. II.5-1). The latter research (b) is needed because the 
amount and speed of the data generation by burning plasma devices, such as ITER in the full operation 
DT phase, are anticipated to be several orders of magnitude greater than what is encountered today. 
Intelligent ingestion into the Data ML Platform, not only the storage of data but also for streaming 
and subsequent analysis, can allow rapid scientific feedback from the world-wide collaborators to 
guide experiments, thereby accelerating scientific progress. 

 
Fig. II.5-1. Federated fusion research workflow system among a fusion power plant experiment, 

real-time feedback and data analysis operations, and extreme-scale computers distributed nonlocally.  
A smart machine-learning system needs to be developed to orchestrate the federated workflow,  

real-time control, feature detection and discovery, automated simulation submission,  
and statistically combined feedback for next-day experimental design. 

II.5.1 Fusion Problem Elements 

a) In-situ, on-memory analysis and reduction of extreme scale simulation data 

Exascale fusion codes, studying physics at first-principle level, will produce massive amounts  
(~ exabytes) of data per run. It is well-known that this volume and velocity of data cannot be 
streamed to the filesystem or located on permanent storage for post-processing. Therefore, 
visualizing and interpreting the data as much as possible concurrently from the same HPC memory 
(in-situ), or other network connected HPC memory, is required. Critical data components can be 
identified, reduced, indexed and compressed to fit the storage requirement and to allow for post-
processing. Otherwise, only a small fraction of the data can be written to the file system and moved 
to storage. If this data is not intelligently handled and critical pieces were not saved, it is possible 
that the costly simulation would need to be repeated. Automated AI/ML algorithms need to be 
relied on. 

Moreover, extreme scale first-principle simulations will be needed to predict the evolution of the 
plasma profiles. ML training utilizing the profile-evolution data from simulations on the present 
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tokamaks may not be ideal in predictive profile evolution in possibly different physics regimes, 
e.g. ITER plasmas. ML-analyzed and reduced data on in-situ compute memory must be utilized 
for this purpose as well. 

At the present time, physicists typically save terabytes of data for post-processing, subjectively 
chosen from previous experience. Scientific discoveries are often made from data that are not 
experienced before. Moreover, data for deeper first-principle physics – such as turbulence-particle 
interaction – are often too big to write to file systems and permanent storage. 

Fundamental physics data from extreme-scale high-fidelity simulations can also be critically useful 
in improving reduced model fluid equations. The greatest needs for the improvement of the fluid 
equations are in the closure terms – such as the pressure tensor and Reynolds stress. Fundamental 
physics data from extreme-scale simulations saved for various dimensionless plasma and magnetic 
field conditions can be used to train ML that could lead to improved closure terms. 

b) Extreme scale fusion experimental data for real- or near-real-time collaborative research 

The amount of raw data generation by ITER in the full DT operation phase is estimated to be 2.2 
PB per day (~50 GB/sec), on average, and 0.45 EB of data per year [Pinches 2019]. Clearly, highly 
challenging data storage and I/O speed issues lie ahead. Without developing a proper global 
framework, the ability to efficiently store data for post-processing and also for critical near-real-
time feedback to the control room, will not be possible. The sheer size and velocity of the data 
from ITER or a DEMO burning plasma device may not allow sufficiently rapid physics analysis 
and feedback to the on-going experiment with present methods. Data retrieval and in-depth 
physics study by world-wide scientists may take months or years before influencing the 
experimental planning. 

A well-designed methodology to populate the Fusion Data ML Platform can allow analysis of 
diagnostic data streams for feature detection and importance indexing, reduce the raw data 
accordingly, and compress them at or near the instrument memory. The data also need to be 
sorted, via indexing, into different tier groups for different level analysis. While the reduced and 
compressed data are flowing to the Data ML Platform, a quick and streaming AI/ML analysis can 
be performed. Some scientists could even be working on the virtual experiment, running in parallel 
to the actual physical experiment. Various quick analysis results can be combined into a 
comprehensive interpretation via a deep-learning algorithm for presentation to ITER control 
room scientists. 

Once the reduced and compressed data are in the ML Data Platform, more in-depth studies will 
begin for further scientific discoveries. Many of these studies may utilize numerous quick 
simulations for statistical answers as well as extreme scale computers for a high-fidelity study. New 
scientific understanding and discovery results can be presented to experimental scientists for 
future discharge planning. 

Various AI/ML, feature detection, and compression techniques developed in the community can 
be utilized in the Data ML Platform. The federation system requires close collaboration among 
applied mathematicians, computer scientists, and plasma physicists. Prompt feedback for ITER 
experiments could accelerate the scientific progress of ITER and shorten the achievement time of 
its goal of ten-times more energy production than the input energy to the plasma. 
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II.5.2 Machine Learning Methods 

Both topics require fast detection of physically important features. Therefore, data generation must 
be followed by importance indexing, reduction of raw data, and lossy compression while keeping the 
loss of physics features below the desired level. Both supervised and unsupervised ML methods can 
be utilized. Correlation analysis in the x-v phase space and spectral space can be a useful tool, not 
often discussed in the ML community but amenable to ML approaches. A key goal is to develop ML 
tools to meet the operational (during and between-shot) real-time requirements. Highly distributed 
and GPU-local ML is required. For time-series ML of multiscale physics, utilization of large size high 
bandwidth memory (HBM), address-shared CPU memory, or non-volatile memory-express (NVMe) 
can be beneficial. Close collaboration with applied mathematicians and computer scientists is another 
essential requirement. The wide range of AI/ML solutions developed for other purposes in the 
community should also be utilized or linked to extreme data algorithm solutions as much as possible. 

II.5.3 Gaps 

The main gaps are: i) the identification and development of various ML tools that can be utilized for 
fusion physics and that are fast enough for real-time application to streaming data at or near the data 
source, ii) the development of the Data ML Platform that can utilize ML tools for real-time data 
analysis, and suggest intelligent ML decision from various real-time analysis results, iii) in the case of 
the extreme-scale simulations, the predictive AI/ML capability for accomplishing accurate plasma 
profile evolution on experimental transport time scales based on instantaneous flux information 
(current approaches are mostly based on trained data from numerous simulations on present 
experiments, which may not be applicable for extrapolation into unknown physics regimes, such as 
may be expected in ITER), iv) derivation of training data from a small number of large-scale simulation 
runs, and v) increasing the collaboration among fusion physicists, applied mathematicians and 
computer scientists, which will be critical for the success of this PRO. 

II.5.4 Research Guidelines and Topical Examples 

As discussed in this section, real-time analysis of streaming data will require fast and distributed ML 
and compression algorithms, which necessitates a team effort including fusion physicists, applied 
mathematicians and computer scientists. The International Collaboration Framework for Extreme 
Scale Experiments (ICEE) is an example of such a collaborative research activity [Choi 2013]. These 
types of collaborative multidisciplinary activities need to be expanded and extended to accelerate 
progress. A close collaboration with ITER data scientists is also recommended. 

Some specific examples include: 

• Extracting parameter dependent families of features to enable flexible post-processing 
• The ability to utilize small representative data sets for accurate and robust ML/AI training 
• Robust and verifiable ML to ensure generalizability and stability of detection 
• Parallelizing ML/AI models in a distributed environment for rapid training 
• ML algorithms that can rapidly/accurately detect desires features in-situ for data triage 
• In-situ systems that can generate privileged metadata (e.g. uncertainty, provenance) 
• Addition of first-principle simulation data to the present experimental data for predictive ML on 

ITER and DEMO performance 
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II.6 PRO 6: Data-Enhanced Prediction 

All complex, mission-critical systems such as nuclear power plants, or commercial and military aircraft, 
require real-time and between-operation health monitoring and fault prediction in order to ensure 
high reliability sustained fault-free operation. Prediction of key plasma phenomena and power plant 
system states is similarly a critical requirement for achievement of fusion energy solutions. Machine 
learning methods can significantly augment physics models with data-driven prediction algorithms to 
enable the necessary real-time and offline prediction functions. Disruptions represent a particularly 
essential and demanding prediction challenge for fusion burning plasma devices, because they can 
cause serious damage to plasma-facing components, and can result from a wide variety of complex 
plasma and system states. Prevention, avoidance, and/or mitigation of disruptions will be enabled or 
enhanced if the conditions leading to a disruption can be reliably predicted with sufficient lead time 
for effective control action. 

II.6.1 Fusion Problem Elements 

Fusion power plants must have sophisticated forecasting systems to enable sufficiently early prediction 
of fault conditions to enable prevention or correction of such faults and sustainment of high-
performance operation. Asynchronous plasma or system events that can occur under fault conditions 
and require some active control change are called “exceptions” in ITER and elsewhere. Exceptions 
that threaten steady operation include impending violation of controllability limits, problematic 
variance in plasma or system performance, and failure of key subsystems. While many exceptions can 
be detected as they occur and trigger an “exception handling” response, many must be identified with 
significant look-ahead capability to enable an effective response. The solution envisioned in the ITER 
control forecasting system includes Faster-than-Real-Time-Simulation (FRTS), as well as direct 
projection with reduced models and extrapolation algorithms to predict problematic plasma and 
system states (see Fig. II.6-1) [Humphreys 2015]. It is expected that a viable and economical power 
plant will require similar functions. Many of these predictor algorithms can be enabled or enhanced 
by application of machine learning methods. 
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Fig. II.6-1. The ITER Plasma Control System (PCS) Forecasting System will include 
functions to predict plasma evolution under planned control, plant system health and 

certain classes of impending faults, as well as real-time and projected plasma 
stability/controllability including likelihood of pre-disruptive and disruptive conditions. 

Many or all of these functions will be aided or enabled by application of machine learning methods. 

Nominal, continuous plasma control action (see PRO 4) must reduce the probability of exceptions 
requiring early termination of a discharge to a very low level (below ~5% of discharges) in ITER, and 
to a level comparable to commercial aircraft or other commercial power sources in a fusion power 
plant (<< 10-9/sec). In addition to these levels of performance, effective exception detection, 
prediction, and handling are required to enable ITER to satisfy its science mission, as well as to enable 
the viability of a fusion power plant. The complexities of the diagnostic, heating, current drive, 
magnets, and other subsystems in all burning plasma devices make these kinds of projections highly 
amenable to predictors generated from large datasets. At the same time, the importance of the 
envisioned applications to machine operation and protection place high demands on uncertainty and 
performance quantification for such predictors. 

Prediction of plasma or system state evolution is essential to enable application of controllability and 
stability assessments to the projected state. While FRTS computational solutions may enable such 
projection sufficiently fast integrated/whole device models, this function may be aided or enabled by 
machine learning methods. 
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Prediction of plasma states with high probability of leading to a disruption, along with uncertainty 
quantification (UQ) to characterize both the probabilities and the level of uncertainty in the predictive 
model itself, is a particularly critical requirement for effective exception handling in ITER and beyond 
[ITER Phys Basis 2007]. ITER will only be able to survive a small number of unmitigated disruptions 
at full performance. Potential consequences of unmitigated disruptions include excessive thermal 
loads at the divertor strikepoints, damaging electromagnetic loads on conducting structures due to 
induced currents, and generation of high current beams of relativistic electrons which can penetrate 
and damage the blanket modules. Methods to mitigate disruptions have been and are being tested, but 
a minimum finite response time of ~ 40 ms is inherent in the favored mitigation methods. This means 
that a highly credible warning of an impending disruption is required, with at least a 40 ms warning 
time [Lehnen 2015]. Although invoking the mitigation action will minimize damage to a tokamak, it 
will also interrupt normal machine operation for an appreciable time, and therefore it is highly 
desirable to avoid disruptions, if possible, and only invoke mitigation actions if a disruption is 
unavoidable. This requires knowledge of the time-to-disrupt, along with effective exception handling 
actions that should be taken. 

The principal problems are to determine in real time whether or not a plasma discharge is on a 
trajectory to disrupt in the near future, what is the uncertainty in the prediction, what is the likely 
severity of the consequences, and which input features (i.e. diagnostic signals) are primarily responsible 
for the predictor output. In the event that a disruption is predicted, a secondary problem is to 
determine the time until the disruption event. 

The physics of tokamak disruptions is quite complicated, involving a wide range of timescales and 
spatial scales, and a multitude of possible scenarios. It is not possible now, or in the foreseeable future, 
to have a first-principle physics-based model of disruptions. However, it is believed that most 
disruptions involve sequential changes in a number of plasma parameters, occurring over timescales 
much longer than the actual disruption timescale. These changes may be convolved among multiple 
plasma parameters, and not necessarily easy to discern. Very large sets of raw disruption data from a 
number of tokamaks already exist, from which refined databases can be constructed and used to train 
appropriate AI algorithms to predict impending disruptions. 

II.6.2 Machine Learning Methods 

Prediction of plasma and system state evolution, and in particular probability of key exceptions and 
potentially disruptive conditions, will benefit from a broad swath of machine learning techniques. The 
basic problem is quite general: given the data on the current state and evolutionary history of the 
system, predict the state evolution over a specified time horizon with the times and probabilities of 
key events that may occur up to that horizon. Many approaches to classification and regression have 
potential for successful application. Some state-of-the-art examples include random forests, neural 
networks, and Gaussian processes, although many approaches are applicable. 

Predictions from machine learning models trained on large data sets have been employed in fusion 
energy research since the early-1990s. For example, [Wroblewski 1997] employed a neural network to 
predict high beta disruptions in real-time from many axisymmetric-only input signals, [Windsor 2005] 
produced a multi-machine applicable disruption predictor for JET and ASDEX-UG, [Rea 2018] and 
[Montes 2019] demonstrated use of time series data and explicit look-ahead time windows for 
disruption predictability in Alcator C-Mod, DIII-D, and EAST (see Fig. II.6-2), and [Kates-Harbeck 
2019] demonstrated use of extensive profile measurements in multi-machine disruption prediction for 
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JET and DIII-D with convolutional and recurrent neural networks. Even with the growing use of ML 
predictions for fusion energy science applications, very little attention has been given to uncertainty 
quantification. Due to the inherent statistical nature of machine learning algorithms, the comparison 
of model predictions to data is nontrivial since uncertainty must be considered [Smith, 2014]. The 
predictive capabilities of a machine learning model are assessed using both the model response as well 
as the uncertainty, and both aspects are critical to effectiveness of both real-time and offline 
applications. 

 
Fig. II.6-2. The left two plots compare the performances of machine-specific disruption 

predictors on 3 different tokamaks (EAST, DIII-D, C-Mod). The rightmost plot shows the 
output of a real time predictor installed in the DIII-D plasma control system, demonstrating 

an effective warning time of several hundred ms before disruption. [Montes 2019]. 

Predicting plasma state evolution and the resulting consequences are challenging tasks that typically 
require the use of computationally expensive physics simulations. The task will benefit from machine 
learning approaches developed for making inference with such simulations. Emulation is a broad term 
for machine learning approaches that build approximations or surrogate models that can predict the 
output of these simulations and do so over many orders of magnitude. These emulators can then be 
used to make fast predictions (e.g. what are the consequences of a fault or disruption with some set 
of initial conditions) or solve inverse problems (e.g. what are the initial conditions that likely caused 
some particular disruption). Deep neural networks, Gaussian process, and spline models are state-of-
the-art approaches to emulation. General optimization and Bayesian techniques are used for solving 
inverse problems [Jones 1998; Kennedy 2001; Higdon 2008]. 

II.6.3 Gaps 

Data availability is a noted gap in development of predictor solutions. There are a number of data 
repositories, but no standardized approach to data collection or formatting. Further, much of the data 
is incompletely labelled (see PROs 2 and 7). 

There are a number of major gaps in the mathematical/ML understanding. First, there is no accepted 
approach for incorporating physics knowledge into machine learning algorithms. Current solutions 
are mostly ad hoc and problem specific. Second, there is no unified framework for incorporating 
uncertainty into certain types of models. Models based on probability do this naturally, but other 
approaches, deep neural networks, lack this basis. Ad hoc solutions, such as dropout in neural 
networks, only partially address this issue and may not provide desired results. In addition, there is no 
solid framework for ensuring success in extrapolation. Indeed, this may prove impossible [Osthus 
2019]. 
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A fundamental challenge to application of ML techniques to predictors for ITER and beyond is the 
ability to extrapolate from present devices (or early operation of a commissioned burning plasma 
device) to full operational regimes. The ability to extrapolate classifiers and predictors beyond their 
training dataset and quantify the limitations of such extrapolation are active areas of research, and will 
certainly require coupling to physics understanding to maximize the ability to extrapolate. In addition 
to advances in ML mathematics, careful curation of data and design of algorithms based on physics 
understanding (e.g. use of appropriate dimensionless input variables, hybrid model generation) are 
expected to help address this challenge. 

II.6.4 Research Guidelines and Topical Examples 

Approaches that incorporate uncertainty quantification, such as those built on probabilistic models, 
have particularly strong potential. These predictions will typically be used to make decisions about 
control and mitigation. Well-calibrated prediction probabilities and credible intervals are needed for 
decision makers and algorithm to balance the likelihood of events with the potential severity of 
consequences. 

Approaches that provide some hope of extrapolation are also important. Machine learning models for 
these problems will necessarily be developed on small-scale plasma and tokamak experiments and 
then applied to large scale machines where training data is nonexistent and failure is nearly 
unacceptable. Although extrapolation is always a difficult task, approaches that are physics-informed 
give greater confidence of success. Incorporating physical principles and insight from physics 
simulations is a key ingredient. 

Finally, real-time performance for prediction is an important requirement. The highest impact 
predictor algorithms for real-time application will directly inform control action, e.g. enabling 
regulation of relevant states for real-time continuous disruption prevention or enabling effective 
asynchronous disruption avoidance. Predictors used for triggering of machine protection disruption 
effects-mitigation techniques must ultimately be sufficiently fast and reliable to facilitate this function 
in real-time. 

Any research that addresses the needs and guidelines presented above is worthy of consideration. An 
inclusive approach should be used when considering proposed research topics. Given that, there are 
a number of specific examples that could be envisioned. 

Physics-informed machine learning is a broad area of current research that seeks to incorporate 
physical principles into machine learning approaches. As an example, these principles could be used 
to design the structure of a neural network or the covariance function of a Gaussian process. 
Incorporating physical principles would give greater confidence in the robustness of machine learing 
approaches and their ability to extrapolate. 

Interpretable machine learning is also another broad area of current research. This area seeks to 
develop machine learning methods in which the "reasoning" behind the predictions is understandable 
to the human user. Here again, these approaches should give greater confidence in robustness and 
extrapolations. Interpretable methods may also make disruption mitigation more feasible by providing 
clues to what signals the ML algorithm is using to make prediction. 

Uncertainty quantification is one of the guiding principles and could be a major research topic in this 
area. Many of the most flexible approaches to machine learning, particularly deep neural networks, 
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have poorly developed notions of predictive uncertainty. Research into this area has great potential 
because quantified prediction uncertainty is an important component of the decision-making process 
that the predictions feed. 

Many machine learning methods are not robust to perturbations in inputs and thus give unstable 
predictions. Research, such as the ongoing work in adversarial training, is needed to address this issue 
[Goodfellow 2014]. 

Research into automated feature and representation building is important as it connects with all 
aspects of this problem. First, it makes prediction considerably simpler when the features themselves 
are most informative. It also has the potential to improve robustness and interpretability. 

Bayesian approaches do a good job at quantifying uncertainty, but work is needed to accelerate these 
methods with modern estimation schemes like variational inference [Blei 2014]. This is particularly 
true for Bayesian inversion tasks to solve for things like initial and boundary conditions that are crucial 
in disruption mitigation. 

Multi-modal learning is concerned with machine learning approaches that combine disparate sources 
of information [Jeske 2018] This kind of work is crucial in the disruption problem where data from 
many sensors is combined to make predictions. 

II.7 PRO 7: Fusion Data Machine Learning Platform 

The majority of present 
experimental data repositories 
for fusion are designed for 
simultaneously visualizing 
relatively small amounts of data 
to support both effective 
consumption in the control 
room as well as post-
experiment studies. Existing 
data repositories are small on 
the scale of ITER’s anticipated 
needs and for Exascale 
simulations (there are no such 
general repositories for 
simulation data). ML/AI 
workflows need to read entire 
data repositories rapidly, 
something that present systems 
are not designed to efficiently 
accomplish. Therefore, this 
PRO addresses the need for a Data Platform dedicated to the needs of the Fusion community for 
ML/AI workflows. The vision is that this system (see Figure II.7-1) will provide unified management 
of both experimental and simulation data, deal intelligently with compression, allow rapid parallel and 
distributed access for remote/collaborative use, enable selective access for ML and analytics, and 
contain all the required metadata to maximize the ability to perform large scale supervised learning. 

Figure II.7-1. Vision for a future Fusion Data Machine Learning 
Platform that connects tokamak experiments with an advanced 
storage and data streaming infrastructure that is immediately 

queryable and enables efficient processing by ML/AI algorithms. 
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II.7.1 Fusion Problem Elements 

Currently, the data available to fusion scientists is not ‘shovel ready’ for doing ML/AI. The causes of 
this are varied, but include differing formats, distributed databases that are not easily linked, different 
access mechanisms, and lack of adequately labeled data. In the present environment, scientists 
performing ML/AI research in the Fusion community spend upwards of 70% of their time on data 
curation. This curation entails finding data, cleaning and normalization, creating labels, writing data in 
formats that fit their needs, and moving data to their ML platforms. In addition, ML data access 
patterns perform poorly on existing fusion experimental data ecosystems (including both hardware 
and software) that are designed to support experiments and therefore present a major bottleneck to 
progress. 

In contrast to centralized experimental data repositories, fusion simulation data is typically organized 
by individuals or small teams with no unified method of access or discovery. Therefore, performing 
any ML analysis on simulation data often requires seeking out the simulation scientist or having the 
ML analyst run their own simulations. Making integrated use of data across different simulation codes 
is impractical because of the critical barriers of data mapping and non-interoperability of codes and 
results databases. 

An attempt at standardization of data naming conventions in the fusion community is being addressed 
by the ITER Integrated Modeling and Analysis Suite (IMAS), which provides a hierarchical 
organization of experimental and modeling data. This convention is rapidly becoming a standard in 
the community, adopted by international experiments as well as international expert groups such as 
ITPA. The ITER system provides a partial technical solution for on-the-fly conversion of existing 
databases to the IMAS format, although with significant limitations and inefficiencies. The effort to 
map US facilities experimental data to IMAS is only in the early stages, but it provides a candidate 
abstraction layer that could be used to access data from US fusion facilities in a uniform way. 

Data ecosystems and computing environments are critical enabling technologies for data-driven 
ML/AI efforts. Adherence to high performance computing (HPC) best practices and provisioning of 
up-to-date, modern software stacks will facilitate effective data ecosystems and computing 
environments that can leverage state-of-the-art ML/AI tools [Polyzotis 2017]. At present, no US 
fusion facility provides a computing hardware infrastructure sufficient for the ML use case and 
development of new data ecosystems and computing environments is imperative. 

II.7.2 Machine Learning Methods 

Development of an automatically populated Fusion Data ML Platform for both experimental facilities 
and simulation codes requires proper consideration of the use cases and requirements of AI algorithms 
for fusion applications. These include production and storage of required metadata and labels. As new 
feature definitions or extraction algorithms are defined, re-processing existing data may be necessary. 
Presently, the generation of labels and provenance contexts for data sets is an extremely labor-
intensive effort. As a result, it tends to be forgone for most fusion data, with negative consequences 
for practical application of ML techniques. To address this problem, development of the data platform 
should consider applying ML approaches such as supervised and unsupervised classifiers or surrogate 
model generation as a way to provide automated partial metadata information for the archived data. 
Practically, this should include freely available libraries such as TensorFlow [Abadi 2015], PyTorch 
[Paszke 2017], Keras [Atienza 2018], etc. Such approaches include: 
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• Unsupervised anomaly detection 
• Long-Short-Term Memory (LSTM) time series regression and clustering 
• Convolutional Neural Networks (CNN) for image data 
• Natural Language Processing (NLP) methods to derive labels from user annotations and 

electronic log books 
• Synthesis of heterogeneous data types over a range of time scales 
• ML-based compression of data 

Because there may be no one-size-fits-all solution for storing and accessing fusion data, it is expected 
that efficient retrieval of data will require advanced algorithms to determine the best manner to plan 
execution, much like the query planner in a traditional relational database. This could take the form of 
a heuristic determination, but could also be implemented as an ML algorithm that learns how to 
determine the most efficient access patterns for the data. Still, the development of the Fusion Data 
ML Platform will be founded on a number of general data access patterns upon which more advanced 
data retrieval can be developed. These include, for example, selective access to data sub-regions, 
retrieval of coarse representations, or direct access to dynamic models with adaptive time sampling 
and ranges as well as data with limited (bounded) accuracy. A key characteristic is that in all cases data 
movements should be limited to the information needed, and data transfers should adopt efficient 
memory layout that avoids wasteful data access, which has the potential to penalize performance and 
energy consumption dramatically in modern hardware architectures. 

II.7.3 Gaps 

Today research in Fusion for ML/AI is hampered by incomplete datasets and lack of easy access, both 
by individuals and communities. Current data sets for experimental and simulation data do not have 
sufficiently mature metadata and labeling, which is required for machine learning applications. 
Attaching a label to a dataset is a critical step for using the data, and the label will be task-specific (e.g. 
plasma state is or is not disrupting). Furthermore, there is no centralized and federated data repository 
from which well-curated data can be gathered. This is true for both domestic facilities and simulation 
centers, as well as international facilities. This gap prohibits the use of the large volumes of fusion data 
to be analyzed with ML-based methods. A targeted effort is needed to make it easy to create new 
labeling for existing and future data collection and to be able to index the labeling information 
efficiently. 

Functional requirements and characteristics of gathering simulation data tend to be very different from 
those governing access of experimental data. While most experimental data are available in a structured 
format (e.g. MDSplus), simulation data is often less standardized and frequently stored in user 
directories or project areas on HPC systems. Mechanisms for identifying relevant states of the 
simulation code (e.g. versions, corresponding run setups) are likely required to group simulation 
output from each “era” of the physics contained in that code and input/output formats read and 
written by the code. Ultimately, this is not fundamentally different from experiments, which often 
undergo periodic “upgrades,” configuration changes, or diagnostic recalibrations. In both cases, 
proper interpretation of the data stored in a given file or database requires the appropriate provenance 
information both for proper encoding/decoding and for informed interpretation (e.g., after 
recalibration, the same data may be stored in the same way but should be understood differently). 
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One potential hurdle for producing a large fusion data repository is the incentive to deposit the most 
recent, high quality experimental and simulation data into a data center shortly after data creation. 
There are data protection issues for publication and discovery, maturity and vetting of data streams 
for errors that would need to be re-processed, or potential proprietary status considerations. 
Incentives must be provided for the community to share data in ways that serve both the individual 
and community as a whole. Demonstrating the usefulness for a community-wide data sharing 
platform, and drawing from experience in other communities (e.g. climate science [Rolnick 2019] or 
cosmology), are potential means to address this gap. 

Existing hardware deployments are not designed for the intense I/O and computation generally 
required by ML/AI [Kurth 2018]. Currently most large-scale computing hardware is optimized for 
simulation workloads and heavily favors large parallel bulk writes that can be scheduled predictably. 
This leads to unexpected bottlenecks when creating and accessing the data. This gap needs to be 
addressed for a successful usage of ML/AI science to support fusion research. As a commonly-
encountered co-design problem in which the interaction between the software/algorithmic stack and 
the physical hardware are tightly coupled, this gap should be solvable with approaches that properly 
account for their complementary roles in such use cases. 

II.7.4 Research Guidelines and Topical Examples 

The workshop highlighted several primary research directions that will help the fusion community 
fully exploit the potential of ML/AI technology. This section summarizes several key research 
guidelines for the development of a community Fusion Data ML Platform (see Figure II.7-2). 

 
Figure II.7-2. Unified solution for experimental and simulation fusion data. 

Scalable data streaming techniques enable immediate data reorganization, creation 
of metadata, and training of machine learning models. 
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Data layouts, organization, and quality are fundamental to storing, accessing, and sharing of fusion 
data. While smaller metadata may be stored in more traditional databases, large simulation and imaging 
data require specific work for separate storage to make sure that they do not overwhelm the entire 
solution. Key aspects to consider involve addressing a variety of data access patterns while avoiding 
any unnecessary and costly data movement as demonstrated in the PIDX library for imaging and 
simulation data [Kumar 2014]. For example, access to local and/or reduced models in space, time, or 
precisions should be achieved without transferring entire data that is simplified only after full access. 
The heterogeneity of the data may require building different layouts for different data models. Scaling 
to large data models and collection has to be embedded as a fundamental design principle. Data quality 
will also be an essential research direction since each data model and use case can be optimized with 
proper selection of a level of data quality and relative error bounds. Such a concept should also be 
embedded as a fundamental design principle of the data models and file formats. 

Interoperability with standardized data as it is being pursued under the ITER project is a major 
factor. Unfortunately, the ITER process does not yet fully address the relevant use cases with the 
development of the data management infrastructure. Specific activities will be needed to develop an 
API that is compatible with IMAS and allows effective interoperation while maintaining internal 
storage that is amenable to high performance ML algorithms. 

Interactive browsing and visualization of the data will be a core capability that can enable, for 
example, a user to verify and update labels generated automatically in addition to creating manual 
labels. In addition, ML applications greatly benefit from interactive data exploration capabilities. A key 
advantage is the adjustment and “debugging” of ML models based on the exploration of the data 
involved in different use cases. In fact, this will be a critical enabling technology for the development 
of interpretable models via interactive exploration of uncertainties and instabilities in the outcomes 
based on variations of the input labels [Johnson 2004]. 

Streaming computation and data distribution are capabilities that are at the core of the community 
effort. It can allow local development of modern repositories that can be federated as needed and as 
permitted by data policies without the hurdle of building any mandatory centralized storage. Software 
components will need to be developed to expose the storage and facilitate the development of 
common interfaces (e.g. RESTful API). This would not preclude specific efforts that may require 
more specialized interfaces. Easily deployable and extensible technologies such as Python and Jupyter 
can be used as scripting layers that expose advanced, efficient components developed in more 
traditional languages such as C++ [Pascucci 2013]. 

Transparent data access with authentication are technologies that are essential for practical use in 
a federated environment. Automated data conversion, transfer, retrieval, and potential server-side 
processing are capabilities that can become major performance bottlenecks and therefore need to be 
addressed with a specific focus. Secure data storage, based on variable requirements, must be provided, 
but authentication systems cannot block scientists and engineers from performing their work. 
Similarly, the latencies due to data transfers need to be limited. Server-side or client-side execution of 
queries need to be available and selected intelligently to maximize the overall use of the available 
community infrastructure. 

Reproducibility will be a core design aspect of the data platform. Careful versioning of all the data 
products, for example, will allow the use of the same exact data for verification of any computation. 
Complete provenance tracking of the data processing pipelines will also make sure that the same 
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version of a computational component is used. While absolute reproducibility may lead to extreme, 
unrealistic solutions, the fusion community will need to advocate for proper tradeoffs that allow for 
sufficient ability to compare results over time (e.g., with published and versioned code and datasets) 
while maintaining an agile infrastructure that allows fast-paced progress. 
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Section III  
Foundational Resources and Activities 

Effective large-scale application of machine learning methods to fusion challenges relies on a 
substantial amount of infrastructure, foundational resources, and supporting activities. These include 
experimental fusion facilities and ongoing research in this area; advancement in theoretical fusion 
science and computational simulation; supported connections among university, industry, and 
government expert groups in the relevant fields; and establishing connections to ITER and other 
international fusion programs. 

High performance computing and exascale computing resources underpin virtually all activities 
identified in this report. Continued development of ML/AI based methods will further increase the 
requirements associated with these resources, for example, at NERSC (capacity) and OLCF/ALCF 
(capability). It is difficult to estimate the real future needs, which will often be specific to the 
problem/question at hand. Capacity increases will be critical for low-resolution simulations, while the 
higher resolution ones will require improvements in capabilities. With approaches that are data driven, 
a lot will depend on how much training is done and at what scale. The other drive for the increase in 
computing demands may be simply the ease of application of UQ and design optimization techniques 
that were previously out of reach. 

Because the science acceleration made possible by ML/AI mathematics depends on data-driven or 
derived algorithms, strong experimental programs that produce large quantities of specifically useful 
data are critical to the effort. Close engagement between ML/AI efforts and relevant components of 
experimental programs can maximize the efficiency and effectiveness of ML/AI applications in 
extracting additional knowledge. Efforts to format and curate experimental data at point of generation 
are important for the envisioned Fusion Data ML Platform to best enable use of datasets for large 
scale analysis. 

Specific research programmatic connections between fusion experimental and theoretical programs 
organized around and dedicated to exploiting ML methods are essential to enable effective use of 
these transformational approaches. Close community coordination will be instrumental in ensuring 
data and physics representations are common to experimental efforts and theory/modeling 
community simulations. A focus of combined teams on ML/AI applications with common science 
goals will enhance and exploit synergies available. 

Advancing fusion through ML/data science is a complex enough endeavor that it requires cross-
disciplinary teams of applied mathematicians, machine learning researchers, and fusion scientists. One 
reason is that the disparate tasks of modeling, experimentation, and analysis of data coming from 
experiments and model outputs require an iterative process that may eventually lead to new 
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discoveries. With the increasing emphasis on algorithmic data analysis by researchers from various 
fields, machine learning researchers regularly call for clarifying standards in research and reporting. A 
recent example is the Nature Comment by Google’s Patrick Riley [Riley 2019], which focuses on three 
of the common pitfalls: inappropriate splitting of data (training vs test), inadvertent correlation with 
hidden variables, and incorrectly designed objective functions. Negative effects of such pitfalls can be 
minimized in various ways, all requiring awareness of potential vulnerabilities, and diligence in seeking 
mitigation methods. For example, data splitting into test and training sets typically depends on the 
randomness of the process, but is frequently done in ways that preserve trends and undesirable 
correlations. Splitting in multiple, independently different ways can help limit such problems. 
Consideration of the effects being studied can also help guide a process of data selection that is not 
necessarily random, but specifically seeks to produce appropriate diversity in the data sets. Meta-
analysis of initial training results can serve to illuminate hidden variables that mask the desired effects. 
Iterative approaches that challenge the choice of objective functions and pose alternatives can help 
reduce fixation on objectives that address an entirely different problem from that intended. Higher-
order approaches to help avoid such pitfalls include applying ML methods in teams made up of experts 
in the relevant fusion science areas and experts in the relevant areas of mathematics, and challenging 
results with completely new data generated separately from both training and test suites. 

Fusion energy R&D provides unique opportunities for data science research by virtue of the amount 
of data generated through experiments and computation. Most of the datasets studied and used by 
ML/AI come from non-scientific applications, and so the data produced by FES are unique. The 
computing resources available at the various DOE laboratories provide additional appeal to university 
researchers. 

Direct programmatic connections from ML/AI efforts to the ITER program and other international 
fusion efforts are essential to make best use of emerging data in the coming burning plasma era. In 
addition to ITER, strong potential exists for synergies through program connections with 
international long pulse superconducting devices including JT-60SA, EAST, KSTAR, and WEST. 
Other developing fusion burning plasma designs and devices offering potentially important 
connections include SPARC, CFETR, and a possible US fusion pilot plant. 



 

 43 

Section IV  
Summary and Conclusions 

Machine learning and artificial intelligence are rapidly advancing fields with demonstrated 
effectiveness in extracting understanding, generating useful models, and producing a variety of 
important tools from large data systems. These rich fields hold significant promise for accelerating the 
solution of outstanding fusion problems, ranging from improving understanding of complex plasma 
phenomena to deriving data-driven models for control design. The joint FES/ASCR research needs 
workshop on “Advancing Fusion Science with Machine Learning” identified several Priority Research 
Opportunities (PROs) with high potential impact of machine learning methods on addressing fusion 
science problems. These include Science with Machine Learning, Machine Learning Boosted 
Diagnostics, Model Extraction and Reduction, Control Augmentation with Machine Learning, 
Extreme Data Algorithms, Data-Enhanced Prediction, and Fusion Data Machine Learning Platform. 
Together, these PROs will serve to accelerate scientific efforts, and directly contribute to enabling a 
viable fusion energy source. 

Successful execution of research efforts in these areas relies on a set of foundational activities and 
resources outside the formal scope of the PROs. These include continuing support for experimental 
fusion facilities, theoretical fusion science and computational simulation efforts, high performance 
and exascale computing resources, programs and incentives to support connections among university, 
industry, and government experts in machine learning and statistical inference, and explicit 
connections to ITER and other international fusion programs. 

Investigators leading research projects that strongly integrate ML/AI mathematics and computer 
applications must remain vigilant to potential pitfalls that have become increasingly apparent in the 
commercial ML/AI space. In order to avoid errors and inefficiencies that often accompany steep 
learning curves, these projects should make use of highly-integrated teams including mathematicians 
and computer scientists having high levels of ML domain expertise with experienced fusion scientists 
in both experimental and theoretical domains. In addition to personnel and team design, projects 
themselves should be developed with explicit awareness and mitigation of known potential pitfalls. 
Development of training and test sets in general should incorporate methods for confirming 
randomization in relevant latent spaces, supporting uncertainty quantification needs, and enabling 
strong interpretability where appropriate. Specific goals and targets of each PRO should be well-
motivated by need to advance understanding, development of operational solutions for fusion devices, 
or other similar steps identified on the path to fusion energy. 

The high-impact PROs identified in the Advancing Fusion with Machine Learning Research Needs 
Workshop, relying on the highlighted foundational activities and have strong potential to significantly 
accelerate and enhance research on outstanding fusion problems, maximizing the rate of US 
knowledge gain and progress toward a fusion power plant.
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Appendix I  
Workshop Summary 

AI.1 Approach and Structure of Workshop 

The Research Needs Workshop on Advancing Fusion with Machine Learning was organized around 
topical areas corresponding to key goals in application of machine learning methods. Panels were 
identified for each topical area, with membership consisting of experts in areas of fusion science, 
scientific computing and mathematical methods, and other scientific fields of interest to FES-ASCR. 
Breakout sessions were held for each panel to convene and discuss its topic. Each panel was 
responsible for drafting a section of the workshop final report corresponding to their topical area. In 
general, each panel worked to identify Priority Research Opportunities (PROs) in fusion science and 
technology for the broad area of machine learning (ML) application corresponding to their topical 
area, along with any developments needed in the corresponding ML methods to address those PRO’s. 
The panels also identified guidelines for research toward those PROs which could serve to maximize 
the effectiveness of ML application. For example, the “Controller Design” panel identified key control 
problems in fusion energy science that are well-suited to acceleration or accomplishment with ML 
methods, along with the particular methods and development needed in those methods to enable 
application to control design. Useful guidelines for Control PROs included specific focus on real-
time-compatibility, performance quantification, and ability to integrate with classical design methods. 
Note that each of the panels was coupled to and overlapped to some degree with all of the others. 
The panels were identified to help separate topics and make the identification process manageable by 
panel teams, but these fundamental overlaps remained and had to be recognized in the workshop 
deliberations. 

Topical areas/panels (and abbreviated names for each) included: 

• Science Discovery (Science) 
• Controller Design (Controllers) 
• Model Extraction and Reduction (Models) 
• Prediction, Extrapolation and Uncertainty Quantification (Predictors) 
• Data Collection, Quality, Formatting, Curation (Data) 

Each of these areas, key questions for consideration, and examples of relevant research, are described 
in more detail in the subsections following. 
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AI.2 Workshop Panels 

AI.2.1 Science Discovery 

In the context of the present workshop, the process of “Science Discovery through Machine 
Learning” is intended to refer to application of ML-related methods to determining approximate 
mathematical representations for physical principles, to guiding a process of experimental exploration, 
or to otherwise guiding aspects of a systematic scientific discovery process. Approaches successfully 
applied to other fields of study include accelerating materials development. For example, random 
forest algorithms have been applied to porous materials development to identify effective input 
variables and accelerate progress toward desirable performance [Moosavi 2019]. Deep learning 
techniques have also amplified small signals in large datasets to illuminate correlations and trends 
otherwise not visible [Slon 2018]. Science discovery also includes hybrid learning, an approach which 
seeks to integrate physical models that may be incomplete with data-driven principles to produce a 
more accurate representation of relevant processes. Recent examples include combining results of 
computational models with statistical inference from large experimental datasets to guide laser pulse 
shape design and improve inertial confinement fusion yields [Gopalaswamy 2019]. 

Key questions for consideration in this topic include: 

• What fusion problems can be most effectively addressed and solutions accelerated by application 
of science discovery approaches in ML? 

• What mathematical methods are available and best positioned (and what further development is 
needed) to enable science discovery for fusion problems? 

• In what ways can statistical inference methods be best used to accelerate and enhance fusion 
experimental planning, prioritization, and interpretation, as in large scale pharmaceutical or 
materials testing? 

• What fusion problems can be effectively addressed through hybrid learning methods such as 
combining computational model predictions with inference from large datasets? 

Examples of relevant research in this topical area include: 

• Materials development [Moosavi 2019] 
• Paleontological genome signal amplification [Slon 2018] 
• Laser fusion yield improvement [Gopalaswamy 2018] 
• Cancer science [Kourou 2015] 

AI.2.2 Controller Design 

One of the most successful and relatively recent areas of application in machine learning has been the 
design of controllers for complex dynamic systems, principally in cases for which first-principle 
models are not readily available. Development of autonomous vehicles has included direct derivation 
of control algorithms for key portions of complex multi-tiered systems to accomplish high level 
planning, mission-directed control trajectory generation, and specific actuation of throttles and brakes. 
In addition to design of complete control algorithms, ML methods have also been highly effective in 
generating system response models for use in model-based control synthesis including “optimal” cost 
functional minimization approaches and Model Predictive Control. Reinforcement learning has 
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proven highly effective in direct training of control algorithms and algorithms capable of complex 
tasks such as game playing [Sutton 2018]. 

Key questions for consideration in this topic include: 

• What fusion plasma control problems are most effectively addressed or accelerated by nonlinear, 
data-driven approaches in the ML domain? 

• What machine learning control (MLC) approaches are best suited for solving (appropriate) 
fusion plasma control problems, and what further development is needed to improve the 
effectiveness of such approaches? 

• Can reinforcement learning approaches to control design contribute significantly to solving 
fusion control problems? 

• Can ML methods help address large-scale control problems with tendencies for combinatorial 
or complexity explosion (e.g. exception handling in fusion power plants)? 

Examples of relevant research in this topical area include: 

• Fundamentals of reinforcement learning [Sutton 2018] 
• Autonomous vehicles [Schwarting 2018] 
• Turbulence control [Brunton 2015] 

AI.2.3 Model extraction and reduction 

Model extraction involves deriving a phenomenological model from empirical data. Such a model is 
consistent with the laws of physics but is derived from observed experimental behavior rather than 
first principles. In some cases, a phenomenological model has a mathematical form, such as a linear 
model or an exponential growth curve, for which parameters are estimated to characterize the trend 
in the data. In other cases, the physical relation between quantities must be entirely derived from data 
using a non-parametric method. The field of machine learning includes techniques for both parametric 
and non-parametric model extraction [Baker 2019]. 

Even if an analytic or computational physics model is available, model extraction is often employed 
for model reduction. Computer codes representing complex physics phenomena are typically 
computationally expensive. Model reduction aims to lower computational cost while still capturing 
the model behavior. A machine learning-based extracted model can serve as a surrogate model—or, 
a model of a model—which characterizes the empirical behavior of the physical process in a simplified 
and less computationally-intensive manner. In this panel area, we focus on physics models extracted to 
accelerate computational processes or aid in real-time interpretation of data rather than control-level 
and control-description models identified specifically for control design purposes (“Controller 
Design” panel). 

Key questions for consideration in this topic include: 

• What fusion problems can be most effectively addressed and solutions accelerated by application 
of model extraction and reduction approaches in ML? 

• What mathematical methods are available and best positioned (and what further development is 
needed) to enable model extraction and reduction for fusion problems? 
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• Which fusion physics codes have high computational demands that significantly impact their 
breadth of application? Could additional analysis be facilitated with a surrogate model trained on 
such codes? 

• In cases where model extraction is desired, is sufficient data available for training a machine 
learning model? 

Examples of relevant research in this topical area include: 

• Methods for model extraction 
- Regression, Gaussian processes, and neural networks 

• Gaussian processes [Rasmussen 2006] 
• Proper orthogonal decomposition [Smith 2014], [Berger 2017] 

AI.2.4 Prediction, Extrapolation, and Uncertainty Quantification 

Uncertainty quantification (UQ) is “the science of identifying, quantifying, and reducing uncertainties” 
inherent in mathematical and statistical modeling [Smith, 2014]. In the context of computer models, 
UQ involves assessing the uncertainty of computational output. Such an assessment is two-fold, 
utilizing both verification and validation [National Research Council, 2012]. Verification is the process 
of checking that the computer code performs the desired tasks and meets all specifications. 
Verification methods often employ synthetic data. In this case, the truth is known, and the algorithm 
can be tasked with recovering the truth within an acceptable margin of uncertainty. Validation involves 
assessment of a model’s ability to capture the behavior of a system. Generally, this is accomplished by 
comparing model predictions to data from the system of interest. 

Predictions from machine learning models trained on large data sets have been employed in fusion 
energy research since the mid-1990s. In particular, [Wroblewski 1997] employed a neural network to 
predict high beta disruptions in a tokamak. However, even with the growing use of ML predictions 
for fusion energy science applications, very little attention has been given to uncertainty. Due to the 
inherent statistical nature of machine learning algorithms, the comparison of model predictions to 
data is nontrivial since uncertainty must be considered. In the area of UQ, model prediction is the 
computation of the model response along with a measure of uncertainty such as error bars or a 
probability density function for the quantity of interest [Smith, 2014]. The predictive capabilities of a 
machine learning model are assessed using both the model response as well as the uncertainty. 

Machine learning models can be employed for two types of prediction: interpolation (predicting 
between training data points) and extrapolation (predicting outside of the training data regime). It is 
important to identify the regimes for which extrapolation is valid. Phenomenological models, such as 
those obtained via model extraction, may predict poorly in regions outside the training data. To specify 
where a model provides appropriate extrapolatory prediction, a domain for which predictive 
uncertainty is below a specified threshold can be established [Smith, 2014]. 

The purpose of this panel is to identify fusion problems amenable to predictor identification, and 
introduce uncertainty quantification techniques that can be applied to machine learning methods. In 
particular, we focus on model prediction uncertainty. We will explore methods to assess predictive 
capabilities and to determine valid regions of extrapolation. 

Key questions for consideration in this topic include: 
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• What fusion problems can be most effectively addressed and solutions accelerated by application 
of prediction, extrapolation, and uncertainty quantification approaches in ML? 

• What mathematical methods are available and best positioned (and what further development is 
needed) to enable development of predictors with quantification of uncertainty and extrapolation 
for fusion problems? 

• How should extrapolation and uncertainty be quantified in ML-generated predictors? 
• How does the appropriate application of quantified reliability apply to maximizing usefulness of 

ML models and predictors? 

Examples of relevant research in this topical area include: 

• Beta-limit disruption prediction [Wroblewski 1997] 
• Cross-validation [Kohavi, 1995], [Gelman, et al., 2013] 
• Bayesian machine learning 

- Neural networks [Neal, 1996] 
- Gaussian processes (kriging) [Rasmussen and Williams, 2006] , [Handcock and Stein, 

2012] 
• Prediction intervals [Smith, 2014], [McClarren, 2018] 

AI.2.5 Data collection, quality, formatting, curation 

A critical field for enabling the efficient exploitation of large databases in fusion science is the 
collection, curation, and formatting of data. These processing functions, along with the ability to 
identify or tag data quality, are essential for rapid and effective assembly of training and test datasets, 
use of supervised learning methods, and assurance of reliability in resulting algorithms. Furthermore, 
to enable productive use of extreme scale computing resources for scientific discovery, the 
unprecedented volumes of simulation data generated must be analyzed and understood by domain 
scientists mostly in-situ. This is due to the challenge posed by the widening gap between data 
computed and data stored. 

The panel will discuss issues related to the construction of effective fusion data pipelines and 
workflows that enable: 

• Initial data exploration for machine learning applications, including visualization 
• Rejection of mis-labeled or spurious data 
• Searching for relevant data 
• Preprocessing of training data (e.g. scaling, normalizing, etc.) 
• Handling of large (PB and beyond) data archives 
• Key issues in enabling in-situ workflows for fusion problems 

Key questions for consideration in this topic include: 

• What data collection, curation, formatting, and quality management approaches are needed to 
enable efficient application of ML methods to fusion problems? 

• What computational resources are required to effectively ingest and process large-scale data? 
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• What methods are available to help assist with the labeling of large training sets? 
• How can the quality and validity of data sets be quantified? 
• What technologies are currently available to assist with initial data exploration and high-

dimensional data visualization? 

Examples of relevant research in this topical area include: 

• Rapid data access for fusion applications [Sammuli 2018] 
• Data preprocessing for supervised learning [Kotsiantis 2006] 

AI.3 Panel Structures and Leaders 

Attendees were identified by the chairs and by DOE leaders, selected to have expertise spanning the 
topical areas in fusion science and machine learning, as well as related topics in other areas of science, 
computer science, and mathematics. Panel leaders were identified to coordinate the panel breakout 
sessions, collect information (white papers, slide presentations for the workshop), and draft sections 
for the final report. Each panel had two leaders, one representing the ASCR/mathematics community, 
and one representing the MFE community (Table AI.3-1). 

Table AI.3-1. Panel leaders for ML workshop 

Last Name First Name Field Panel Email 
Canik John FES Science canikjm@ornl.gov 
Hittinger Jeffrey ASCR Science hittinger1@llnl.gov 
Granetz Bob FES Predictors granetz@mit.edu 
Lawrence Earl ASCR Predictors earl@lanl.gov 
Boyer Dan FES Models mboyer@pppl.gov 
Cyr Eric ASCR Models eccyr@sandia.gov 
Kolemen Egemen FES Control ekolemen@pppl.gov 
Patra Abani ASCR Control abani@buffalo.edu 
Schissel David FES Data Schissel@fusion.gat.com 
Pascucci Valerio ASCR Data pascucci@sci.utah.edu 

 
The intent of the panels was to provide a team of experts that spanned relevant areas of fusion science 
and mathematics in the panel topic, who both collected and generated information for that topic, and 
drafted the corresponding report section. Panel members met in parallel breakout sessions during the 
workshop, and then came together in plenary sessions to exchange reports on the results of breakouts. 

Prior to the workshop, panel co-leads: 

• Contacted each other to coordinate preparations for the workshop 
• Identified and contacted people on their panel (or beyond) to write white papers and/or slides 

in order to prepare for workshop presentations, inform panel deliberations, and inform report 
content; slides were needed in particular for the panel lead plenary talks, and for presentations 
scheduled during breakout sessions... 

• Negotiated with other panel leads and workshop chairs regarding participants that more 
effectively served different panels 
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AI.4 White Papers and Web Resources 

White papers were solicited from selected members of the community, identified and coordinated by 
panel leaders. They were uploaded to the workshop document website (Google Drive resource). 

ORAU constructed a workshop website that included agenda, lodging, and registration information. 
The home page for the workshop is: 

https://www.orau.gov/advancingfusion2019/ 

AI.5 Agenda and Administrative Details 

The ML Workshop was held at the Gaithersburg Marriott Washingtonian Center 

9751 Washingtonian Boulevard, Gaithersburg, MD 20878, April 30 – May 2, 2019. The agenda for 
the workshop is shown in Table AI.5-1. 

Table AI.5-1. Workshop Agenda 

Day 1: Tuesday, April 30 

Time Session Title Chair(s) Rapporteur 
8:00 – 9:00 Registration N/A N/A 
9:00 – 9:05 General Announcements N/A N/A 
9:05 – 9:15 Welcome: James Van Dam N/A N/A 

9:15 – 10:00 Workshop Intro: 
Humphreys/Kupresanin 

Kupresanin/ 
Humphreys N/A 

10:00 – 11:00 

Plenary 1: 
Data Assimilation and Machine 
Learning as Statistical Physics 
Problems 
Henry Abarbanel, UCSD 

Kupresanin Humphreys 

11:00 – 11:45 Science Panel: 
Canik/Hittinger Kupresanin Sabbagh 

11:45 – 13:00 Lunch   

13:00 – 13:45 Control Panel: 
Kolemen/Patra Humphreys Wild 

13:45 – 14:30 Models Panel: 
Boyer/Cyr Humphreys D’Elia 

14:30 – 15:15 Predictors Panel: 
Granetz/Lawrence Humphreys Rea 

15:15 – 15:45 Coffee Break   

15:45 – 16:30 Data Panel: 
Schissel/Pascucci Humphreys Grierson 

16:30 – 17:30 Wrap-up/Summary Day 1: 
Brief for Day 2 Humphreys Kupresanin 

Day 2: Wednesday, May 1 

Time Session Title Chair Rapporteur 
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9:00 – 10:00 

Plenary 2: 
AI and Machine Learning: From 
Self Driving Cars to Controlled 
Fusion 
Jeff Schneider, CMU 

Humphreys Kupresanin 

10:00 – 11:30 Breakout Panel 1: Science  Canik/Hittinger TBD 
 Breakout Panel 2: Control Kolemen/Patra TBD 
 Breakout Panel 3: Models Boyer/Cyr TBD 
 Breakout Panel 4: Predictors Granetz/Lawrence TBD 
 Breakout Panel 5: Data Schissel/Pascucci TBD 

11:30 – 13:00 Lunch   

13:00 – 17:00 Breakouts Continue; 
Prepare Day 3 Presentations N/A N/A 

17:00 – 17:30 
 

Wrap-up/Summary Day 2; 
Brief for Day 3 Kupresanin Humphreys 

 

Day 3: Thursday, May 2 

Time Session Title Chair Rapporteur 
9:00 – 9:30 Science Panel Summary Kupresanin Sabbagh 
9:30 – 10:00 Control Panel Summary Kupresanin Wild 
10:00 – 10:30 Models Panel Summary Kupresanin D’Elia 
10:30 – 11:00 Predictors Panel Summary Kupresanin Rea 
11:00 – 11:30 Data Panel Summary Kupresanin Grierson 
11:30 – 13:00 Lunch   

13:00 – 16:00 All panels: discussion, planning, 
writing in Breakouts N/A N/A 

16:00 – 17:00 Workshop Wrap-up and Actions Humphreys Kupresanin 

17:00 – 18:00 Chairs + Panel Leads Coordinate 
Report Writing/Actions N/A N/A 

 

 




