Taming Plasmas and Controlling Laser Beams for Grand

Challenge Applications
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Laser-plasma instabilities remains one of the greatest challenges to using

high-power lasers for grand challenge applications -

LLE

« Laser-plasma instability physics is inherently coupled to the plasma conditions and the plasma conditions are often
dictated by the laser-plasma instabilities

 Thomson scattering provides a window into the electron motion with in a plasma, which has allowed the laser-
plasma instability physics to be decoupled from the uncertainties in plasma conditions
— A better understanding of the plasma physics has led to an expanded design space for applications

* Manipulating laser-light provides opportunities to mitigate laser-plasma instabilities and overcome fundamental
limitations of conventional systems

— Broadband ultraviolet glass-lasers provide a path to LPI-free 4" generation ICF drivers
— Spatiotemporal pulse shaping has opened avenues to in laser-plasma applications

Solutions to using high-power lasers in grand challenge applications exists through

understanding plasma conditions and manipulating laser light
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The University of Rochester’s Laboratory for Laser Energetics operates the
world’s largest lasers in an academic setting
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EP OPAL

2 NIF beams

2 beams

Proposed Facility
5 kJ/beam UV (10 ns)

500 J/beam IR, 20 fs

OMEGA EP
Operating since 2008
4 NIF beams
5 kJ/beam UV (10 ns)

2 CPA beams
0.5kJIRIn 0.7 ps
1.5kJ IR 10 ps

Fourth generation Laser for
Ultrabroadband eXperiments
(FLUX)

First light 2023
Aw/®>1% UV bandwidth
200 J UV, ns

OMEGA
Operating since 1995
60 beams
30 kJ UV on target

LLE

Optical Parametric
Amplifier Line (OPAL)
First light 2021
1 CPA beam
75JIR, <20fs

Multi-TeraWatt (MTW)
Operating since 2005
1 CPA beam
50JIR, 1 ps

Contrast >1010

The University of Rochester lasers provide an outstanding

environment of studying a wide range of plasma physics




The community accesses the Omega Facilities through LaserNet, Laboratory Basic
Sciences, National User Laser Facilities, and the NNSA laboratories

The Omega Lasers support a national user program where more
than 60 Institutions participate in 60% of the experiments
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Laser-plasma instabilities remain one of the greatest challenges to using
high-power lasers in grand challenge applications
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Understanding the material properties (i.e., the plasma conditions) at the

macro- and microscopic levels is critical to using high-power laser beams
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Taming plasmas through a better understanding

Thomson scattering has provided the window into the material properties of a
plasma, which has enabled quantitative laser-plasma experiments
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Measuring the plasma conditions is enabling the hydrodynamic uncertainties to be decoupled from
the laser-plasma instability physics opening the design space for grand challenge applications
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Controlling laser beams

Innovative technologies that manipulate light have historically advanced laser-plasma applications
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Efficient Third-Harmonic Chirped-Pulse Smoothing by

Frequency Generation Amplification Spectral Dispersion LETTERS IR

R.S. Craxton et al., D. Strickland & G. Mourou S. Skupsky et al., -— P hotonics
Opt. Commun. 34, 474 (1980) Opt. Commun. 56, 210 (1985) Spatiotemporal control of laser intensity
Gratings [ lectrooptic T Lo e et
and Jessica L. Shaw'
Grating . _
(spectral — Oscillator Chirped
o o dispersion) Laser Pulse
Initial
short pulse 2000 ps
_—A\_
va
Incident 1N Output Short-pulse Long, low-power Diffractive
@ beam photon mix 3w beam oscillator pulse for amplification Lens
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80% enabled 2'd generation ~ High-energy To target
pulse after chamber

ICF drivers

amplification
Controlling laser beams in a plasma through innovative technologies has
been at the root of laser-plasma applications from the beginning of the field
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Laser-Plasma Amplifiers—a path to 100 PW lasers and >10%* W/cm?
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Can laser-plasma instabilities
be mitigated to enable inertial
confinement fusion?
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Laser-Plasma Amplification—a path to 100 PW and >10%* W/cm?

Laser-plasma amplification has the promise to overcome current limitations in high-power amplification
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Laser-plasma amplifiers require:
(1) understanding the plasma conditions to control laser beam propagation,
(2) manipulating laser light to optimize the resonance—Ilaser beams with the right wavelengths
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Laser-Plasma Amplification—a path to 100 PW and >10%* W/cm?

A multi-disciplinary team has been assembled to address the plasma physics,
laser science, and advanced diagnostics challenges

Raman Amplification Target Area Novel Laser Technologies
(completed January 2021) (completed April 2021)
Bucht et al. J.Opt.Soc.Am. B 36, 2325 (2019)

Ultrafast Thomson
- scattering
Davies et al. PRL122, 155001 (2019)
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Picosecond Thomson scattering measurements demonstrate
the challenges in maintaining resonant plasma conditions*

SR, U.S. DEPARTMENT OF Office of
N .
ENERGY St DoErec A. S. Davies et al. PPCF 62 015012 (2019)
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Manfred Ambat

Laser-Plasma Amplification—a path to 100 PW and >10%* W/cm?

sl To improve laser beam propagation, a high-temperature amplifier has been proposed*
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A proof-of-principle system scalable to high powers would demonstrate energy transfer
efficiencies >30%, intensity gains >10, and output intensities >100x the pump intensity
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Laser Fusion—a path to high yield and clean energy
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Laser Fusion—a path to clean energy

Laser-plasma instabilities set the maximum drive pressure for inertial confinement

fusion and all pathways to high-yield and inertial fusion energy require LPI mitigation
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The history of ICF—a story of mitigation and control of laser-plasma instabilities
through advancements in technology and improved physics understanding



Laser Fusion—a path to clean energy

A series of experiments used Thomson scattering to isolate hydrodynamic uncertainties
from laser-plasma instability physics to develop predictive models for ICF designs
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Laser Fusion—a path to clean energy

To expand the ICF design space for high-yield implosions, LPI must be mitigated to enable
higher intensities to be coupled to the capsules—high-bandwidth lasers provide the path

UR

£ Cross-Beam Energy Transfer
~ (Increased Drive Pressure)
__ Follett et al., PRL 120, 135005 (2018)

20

80

70

60

Laser absorption (%)

50 I | |

0 0.4 0.8 1.2 1.6

A/ o (%)

E27888m

Hot-Electron Mitigation
(n. /4 ignition intensities)
Follett et al., Phys. Plasmas 26, 062111 (2019)

0.15 | |

CBET mitigated
7 x 1014 Wiem?2

o
-
o

Current CBET
4 x 1014 W/cm?2

frot (>50 keV)

o
o
a

0.00 -
00 04 08 12 16 2.0

Awlwg (%)

E2Td94a

LLE
Imprint Mitigation
(<1-ps asymptotic smoothing)

1-0 | T |
E
*g 0.8 t — Current SSD m
s 1 — = Broadband
[
8 \
> 0.6 "‘ Smooth Beam ]
= |
5 \
E 0 4 — \'—-— — - =
|hh__-P“———4-
0 1 2 3
Time (ps)

SSD: Smoothing by Spectral Dispersion

Laser bandwidth Aw/®v>1.5% is predicted to mitigate hot electron generation, increase the

laser absorption, and eliminate imprint, which will enable a robust ICF implosion
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Laser Fusion—a path to clean energy

The Fourth generation Laser for Ultrabroadband eXperiments (FLUX) is under construction
and will use the OMEGA LPI Platform to validate bandwidth modeling
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Laser Fusion—a path to clean energy

A successful technology demonstration (FLUX) will lead to a design for an upgraded
OMEGA (i.e., using existing 1w laser driver) with ultra-wide bandwidth UV tripling
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A conceptual layout for a “OMEGA FLUX-60" leverages the
existing infrared laser system, target area, and diagnostics
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Laser-Plasma Accelerators—a path to TeV electron accelerators
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Laser-plasma acceleration—a path to TeV electron accelerators

Laser wakefield accelerators provide a promise to the next generation
of High-Energy Physics electron drivers
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Spatiotemporal pulse shaping provides controllable velocity intensity peaks that can be

sustained for long distances, which opens new ways to optimize laser wakefield accelerators




Laser-plasma acceleration—a path to TeV electron accelerators

Extending the pulse duration, produces a counter-propagating intensity pulse

<—T—>

Pulse duration
(T > L/vg)

The intensity peak is propagating The intensity peak is counter

faster than the group velocity of light propagating

ROCHESTE D. Froula et al. Nat. Photonics (2018)
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Laser-plasma acceleration—a path to TeV electron accelerators

Extending the pulse duration, produces a counter-propagating intensity pulse

<—T—>

Pulse duration
(T > L/vg)

The chromatic focusing creates an extended focal range, while the chirp sets the time at which

each frequency comes to its focus providing control over the velocity of the intensity peak
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Phil Frnke

Laser-plasma acceleration—a path to TeV electron accelerators

: Flying focus opens a novel way to optimize laser wakefield accelerators by controlling
@Rl the velocity of the intensity and extending the interaction length
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Spatiotemporal pulse shaping provides the opportunity to accelerate electrons to TeV
energies in few-meter single-stage plasma without the need for a guiding structure
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Advanced Light Sources—a path to light sources with short-pulse lasers
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Advanced Light Sources—a path to novel x-ray proves for HED facilities

Short-pulse laser could drive future light sources that have the potential to be
compact and provide unigue capabilities for high-energy density facilities
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- Novel advancements using
spatiotemporal pulse shaping
Howard et al. PRL 123, 124801 (2019)

‘Ramsey et al. PRE 102, 043207 (2020)

Fresnel Zone Plate Imaging Palastro et al. in preparation
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Improved sources for High-Energy Density measurements with ultrashort
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Advanced Light Sources—a path to novel x-ray proves for HED facilities

Nonlinear Thomson “Compton” scattering has the potential to produce

high-energy photons beams from high-power lasers
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Advanced Light Sources—a path to novel x-ray proves for HED facilities

@-all Spatiotemporal pulse shaping can control the ponderomotive force significantly improving
ke the power scattered, the scattered photon energies, and the scattered emittance
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Laser-plasma instabilities remains one of the greatest challenges to using

high-power lasers for grand challenge applications -

LLE

« Laser-plasma instability physics is inherently coupled to the plasma conditions and the plasma conditions are often
dictated by the laser-plasma instabilities

 Thomson scattering provides a window into the electron motion with in a plasma, which has allowed the laser-
plasma instability physics to be decoupled from the uncertainties in plasma conditions
— A better understanding of the plasma physics has led to an expanded design space for applications

* Manipulating laser-light provides opportunities to mitigate laser-plasma instabilities and overcome fundamental
limitations of conventional systems

— Broadband ultraviolet glass-lasers provide a path to LPI-free 4" generation ICF drivers
— Spatiotemporal pulse shaping has opened avenues to novel physics

Solutions to using high-power lasers in grand challenge applications exists through

understanding plasma conditions and manipulating laser light
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