

Summary of LHD Project: FY2004 Results and FY 2005 Plan

S. Sudo National Institute for Fusion Science March 4, 2005

National Institutes of Natural Sciences

- National Astronomical Observatory
- National Institute for Fusion Science
- National Institute for Basic Biology
- National Institute for Physiological Sciences
- Institute for Molecular Science

Since April 2004

NINS, Inter-University Research Institute strives to develop and improve its function as a research institution in the field of Astronomy, Material Science, Energy Science, Biological Science, and Natural Sciences

External diameter	13.5 m
Plasma major radius	3.9 m
Plasma minor radius	6 0.6 m
Plasma volume	30 m ³
Magnetic field	3 T
Total weight 1	, 500 t

ECR 84 – 168 GHz

World largest superconducting coil systemMagnetic energy1 GJCryogenic mass (-269 degree C)850 tTolerance< 2mm</td>

NBI

Heating power NBI 13MW ICH 2.7MW ECH 2.1MW

Large Helical Device (LHD)

Local Island Divertor (LID)

ICRF 25-100 MHz

NBI

The 8th experimental campaign (FY2004)

	0)4										
タスク名	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan		Feb	Mar	Apr
Finshing vacuum boundary		C	7/19									
Pumping cryostat		07/26					•			02/15	5	
Pumping plasma vacuum vessel		07/28				1	1			02/15	(
Leak check of cryostat		07/28	07/29									
Preparatory leak check of VV		07/28	07/30									
Baking VV		07/30	08/04									
Leak check of VV		08/	05 08/10									
Purification of He		07/26	08/10									
Cooling down		0	8/11	09/07								
Steady cooling			09/0	8		1	l		01/21			
Warming up								01/21		02/15	1	
Coil excitation test			09/0	8 09/13								
Discharge cleaning (GDC)			08/13	09/07								-
Plasma experiment			09	/14			1	2/24				
Break							12/25	01/05				
Plasma experiment							01/0	6	01/20			
Venting cryostat and VV										€_ 02/1	5	
Annual maintenace									02/1	6		04/01

Plasma experiment (57 days in 17 weeks) has been completed by Jan.20. Number of coil excitation : 87 (891 in total for 8 campaigns in 7 years) Number of plasma shot : 7398 (56220 in total)

Plasma discharge is available every 3 min.

- → High reliability in highly repetitive operation
- ➔ Leading to steady-state operation

Steady state operation at LHD

Goals

• Extension of plasma parameter regime : ~1 MW for a few min (extended to 1 MW for 1000s (= 1 GJ of input energy) in a few years)

Results

- Long pulse operation with 1 MW for 2 min. has been achieved.
- Long pulse operation with 680 kW for 1905 s has been achieved.
 - → Input energy is 1.3 GJ

(exceeded the previous world record 1.07GJ of ToreSupra)

• Pulse length extended to over 1 hour (65 min.) by 100 kW of ECH.

Major elements for these results

- Improvement of performance of steady-state heating facility Systematic integration of ICRF facility Modification of gyrotron and transfer tube Stable long pulse operation of NBI
- Improvement of heat removal efficiency of divertor plates
- Dispersing heat load on divertor plates by real-time magnetic axis sweep

Next step

Input energy of more than 1.3 GJ with heating power of ~1 MW

Systematic improvement of ICRF facility has enabled stable injection of heating power in steady state

Radio-frequency Oscillator

Drastic remodeling for stability & reliability

- DC power supply
- Control system
- Circuit breaker

ICRF antenna modification to prevent arcing and water leak

- Faraday shield
- Carbon sideprotector
- Inner conductor
- Grounding plate

Coaxial transfer line to LHD • Upgrade of cooling facility for transfer line and impedance matching unit

• Feedback control against change of loading becomes available

31 min 45 sec long pulse discharge

 Combination of three heating schemes Average power is 680kW. Steady state injection of ICRF(520 KW) and ECH(100 kW) 25s pulse of NBI at intervals : 60 kW (averaged for one duty cycle) Ion temperature 2.0keV • Electron temperature 1.3-1.7keV • Line averaged electron density 7-8×10¹⁸ m⁻³ Density drops during NBI pulses. Sweep of magnetic axis (one round of 3cm for 3min. 18 rounds between R_{ax}= 3.67-3.7m) → maintain the temperature of divertor plates close to antenna at moderate level.

(B = 2.75T at R=3.6m, #53776, Helium)

Key subjects for long pulse operation

- Modification of carbon divertor plate to suppress spouting of gas due to temperature increase.
- Real-time magnetic axis sweep prevents concentration of heat load to the specific position and consequently suppresses spouting of gas.

Upgrade of heating facilities

- Stabilization of ICRF heating source
 - Avoidance of arcing in antenna
 - Increase of the number of steady-state oscillator, which reduces the power per one antenna and consequently more stable operation is available.
 - Upgrade of cooling capability of transfer lines
 - Combination of three heating schemes
 - ICRF(520kW) Primary heating source (He majority and H minority)
 - ECH(100kW) Improvement thermal stability of plasmas by electron heating
 - NBI (60kW : averaged for one duty cycle) Improvement thermal stability of plasmas by electron heating and core fueling

Wall conditioning

Boronization suppresses influx of both metal and light impurities.

6

plate

Parameters in steady state plasma discharge (ICRF, ECH, NBI)

Parameter of LHD operation	
Magnetic field	2.75 T
Major radius	3.67~3.70 m(18 rounds)
Minor radius	0.6 m
Plasma parameters	
Electron density	7~8×10 ¹⁸ /m ⁻³
Central ion temperature	2.0 keV
Central electron temperature	1.3-1.7keV
Averaged input power :	680kW
ICRF (38.5MHz)	520kW
ECH (84GHz)	100kW
NBI	60kW
Discharge pulse length :	31min. 45 sec. (1905 s)
Total input energy :	1.3 GJ

LHD has extended the regime of the long pulse plasma experiments

- Successful demonstration of potential of helical system towards steady state reactor
- Minority ion heating by ICRF which produces ions accelerated perpendicularly to magnetic field is successful : indicating high performance of high energetic ion confinement of LHD.

Particle control & confinement improvement

Local Island Divertor (LID)

Features

- * Utilize m/n=1/1 island.
- * Insert a divertor head locally.
- * LCFS defined by island separatrix
- * No leading edge problem
- * Closed system
- * High efficient pumping
- * No ergodic layer
- * *L*_c=~250m

Advantage

- * high efficient pumping
- * easy to realize closed system
 - ➔ superior cost performance
- * compact and integrated
 - ➔ favorable for blanket, diagnostics

Disadvantage

- * small wetted area
 - ➔ high heat load

Basic LID functions

LID has been confirmed to function as a divertor.

(1) Particle flow

* Particles are well guided to the back side of the LID head by island separatrix.

(2) Edge profile control

* Steep $T_{\rm e}$ gradient is formed at inner separatrix.

(3) Impurity control

* Impurities are screened or pumped out.

12

High beta

Performance of LHD plasma depends on magnetic axis position

Changes of Dominant Modes as a function of β

γ optimization for high β

- Increase of plasma aspect ratio suppresses Shafranov shift consequently reduces degradation of NBI heating efficiency.
- However simultaneously MHD stability could become danger.
- → promotes γ optimization for high β. Optimum point : γ = 1.20 → < β_{dia} > = 4.3 % at B_t = 0.45T

$$\gamma = \frac{m}{n} \cdot \frac{a_c}{R}$$

$$\gamma = 1.254 \rightarrow 1.200$$

- Development of sensor employing MCP
- Stabilizing ion source
 Improvement of beam line
- Secondary beam was successfully detected.
- Substantial output for potential measurement and physics related to electric field is expected in the nearest future.

Plasma Parameters Achieved at LHD

	Achieved (~2003)	Achievements in FY2004
Fusion triple product	2.0x10 ¹⁹ keVm ⁻³ s	2.3x10 ¹⁹ keVm ⁻³ s
Ion temperature	1.1 keV: T _i (0)	0.8 keV : T _i (0)
Density	4.8x10 ¹⁹ m ⁻³	8x10 ¹⁹ m ⁻³
Energy confinement time	0.36 s	0.37 s
Electron Temperature T _e		
Central electron temperat	ure 10 keV	10 keV
at Density	5x10 ¹⁸ m ⁻³	5x10 ¹⁸ m ⁻³
lon temperature T _i		
Central ion temperature	10 keV	13.5 keV
at Density	3.5x10 ¹⁹ m ⁻³	3x10 ¹⁸ m ⁻³
Beta β	β = 4.1% at B = 0.45 T	β = 4.3% at B = 0.45 T
Pulse length (Steady state	operation)	
Pulse length	756 s	1 hr 5 min 110kW
		31min 45 sec 680kW
		(Input energy 1.3GJ)

17

Main subjects for LHD 2005 Plan

- 1. Particle control & confinement improvement Improvement of plasma confinement by LID
- 2. High beta

Realization of higher beta plasma using a **new perpendicular NBI** Evolution of MHD instabilities

- 3. Effect of magnetic configuration on MHD & confinement lon transport study
- 4. Steady-state operation

Long pulse discharge with higher ICRF heating power of ~1 MW

5. High ion temperature

Realization of higher hydrogen ion temperature using a **perpendicular NBI** High fusion triple product, **lon temperature profile measurement** by CXRS

6. Electric field & transport barrier

Electric shear control by a **perpendicular NBI** Electric field measurement by **CXRS and HIBP**

High energy particle confinement
 Behavior of high-energy ion tail, Energetic-ion driven instability

Low-energy NBI system with perpendicular injection is being prepared for the 9th campaign

Objectives

- Ion heating (cf. Electron heating in the present high-energy NBI)
- Particle fuelling
- Diagnostics for the ion temperature profile (CXRS)
- Investigation of the high-energy particle confinement

Specification

- 40keV 3MW
 - (Upgrade to 6MW in future)
- Perpendicular H injection
- 2 large positive-ion sources

Targets

- High-Ti in H plasmas
- Peaked density profile
- Ion transport study by measuring Ti profile

