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Mission: “Provide physics solutions to

key design and operational issues for ITER”"

Working groups address key issues for ITER

 ELM control for ITER (T. Evans, R. Moyer)
— High Priority working group

 Hydrogen/Helium plasmas (P. Gonhil) Combined
}for 2010
* ITER demonsiration discharges (E. Doyle) campaign

 Disruption characterization (J. Wesley)
and avoidance

 NTM stabilization (R. La Haye)




Urgent topics for ITER were also addressed
in other groups

... including ...

e Error fields, ELM control (Nonaxisymm. Fields Task Force)
e Error fields (Test Blanket Module Task Force)

* Disruption mitigation (Rapid Shutdown Task Force)

* ITER startup & Rampdown (Plasma Control)
 Hydrogenic retention (Plasma Boundary Interface)

e Advanced inductive scenarios (Steady State Integ.)

 Feedback stabilization of RWM (Steady State Integ.)




10 experimental days were allocated in 2010

+1.5 days of Director’s Reserve

Days (+ DR)
ELM control for ITER 4 + 1
Hydrogen/Helium plasma operation 3 + 0.5

and ITER demonstration discharges
Disruption characterization and avoidance 2
NTM stabilization 1

TOTAL 10 + 1.5




ELM contirol for ITER

High Priority Working Group for 2010

Goals:

- Develop the physics basis for ELM mitigation and
suppression using RMPs

 Develop the physics basis for pellet pacing of ELMs

+ Explore and develop alternate approaches to ELM control

- QH-mode
—  AC magnetic perturbations

Related work also carried out in 3D Fields Task Force




ELM control for ITER - 4 days (+1)

31-1. 3D heat flux with RMP

— Quantify peak heat flux with ELM mitigation by RMP
— Quantify steady-state heat flux with ELM suppression by RMP

31-2. RMP effect on L-H power threshold
— Does n=3 RMP have a resonant effect on the L-H transition?¢

31-4. Compatibility of pellets and RMP ELM suppression (0.5 day)
— Does pellet fueling trigger ELMse Compare HFS and LFS pellets.

31-5. ELM triggering by pellet injection (0.5 day)
— Dependence on injection location and penetration

31-3. ELM pacing with AC magnetic perturbation
— Requirements for RMP amplitude & frequency, effect on heat flux

99-30. ELM suppression in double null plasmas with
stellarator symmetry (Director’s Reserve)

—  ELM suppression in balanced double null (similar to MAST, NSTX)
— Data for input to stellarator equilibrium and stability codes




Highlights from 2009-10 ELM Contirol for ITER

Working Group Experiments
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L-H power threshold sensitive to q,; with even parity n=3 RMP fields
— No change when using off-resonance RMP fields
— Maximum 40% increase with resonant RMP fields

Low-field side versus high-field side pellet fueling asymmetry
identified during ELM suppression with RMP fields




Heat loads due to mitigated ELMs
with q95 outside suppression window
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time [ms]
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« ELMs in phase 4 deposit on average 3 kJ to lower divertor
— compatible with ITER guidelines
— H98 at pre-RMP value of 1.2




Without RMP: ELM evolution With RMP: evolution of ELM structure
shows 3D dynamics formed by stochastic boundary
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RMP has a significant effect on L-H Power Threshold

Godal 5__— Nolcoil (139529) —— Icoil On (139530)
- Determine the dependence of the H- g-"°°" Current (kA)
mode power threshold on the n=3 RMP 2
with the Icoils (D-NBI—D plasmas) ]
1

Results

e Clear effect of increased H-mode
power threshold with RMP Icoil current

 Determined for NBI (co- and balanced) 2';0
and with ECH heating 15

 Effect has a threshold in I-coil current
— Discernible above 3 kA

Divertor Photodiode
~Signal (au)

— H-mode power threshold increases 1:50  Divertor Phtodiode ]

with I-coil current
 Effect has a g dependence

— Sfrong effect at same qq5 (~3.5) as
required for ELM suppression

— Weak effect off resonance (qgs ~4.1)
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LFS injection could allow pellet fueling

without triggering ELMs

- LFS pellet injection could be a
solution to compatibility with RMP:

— No real ELM synchronized with the
injections (both LFS and HFS)

—  After HFS injection: several ELMs are
triggered (observable energy loss)

— No ELM after LFS injections

— But fuelling efficiency of LFS pellets
appears low

—  Pump-out compensated around
50% without losing the ELM
suppression

« BUT difficult to isolate the effect of
the pellet injection configuration
because of significant differences in
average density for the two cases
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Low-Field Side pellet injection triggers ELMs

. . Pellet
Requires only a few cm penetration /

Fast camera images suggest a
single filament is released near the ‘

pellet \

3120.93 Filament forming?

BN

1.8mm D, pellets

~100-150 m/s
(3 torr-L, 2x1020 o z 3

LSS 3121.13  Filament hits wall




ELM pacing by pellet injection

* 14 Hz pellets increase ELM frequency from ~5 Hz o ~25 Hz
— Smaller ELM amplitude — Little effect on core density

44444

denvif 141133 (BCI)
denvif 141132 (BCI)

Densit 14 Hz Pellets
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ELM pacing by magnetic perturbation

« Oscillating n=3 field | #140353
is applied by the I- 20 ' ' ' '
coil
MU VAWATAVAVA
At 20 Hz, ELMs are L j \ -
perfectly entrained 4700 4800 4900 5000 5100 5200
fs04/1e14 Time (ms)
30716348
#140354
20 -

- At higher frequency,
entrainment is weak 0
|

—  ELMs still appear to HH' H“'“HH'““ l““ l““
be synchronized to
the I-coil field 2600 2800 3000 3200 3400
Time (ms)

- !@S W. Solomon



ELM Amplitude Appears To Be Immediately

Affected By Modulated I-call

* Only minor reduction
in amplitude with
increasing frequency
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* Natural ELM
frequency is 30 Hz
— Pacing with
20 Hz I-call
(=40 Hz ELMs) 4]
already reduces

amplitude near
factor of 2 0
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ELM suppression in DN plasmas with

stellarator symmetry

 Goadls:
— Use n=3 magnetic perturbations to suppress type-l ELMs in DN plasmas
— Obtain stellarator symmetric data for 3D equilibrium, stability and transport

modeling O
® Results: 8:— density 142600 Profile analysis
> Obtained DN discharges with | ELkree | )~ Hnderviay

good shape control

S

> |-coil RMP fields successfully
used fo confrol early ng

> |-coil current scan

> 0.5-1.0 kA -> mixed ELM-
free and ELMing periods

> Above | kA ->large n, 2—
pump out

> Discharge may be in L-mode g
when ELMs disappear at 4.3s 9=

> Profile analysis underway time (s)
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Hydrogen and Helium plasmas ... combined with

ITER demonsiration discharges

Goals:

Determine H-mode accessibility in ITER’s non-activation
phase
— lon species dependence of L-H power threshold

Predict ITER’s performance in non-activation phase:

lon species dependence of

— ELM, pedestal characteristics — Transport, turbulence, p* scaling
— ELM conftrol techniques — SOL, divertor characteristics




Hydrogen and Helium plasmas - 3 days (+0.5)

35-1. RMP ELM suppression in helium plasmas (hydrogen NBI)
— Use RMP fields to conftrol the density rise in ELM-free H-mode
— Test RMP ELM control in helium plasmas

35-2. H-mode power threshold and H-mode characteristics in
helium plasma with hydrogen NBI

— Quantify the power threshold and torque dependence with H>He
— Evaluate ITER baseline scenario performance in helium plasma

35-3. H-mode power threshold and H-mode characteristics in
deuterium plasma with deuterium NBI

— Quantity the effects of density, torque, magnetic geometry, and
RMP on the H-mode power threshold with D->D,
for comparison to previous H>H, He->He, and H>He cases.

99-20. H-mode Power Threshold as function of helium purity
(Director’s reserve: 0.5 day)

— Threshold in D plasmas with varying He dilution, after boronization




RMP density control and ELM suppression

in helium plasmas

Goal:

« Use n=3 RMP fields to control the H-mode density and suppress type-|
ELMs in ITER similar shaped helium plasmas with hydrogen NBI and ECH.

Results:

 Obtained density control in He
plasmas with H beams

> Collisionality was still larger than
the typical range for ELM
suppression in deuterium

Obtained brief ELM suppression
windows with N=3 RMPs

> Required higher RMP fields than
usual by combining I-coil fields
with C-coill fields

Br=-15T, Iy = 1.2 MA (qg5 = 3.45)
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ELM suppression in He plasmas requires a wider

stochastic layer (AYy_.p;y) than in D, plasmas
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H-mode Power Threshold and H-mode Characteristics in

Helium Plasmas with Hydrogen NBI

Goal

 Determine the H-mode power threshold and H-mode characteristics
in helium plasmas using hydrogen NBI and ECH

- As function of target density, |-coil current and X-point height
Results:

e The H-mode power threshold for H—He is between those for He—He and H—H

— Expected due to dilution of He plasmas with H beam fueling
— Still larger than D—D (in contrast to ASDEX Upgrade results: He and D ~same)

e H-mode threshold decreases continuously as He dilution of D plasma decreases
- Separate experiment: Director’s reserve day

 H-mode threshold with ECH alone is lower (no dilution effects) than with H-NBI

e Clearincrease in H-mode threshold with I-coil current (effect discernable at
lower I-coil current than that for D plasmas)

e Significant decrease (> factor of 2) in NBl power threshold with reduced X-point
height

- Confirms trend observed in He plasmas with ECH alone

 Performance with H-NBI into He plasmas is substantially lower than with D-NBI
info D plasmas

IONAL F’USID FACITY 133-1 O/PG/Jy




Application of Icoil at resonant q,. increases

H-mode Power Threshold (H > He, Balanced NBI)

— Nolcoil, Ggg = 3.5 (141891) — 1.7 kA, g5 =35 (141890) = 4 kA, Ggg = 3.5 (141889) — 4 kA, g5 = 4.1 (141892)
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Baseline scenario performance with H>He plasma

is substantially lower than with deuterium (D->D)

- Piggyback experiments used .

“ITER-similar” shape o :
- |/aB similar fo ITER baseline, oF ;
q9 5~139 | { ™ Plasma Current (MA)

* NBI power to maintain g,~1.8 6
is 8.6 MW (H->He plasma) z
vs. 2.8 MW (D-> D plasma) 20

- Hyg is reduced by about 40%

(effect of Zis not included in 05
the ITER H-mode scaling) "

— DNBI->D Plasma = H NBI->He Plasma

Density (x 1019 m'3)
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H-
in

D Plasmas with D-NBI
Goal

Determine H-mode power
threshold and H-mode
characteristics in D—D plasmas
for comparison with results with
H and He plasmas

Results

 Obtained good data for D
plasmas with D-NBI (co- and
balanced) and with ECH on

Density dependence

l-coil current dependence

Dependence on X-point

height above divertor

Piggyback experiment after
3500 ms: ITER demo
discharges in D plasmas for
comparison with He plasmas

- High X-pt= 26 cm (141986)

mode Power Threshold and H-mode Characteristics

- Intermediate X-pt=18 cm (141990) - Low X-pt=10 cm (141989)

X-pt Height above divertor (cm)
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Disruption characterization & avoidance

Goals:

« Characterize causes and consequences of disruptions

— VDE forces and thermal loads
— Runaway electron generation and loss

- Develop sirategies toward disruption-free operation
— Prediction and precursor detection
— Active means to avoid or postpone disruption

Complementary to Rapid Shutdown Task Force




Disruption characterization & avoidance - 2 days

Focus in 2010: Runaway electron physics

- 32-1. Formation of runaway elecirons
— Develop reproducible generation of runaway electrons
— Characterize mechanisms for runaway electron generation

« 32-2. Control of runaway eleciron current channel
— Develop feedback control of runaway electron beam position
— Develop a target for slow suppression of runaway beam

« 99-25. Control of runaway electron current channel
(Director’s reserve: 0.5 day in Rapid Shutdown TF)

— Improve control of runaway electron beam position
— Conftrol runaway duration with E-coil voltage (first demonstration)




Runaways Produced by Ar Pellet Injection

 Ar pellets injected: 138179 Experiment Summary
— Cools plasma edge, contracts profile s Ip Runaway current
— Triggers thermal quench MHD Pellet = _‘k /
— Current profile flattening from light o N | —
reconnection = 2 2.01 2.02 2.03
s ° SXR

 Runaways produced in TQ/flattening

process:
— Large E-fields produced

2.01 2.02 2.03

o O
N

-
o
[aﬂ% [

— Low kappaq, limited plasmas reliabl O
PP P 4 = Neutrons
produce runaway current channel (<ft)
O L M
i 2 2.01 2.02 2.03
o o 20 ’
* Runaways avalanche to become visible & ECE
current channel: 8 101
— Reduced island overlap in low kappa p . = 0 I .
allows increased seed confinement rompt 2 2.01 2.02 2.03
runaway s BGO Scintillator

loss o1 jL
o
: 2 2% 2.02 2.03
Final runaway loss t

ime [s]
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New position control scheme successfully holds

runaway electron channel on the midplane

 Switch to simple R,Z position control algorithm during & after CQ
- Advanced boundary control algorithms fail during rapid CQ

Vertical position control is effective
— Limited ability for radial control
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2010 experiments increased the magnitude and

duration of runaway electron current
80

&> #137600-611; 1.5 MALSN; R = 0.17
Day 1
75
> #137613-625; 1.2 MALSN; R = 0.25
Day2 O #140570-589; 1.1-1.2 MA IWL; R = 0.79 70 o
Day3 X #141733-760; 1.2 MA; 1.3:1 IWL; R = 0.88
65 2 DR
« Several factors for ¥

55

improved reproducibility: [ vtz o O s

#753
50

X x#741
— Arpellet (Evans, 1998) - 8 T
E C H #746 fi:S 4 Qe
- 40 #749 X —
. eox * t7=551’66 &#7#:2541 R mf;g;i o'Lv
— Reduced elongation *
u] #738
30

— R, Z control

#90213 25 — %

Evans et al kappa £ 1.57 O [sgo

(1998 IAEA) —_ #758 m] 0 Day 1:1.5 LSN

L3

* Duration is limited by:
— Vertical instability

] k\’\,:\\n_79 O
10 \x #137610 ¢,
i N
oL % D

5 X KX
NC 1.67 1.6, #759 O

1y 62757 m]
1668 &513
1

Runaway current duration (ms)

— Negative loop voltage -

IDNAL FUSID FACITY

0 00 200 300 I 400 I 500 I 600 l 700
Runaway current (kA)




E-coil drive offsets the resistive decay,

extends runaway current duration

160
+ .
°_ -
* Full E-coil drive sustains or CE -
. = -
Increases I, % S
— “natural” decay Yee ~5 MA/S cs5 -
. . oz O “
— 15 V/turn maintains 15,2300 kA :

- Duration is limited by:
- Vertical instability (4 increase) .

— E-coil voltage, volt-sec limits = A
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Reproducible, sustained runaway beam enables

studies of generation and loss mechanisms

e Large loop voltage at end
of thermal quench

— From drop in internal inductance
— JFIT analysis

* Rate of change of current
depends on electric field

Analysis is in progress
— A promising result for ITER

Allows a test of avalanche theory:

< :
= ol e
— 257 internal inductance
= 2
=) -———\
1.5¢C
800 fIdL/dt/\ svm =~
2400 i Ldl/dt VloopB (x10)
O 1 1 | | | I
2 2.002 2.004 2.006 2.008
time [s]
= 142961
2 5 142665 -
»—-Q e " vgE
ot e s
_ —10f
§ 20+




Impurity pellet injection probes the runaway beam

- Sudden explosion of
polystyrene pellet suggests
volumetric heating

« Explosion ~16 cm outside
LCFS consistent with
relativistic drift orbit
displacement (E_, ~17 Mev)

« Absence of visible
synchrotron radiation
suggests lower energy than
in the core RE channel

=L.3

d=f16cm'

s —

RE synchrotron
emission

1 15 2

R [m]
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NTM stabilization

Goals:

 Validate models for ECCD stabilization of NTMs in ITER
— Effect of ECCD modulation
— Requirements for current drive width and alignment

- Develop alternative approaches to NTM control in ITER
— RMP “steering” of locked mode to ECCD location
— Enfrainment and acceleration of locked mode

- Develop control algorithms for NTM stabilization and
disruption avoidance

Complementary to NTM stability studies in Fusion Science




NTM stabilization - 1 day

« 33-1. Active control of locked modes
— First demonstration of stabilization of a locked mode

* (piggyback) First demonstration in DIlI-D of real-time mirror
steering for ECCD

— Pre-requisite for routine NTM stabilization




Locked mode can be caught and steered by I-coil

- Locked mode is suppressed by ECCD
— Causes disruption without ECCD

141492 141500

| ECHPWRC (W) .
Locked 2/1 ﬁ

mode )

Phase changed to island steering
upon rotating & slowing n=1 MIRNOV
“dud” detection (not shown)

FTTRRERITETS SrSTRTAECATAN SR NOTUT A STEUAT SOV SrATR TSR ETNON S r [

Locked mode suppresM

«Acompletely stabilized?)

TR Ao

Disrupts

without j

locked mode
suppressmn

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
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ECCD is more effective than ECH at stabilizing locked mode

and depends on toroidal phasing, controlled by I-coils.

............................................................

141495

30F

C chpwr 141492 CCD P r (MW) 5 5:_ ech
2.5 :— echp}t — ) E echpy
Q.Df— _f 2,02_ echp

1.5 =

(]

r

r 141459
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First test of real-time ECCD mirror steering

142650
3600 3 Gyrotron Mirrors Swept from “Hi” to “Lo”
* Mirror with motor drive for | GYsMIR3sSR ﬂ)
o . 1 (HAN mirror for example,
poloidal scanning of ECCD | poloidal fcounts”)

beam

— First test under PCS control 3200 /

- Sweeping mirror position = P —
during 3/2 NTM 6] n=tms
— Dip in the 3/2 amplitude >
indicates optimum position M
3_
2
"
0 -+ e T AR T IBABRERERE IRERERRRRE Trrr
3400 3800 4200
Time (ms)
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Highlights of 2010 experiments

ELM control

* ELM mitigation by RMP increases ELM frequency and reduces divertor
energy impulses

- Shallow pellet injection increases ELM frequency, little effect on core n,
 AC magnetic perturbations increase ELM frequency, reduce amplitude
Helium plasmas and ITER demonstration discharges

- Brief periods of ELM suppression were obtained in helium plasmas

* n=3 RMP at resonant q,; increases H-mode power threshold

- Baseline scenario performance with H>He plasma is substantially lower
than with deuterium (D-D)

Disruption characterization and avoidance
« Position control extends runaway electron current duration
 Runaway current can be altered by applied electric field

Neoclassical tearing mode stabilization
* First demonstration of active stabilization of a locked mode




Directions for future research

ELM conirol
— Extend RMP suppression to other tokamaks — e.g. MAST scenario
— Demonstrate ELM suppression in low-torque ITER-relevant plasmas
— Develop alternatives to RMP

ITER demonstiration discharges, Hydrogen/helium plasmas
— Demonstrate ITER baseline scenario with low rotation
— Transport physics vs. ion mass

Disruption characterization and avoidance
— Controlled reduction of confined runaway electron current
— Routine control strategies for disruption detection and avoidance

NTM stabilization
— Develop routine ECCD stabilization with real-time mirror steering
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RMP reduces the variability of deposited energy and

wehed area between toroidal locations
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Application of RMP significantly reduces
ELM energies. Higher heating power (9
MW) results in stronger ELM mitigation.

Without RMP some ELMs show toroiddl
asymmetries up to 50%. On average
there is no toroidal asymmetry (Rg)
between energy deposited on two
toroidal locations

Without RMP there is also rather strong
variability of wetted area (R,,) between
two location:s.

Introducing RMP reduces variability of
deposited energy and wetted areaq, but
creates small asymmetries in deposited
energy.




A significant increase in 6b/B; is needed in

He plasmas to obtain marginal ELM suppression

9141873.02050 - March 2 multiple suppression windows
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9141851.02050 - March 1 near suppression
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Marginal ELM suppression obtained in He plasmas by:
Reducing B; to 1.5 Tresulting in 8% increase in the peak (8b/B,)!/? n=3 field
Plus increasing the n=1 C-coil current by 50% compared to ELM suppression in D,

plasmas
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