Fusion Implementation Scenarios

John Schmidt
Princeton Plasma Physics Laboratory

Socio-economics Aspects of Fusion Power
VLT Program Advisory Committee
Oak Ridge National Laboratory

June 28, 2000
Fusion Scenario Development Objective

• Show that fusion can be an energy source for the 21st century

• Develop an understanding of the requirements for meeting this objective

• And the implications for resources and waste
We Have Assessed Fusion Implementation Scenarios for Both the U. S. and the World

- We need to study fusion implementation in the U. S. to be able to communicate with our constituency.

- In addition, it is a little easier to extrapolate and relate to the U. S. energy future.

- To the extent that we want to illustrate impacts on atmospheric carbon dioxide we need to look at total world scenarios.

- Clearly the biggest growth in demand will be for the developing economies.
Electricity Production

IIASA/WEC Scenario B

North American (Terawatts)

World (Terawatts)
CALENDAR YEAR	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	70	80	
ITER CONSTRUCTION																																		
ITER OPERATIONS																																		
DEMO GO																																		
DEMO CONCEPT DESIGN																																		
DEMO CONSTRUCTION																																		
DEMO OPERATIONS																																		
PROTO 1 GO																																		
VNS GO																																		
VNS CONCEPT DESIGN																																		
VNS CONSTRUCTION																																		
VNS OPERATION																																		

Fig. 5. Fraction, f, of world energy sources expressed as $f/(1-f)$.

Fusion Development

<table>
<thead>
<tr>
<th>CALENDAR YEARS</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
<th>52</th>
<th>54</th>
<th>56</th>
<th>58</th>
<th>60</th>
<th>62</th>
<th>64</th>
<th>66</th>
<th>68</th>
<th>70</th>
<th>72</th>
<th>74</th>
<th>76</th>
<th>78</th>
<th>80</th>
<th>82</th>
<th>84</th>
<th>86</th>
<th>88</th>
<th>90</th>
<th>92</th>
<th>94</th>
<th>96</th>
<th>98</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTO GO</td>
<td></td>
</tr>
<tr>
<td>PROTO TITLE DESIGN</td>
<td></td>
</tr>
<tr>
<td>PROTO FAB-ASSEM-TEST</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL A GO</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL A TITLE DESIGN</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL A F-T-A</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL B GO</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL B TITLE DESIGN</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL B F-T-A</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL C GO</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL D GO</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL E GO</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL F GO</td>
<td></td>
</tr>
</tbody>
</table>
Fusion Contributions to North American Electricity Production

- Doubling 7.5 yrs
- Doubling 5 yrs
- Doubling 10 yrs

North American Electricity Production

Terawatts
PCAST
<table>
<thead>
<tr>
<th>Precedents for Energy Technology Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>French Nuclear</td>
</tr>
<tr>
<td>CANDU - ratio to Canadian Power</td>
</tr>
<tr>
<td>CANDU - ratio to Ontario Power</td>
</tr>
</tbody>
</table>
Fusion Contributions to North American Electricity Production

North American Electricity Production

2%/year

1%/year

Terawatts

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150
Activated Waste
(U.S. Implementation)

Present Licensed Low-level Storage About 10^6 M3

- 2%/year
- 1%/year
Total Vanadium Required

Identified World Resource 30 Megatonnes

- 2% per year
- 1% per year

Megatonnes

Year:
- 2070
- 2075
- 2080
- 2085
- 2090
- 2095
- 2100
- 2105
- 2110
- 2115
- 2120
- 2125
- 2130
- 2135
- 2140
Vanadium Required Per year (for U.S.)

- Present U.S. Production
- Present World Production

Kilotonnes Per Year

- 2%/year
- 1%/year

Years: 2070, 2075, 2080, 2085, 2095, 2105, 2115, 2125, 2135, 2145, 2150
ProTo Phase

<table>
<thead>
<tr>
<th>T_{br}</th>
<th>1.015</th>
<th>1.03</th>
<th>1.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_f kg</td>
<td>20</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>

Ramp-Up Phase

$\frac{dP}{dt} = 20 \text{ GWe yr}^{-1}$

$P_o = 5 \text{ GWe}$
$T_o = 20 \text{ kg}$

$P_o = 10 \text{ GWe}$
$T_o = 40 \text{ kg}$

$P_o = 20 \text{ GWe}$
$T_o = 80 \text{ kg}$
The emission profiles shown in the last figure are projected to result in the following atmospheric concentrations (with corresponding labels) of carbon dioxide.
Projected Need for Non-carbon Producing Energy

New Non-emitting Energy Required for S750

1%/year of Total Energy
Conclusion

• The number of major fusion cycles (experimental facilities) required and the time to commit to these facilities will determine the development time.

• A go ahead on ITER and a VNS will be required soon to support the assumed development schedule.

• It will be difficult to have a significant impact on the electrical power production during this century with a doubling model for implementation unless the doubling time is less than 7.5 years.

• If we can implement fusion commercialization as aggressively as the French and Canadians fission commercialization we can have a significant impact this century (requires bullet 2).

• The projected waste production from aggressive fusion commercialization in the U.S. will rapidly exceed the present level of licensed low-level waste storage.

• Aggressive fusion commercialization will require increases in production of resources such as vanadium.