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§ X-rays: a powerful tool for high energy density science experiments

§ Using high power lasers to generate laser plasma accelerators and x-rays

§ Two applications of x-rays from laser plasma accelerators
- Imaging complex high energy density science experiments

- Understanding electron-ion equilibration in warm dense matter

§ Conclusion

Outline
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At LLNL we use the National Ignition Facility (NIF) 
and concentrate its 192 beams into a mm3
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Such experiments create extreme, transient conditions 
of temperature and pressure that are hard to diagnose
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100 million degrees

20x the density of lead
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Many High Energy Density Science experiments rely on 
x-ray backlighters with unique properties
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X-ray sources for HEDS experiments Barrios et al, HEDP 9, 626 (2013)

- Radiography, X-ray diffraction

Ping et al 84, RSI 123105 (2013)

- X-ray absorption spectroscopy

Bailey et al, Nature 517, 56 (2015)

- X-ray opacity

Jarrott et al, POP 21 031201 (2014)



FESAC Meeting – August 31st 2021

Many High Energy Density Science experiments rely on 
x-ray backlighters with unique properties

6

Barrios et al, HEDP 9, 626 (2013)

- Radiography, X-ray diffraction

Ping et al 84, RSI 123105 (2013)

- X-ray absorption spectroscopy

Bailey et al, Nature 517, 56 (2015)

- X-ray opacity

Jarrott et al, POP 21 031201 (2014)

This work – x-rays driven by laser wakefield acceleration
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Broadband (keV – MeV)

Ultrafast (fs – ps)

Collimated (mrad)

Small source size (µm)

Synchronized with drive laser 
(ns, fs, or XFEL)

Unique properties of sources driven by LWFA can 
enable applications

7

Shock physics
Phase contrast imaging of laser driven shocks

Hydrodynamic instabilities motion
µm resolution imaging without motion blur

Radiography of dense targets
MeV x-rays with small source size

Opacity
Broadbad backlighter over 100’s of eV

Electron-ion equilibration/warm dense matter
X-ray absorption spectroscopy with sub ps resolution

Unique properties Applications

TargetDrive laser

X-ray
probe
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X-ray sources with MeV photons and <10 µm resolution are 
required to understand some of the experiments done at the NIF
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We use ”pump-probe” experiments and x-ray 
measurement techniques to understand these conditions
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4th generation x-ray light sources used for scientific applications 
could be used but are billion dollar-scale national facilities
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Synchrotron: APS

Argonne Nat. Lab., IL

X-ray free electron laser: LCLS

SLAC, CA

3 km
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Laser plasma accelerators offer a compact 
alternative to these big machines
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Laser plasma accelerator

LLNL
1 meter

Accelerating electrical field is 1000 times stronger than in a regular accelerator

SLAC, CA

3 km

X-ray free electron laser: LCLS
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Using high power lasers to generate 
laser plasma accelerators and x-rays
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An intense laser pulses drives electron 
plasma waves
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Wake behind a boat

60 µm

Plasma wave behind a laser

Nuno Lemos, LLNL
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Laser-produced plasmas can naturally sustain large acceleration 
gradients which makes laser plasma accelerators 1000 x smaller
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100 MV/m 100 GV/m

E0 =
mcω p

e
ω p =

nee
2

mε0

ne =1018  cm−3  →  E0 = 96 GV/m
Plasma frequencyAcceleration gradient

SRF Cavity Gas cell – laser plasma
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Laser pulse

Electron plasma wave

Trapped Electron

Betatron X-ray beam
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Laser wakefield acceleration can produce x-rays 
using several processes
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Most of these sources are typically produced with 
ultrashort laser pulses in the blowout regime (cτ ~ lp/2)
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Self modulated laser wakefield acceleration is easier to 
achieve with picosecond scale lasers (cτ >> lp)
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High charge, relativistic electron beams are accelerated 
through self-modulated laser wakefield acceleration
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Electron plasma wave

Laser pulse envelope
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I>1018 W/cm2
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plasma wave (EPW)
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Imaging complex high energy 
density science experiments
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Our project is developing laser plasma 
accelerators on large kJ-class picosecond lasers 
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Compton scattering/Bremsstahlung
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Laser wakefield – betatron experiments – Titan LLNL

Titan Laser
150 J
0.7 ps

Target
3 mm He jet

ne = 1019 cm-3

86 % in 28 µm
I = 5x1018 W/cm2

A. Saunders

W. Schumaker

C. Goyon J. Shaw

N. Lemos

F. Albert

B. Pollock
S. Andrews

self-modulated 
regime

cτ

lp=c/ωp~ 1/ne
1/2
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We have developed a platform to produce x-rays in the 
self modulated laser wakefield acceleration regime

25F. Albert et. al, Phys. Rev. Lett. (2013), Phys. Rev. Lett. (2017)
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Electrons accelerated in the SMLWFA regime 
produce betatron x-rays
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Electrons accelerated in the SMLWFA regime 
produce betatron x-rays
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X =
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of x rays through elements of the system (Al, Mylar
windows) and the calibrated image plates’ absorption
and efficiency [24]. For photon energies between 1 and
30 keV, we utilize the filter wheel. Assuming that the
betatron motion of the electrons dominates the observed
x-ray emission in this range, we consider an intensity
distribution per unit photon energy dE and solid angle dΩ
as a function of the photon energy E of the form:

d2I
dEdΩ

∝
!
E
Ec

"
2

K2
2=3½E=Ec"; ð1Þ

which is valid for betatron x rays on axis [25]. Here, Ec is
the critical energy of the betatron spectrum, and K2=3 is a
modified Bessel function. The distribution function is
calculated through the different filters of the wheel and
integrated to obtain the corresponding signal that it would
yield on the image plate. The filters are sufficiently thin to
neglect the effects of scattering for our range of energies.
Both the experimental and theoretical data are normalized
so that the sum of the signals of the filters is equal to 1. The
data are analyzed through a least squares fitting method by
minimizing the number

P
iðDi − TiÞ2, where Di and Ti

are, respectively, the measured and calculated normalized
signals for each filter. One example is shown in Fig. 3(a)
for a0 ¼ 3.05 and ne ¼ 1019 cm−3. Here, the best fit is
obtained for Ec ¼ 10 keV. In our experimental conditions,
the highest critical energy Ec ¼ 20 keV was measured for
a0¼ 3.02 and ne ¼ 1.3 × 1019 cm−3. By differentiating the
signal obtained in the iron-chromium Ross pair (filters 6
and 5, see image of Fig. 1), we can deduce the x-ray photon
yield Nx at 6.5&0.5keV. At constant electron density ne¼
1.3×1019cm−3, it goes from Nx¼3×108photons=eVSr for
a0 ¼ 1.44 to Nx ¼ 1.45 109 photons=eVSr for a0 ¼ 3.02.
A sharp stainless-steel edge placed 22 cm from the source
casts a clear shadow on the first image plate detector,
indicating that for energies below 30 keV, the main source
of x rays originates at the gas jet, consistent with betatron
emission. We do not expect any significant hard x-ray

bremsstrahlung emission from the very underdense plasma.
The measured 1=e2 source diameter has an upper value
of 35 μm.
To quantify the x-ray spectrum at photon energies

between 10 and 500 keV, we use the stacked image plate
spectrometer. In addition to the betatron spectrum
described by Eq. (1), we assume an additional high-energy
photon background so that the total number of photons per
unit energy on axis is:

dNx

dE
∝

1

E

!
E
Ec

"
2

K2
2=3½E=Ec" þ A exp½−E=ET "; ð2Þ

where ET is the temperature of the exponentially decaying
bremsstrahlung spectrum and A its amplitude relative to
the betatron spectrum. We propagate Eq. (2) through the
different materials of the experiment and through the
calibrated stacked image plate spectrometer [23,26].
The number RT;i ¼ PT;0=PT;i is calculated, where PT;0 is
the total theoretical yield in the first plate (plate C0 in Fig. 1)
and PT;i the total theoretical yield in subsequent plates for
i ¼ 1∶7. These values are compared to the experimental
results RE;i ¼ PE;0=PE;i to minimize the residue

P
iðRE;i −

RT;iÞ2 by varying the parameters ET and A. The betatron
critical photon energy is set at Ec ¼ 10 keV in agreement
with the Ross pair filters measurements. The best fit [inset of
Fig. 3(a) with the experimental data] is obtained for ET ¼
200 keV andA ¼ 0.00014. The residue is higher by a factor
of 10 if we fit using only betatron or bremsstrahlung
distributions separately. We deduce that the total x-ray yield
observed in our experiment and shown in Fig. 3(b) is a
combination of betatron radiation (dominant up to 40 keV)
and bremsstrahlung (dominant above 40 keV). The brems-
strahlung, inevitable whenever relativistic electrons are
produced, is likely due to lower energy (<500 keV) elec-
trons being strongly deflected by the magnet onto the walls
of the target chamber.
To explain the observed betatron x-ray spectra, we

performed 2D PIC simulations with OSIRIS for a variety
of conditions [27]. We illustrate the salient observations
from one simulation that uses an a0 ¼ 3, τ ¼ 0.7 ps, λ0 ¼
1.053 μm laser pulse focused to a spot size of 15 μm
(1=e2 intensity radius) into a 200 μm density up ramp. The
pulse duration and a0 were chosen to match the exper-
imental values, and the spot size matches the value obtained
from the Gaussian fit (1=e2 intensity radius) of the
measured spot. The pulse then propagates through a
3 mm-long fully ionized helium plasma of constant electron
density ne ¼ 1 × 1019 cm−3. The simulation utilizes a
moving window with box dimensions of 500 μm in the
longitudinal (laser propagation) direction and 150 μm in
the transverse direction. The corresponding resolutions are,
respectively, 60 and 7.2 cells per λ0. To calculate betatron
x-ray emission in these conditions, we select 750 random
electrons in energy to match the overall spectrum
[Fig. 4(c)]. The simulation is run again while also tracking
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FIG. 3. (a) Normalized x-ray yield through filters of Fig. 1 (red
dots) for a0 ¼ 3.05 and ne ¼ 1019 cm−3 and critical energy fits
calculated with Eq. (1), with Ec ¼ 5 keV, 10 keV, and 15 keV
(solid, dashed, and dotted lines). Inset: stacked image plate data
RE;i (red dots) and fit RT;i for a photon distribution [Eq. (2)] with
Ec ¼ 10 keV, A ¼ 0.000 14, and T ¼ 200 keV. (b) Deduced
betatron and bremsstrahlung spectra (see text for details).
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Electrons accelerated in the SMLWFA regime 
produce betatron x-rays
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of x rays through elements of the system (Al, Mylar
windows) and the calibrated image plates’ absorption
and efficiency [24]. For photon energies between 1 and
30 keV, we utilize the filter wheel. Assuming that the
betatron motion of the electrons dominates the observed
x-ray emission in this range, we consider an intensity
distribution per unit photon energy dE and solid angle dΩ
as a function of the photon energy E of the form:
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which is valid for betatron x rays on axis [25]. Here, Ec is
the critical energy of the betatron spectrum, and K2=3 is a
modified Bessel function. The distribution function is
calculated through the different filters of the wheel and
integrated to obtain the corresponding signal that it would
yield on the image plate. The filters are sufficiently thin to
neglect the effects of scattering for our range of energies.
Both the experimental and theoretical data are normalized
so that the sum of the signals of the filters is equal to 1. The
data are analyzed through a least squares fitting method by
minimizing the number

P
iðDi − TiÞ2, where Di and Ti

are, respectively, the measured and calculated normalized
signals for each filter. One example is shown in Fig. 3(a)
for a0 ¼ 3.05 and ne ¼ 1019 cm−3. Here, the best fit is
obtained for Ec ¼ 10 keV. In our experimental conditions,
the highest critical energy Ec ¼ 20 keV was measured for
a0¼ 3.02 and ne ¼ 1.3 × 1019 cm−3. By differentiating the
signal obtained in the iron-chromium Ross pair (filters 6
and 5, see image of Fig. 1), we can deduce the x-ray photon
yield Nx at 6.5&0.5keV. At constant electron density ne¼
1.3×1019cm−3, it goes from Nx¼3×108photons=eVSr for
a0 ¼ 1.44 to Nx ¼ 1.45 109 photons=eVSr for a0 ¼ 3.02.
A sharp stainless-steel edge placed 22 cm from the source
casts a clear shadow on the first image plate detector,
indicating that for energies below 30 keV, the main source
of x rays originates at the gas jet, consistent with betatron
emission. We do not expect any significant hard x-ray

bremsstrahlung emission from the very underdense plasma.
The measured 1=e2 source diameter has an upper value
of 35 μm.
To quantify the x-ray spectrum at photon energies

between 10 and 500 keV, we use the stacked image plate
spectrometer. In addition to the betatron spectrum
described by Eq. (1), we assume an additional high-energy
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where ET is the temperature of the exponentially decaying
bremsstrahlung spectrum and A its amplitude relative to
the betatron spectrum. We propagate Eq. (2) through the
different materials of the experiment and through the
calibrated stacked image plate spectrometer [23,26].
The number RT;i ¼ PT;0=PT;i is calculated, where PT;0 is
the total theoretical yield in the first plate (plate C0 in Fig. 1)
and PT;i the total theoretical yield in subsequent plates for
i ¼ 1∶7. These values are compared to the experimental
results RE;i ¼ PE;0=PE;i to minimize the residue
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critical photon energy is set at Ec ¼ 10 keV in agreement
with the Ross pair filters measurements. The best fit [inset of
Fig. 3(a) with the experimental data] is obtained for ET ¼
200 keV andA ¼ 0.00014. The residue is higher by a factor
of 10 if we fit using only betatron or bremsstrahlung
distributions separately. We deduce that the total x-ray yield
observed in our experiment and shown in Fig. 3(b) is a
combination of betatron radiation (dominant up to 40 keV)
and bremsstrahlung (dominant above 40 keV). The brems-
strahlung, inevitable whenever relativistic electrons are
produced, is likely due to lower energy (<500 keV) elec-
trons being strongly deflected by the magnet onto the walls
of the target chamber.
To explain the observed betatron x-ray spectra, we
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1.053 μm laser pulse focused to a spot size of 15 μm
(1=e2 intensity radius) into a 200 μm density up ramp. The
pulse duration and a0 were chosen to match the exper-
imental values, and the spot size matches the value obtained
from the Gaussian fit (1=e2 intensity radius) of the
measured spot. The pulse then propagates through a
3 mm-long fully ionized helium plasma of constant electron
density ne ¼ 1 × 1019 cm−3. The simulation utilizes a
moving window with box dimensions of 500 μm in the
longitudinal (laser propagation) direction and 150 μm in
the transverse direction. The corresponding resolutions are,
respectively, 60 and 7.2 cells per λ0. To calculate betatron
x-ray emission in these conditions, we select 750 random
electrons in energy to match the overall spectrum
[Fig. 4(c)]. The simulation is run again while also tracking
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FIG. 3. (a) Normalized x-ray yield through filters of Fig. 1 (red
dots) for a0 ¼ 3.05 and ne ¼ 1019 cm−3 and critical energy fits
calculated with Eq. (1), with Ec ¼ 5 keV, 10 keV, and 15 keV
(solid, dashed, and dotted lines). Inset: stacked image plate data
RE;i (red dots) and fit RT;i for a photon distribution [Eq. (2)] with
Ec ¼ 10 keV, A ¼ 0.000 14, and T ¼ 200 keV. (b) Deduced
betatron and bremsstrahlung spectra (see text for details).
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Electrons accelerated in the SMLWFA regime 
produce betatron x-rays
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of x rays through elements of the system (Al, Mylar
windows) and the calibrated image plates’ absorption
and efficiency [24]. For photon energies between 1 and
30 keV, we utilize the filter wheel. Assuming that the
betatron motion of the electrons dominates the observed
x-ray emission in this range, we consider an intensity
distribution per unit photon energy dE and solid angle dΩ
as a function of the photon energy E of the form:

d2I
dEdΩ

∝
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E
Ec

"
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K2
2=3½E=Ec"; ð1Þ

which is valid for betatron x rays on axis [25]. Here, Ec is
the critical energy of the betatron spectrum, and K2=3 is a
modified Bessel function. The distribution function is
calculated through the different filters of the wheel and
integrated to obtain the corresponding signal that it would
yield on the image plate. The filters are sufficiently thin to
neglect the effects of scattering for our range of energies.
Both the experimental and theoretical data are normalized
so that the sum of the signals of the filters is equal to 1. The
data are analyzed through a least squares fitting method by
minimizing the number

P
iðDi − TiÞ2, where Di and Ti

are, respectively, the measured and calculated normalized
signals for each filter. One example is shown in Fig. 3(a)
for a0 ¼ 3.05 and ne ¼ 1019 cm−3. Here, the best fit is
obtained for Ec ¼ 10 keV. In our experimental conditions,
the highest critical energy Ec ¼ 20 keV was measured for
a0¼ 3.02 and ne ¼ 1.3 × 1019 cm−3. By differentiating the
signal obtained in the iron-chromium Ross pair (filters 6
and 5, see image of Fig. 1), we can deduce the x-ray photon
yield Nx at 6.5&0.5keV. At constant electron density ne¼
1.3×1019cm−3, it goes from Nx¼3×108photons=eVSr for
a0 ¼ 1.44 to Nx ¼ 1.45 109 photons=eVSr for a0 ¼ 3.02.
A sharp stainless-steel edge placed 22 cm from the source
casts a clear shadow on the first image plate detector,
indicating that for energies below 30 keV, the main source
of x rays originates at the gas jet, consistent with betatron
emission. We do not expect any significant hard x-ray

bremsstrahlung emission from the very underdense plasma.
The measured 1=e2 source diameter has an upper value
of 35 μm.
To quantify the x-ray spectrum at photon energies

between 10 and 500 keV, we use the stacked image plate
spectrometer. In addition to the betatron spectrum
described by Eq. (1), we assume an additional high-energy
photon background so that the total number of photons per
unit energy on axis is:

dNx

dE
∝

1

E

!
E
Ec

"
2

K2
2=3½E=Ec" þ A exp½−E=ET "; ð2Þ

where ET is the temperature of the exponentially decaying
bremsstrahlung spectrum and A its amplitude relative to
the betatron spectrum. We propagate Eq. (2) through the
different materials of the experiment and through the
calibrated stacked image plate spectrometer [23,26].
The number RT;i ¼ PT;0=PT;i is calculated, where PT;0 is
the total theoretical yield in the first plate (plate C0 in Fig. 1)
and PT;i the total theoretical yield in subsequent plates for
i ¼ 1∶7. These values are compared to the experimental
results RE;i ¼ PE;0=PE;i to minimize the residue

P
iðRE;i −

RT;iÞ2 by varying the parameters ET and A. The betatron
critical photon energy is set at Ec ¼ 10 keV in agreement
with the Ross pair filters measurements. The best fit [inset of
Fig. 3(a) with the experimental data] is obtained for ET ¼
200 keV andA ¼ 0.00014. The residue is higher by a factor
of 10 if we fit using only betatron or bremsstrahlung
distributions separately. We deduce that the total x-ray yield
observed in our experiment and shown in Fig. 3(b) is a
combination of betatron radiation (dominant up to 40 keV)
and bremsstrahlung (dominant above 40 keV). The brems-
strahlung, inevitable whenever relativistic electrons are
produced, is likely due to lower energy (<500 keV) elec-
trons being strongly deflected by the magnet onto the walls
of the target chamber.
To explain the observed betatron x-ray spectra, we

performed 2D PIC simulations with OSIRIS for a variety
of conditions [27]. We illustrate the salient observations
from one simulation that uses an a0 ¼ 3, τ ¼ 0.7 ps, λ0 ¼
1.053 μm laser pulse focused to a spot size of 15 μm
(1=e2 intensity radius) into a 200 μm density up ramp. The
pulse duration and a0 were chosen to match the exper-
imental values, and the spot size matches the value obtained
from the Gaussian fit (1=e2 intensity radius) of the
measured spot. The pulse then propagates through a
3 mm-long fully ionized helium plasma of constant electron
density ne ¼ 1 × 1019 cm−3. The simulation utilizes a
moving window with box dimensions of 500 μm in the
longitudinal (laser propagation) direction and 150 μm in
the transverse direction. The corresponding resolutions are,
respectively, 60 and 7.2 cells per λ0. To calculate betatron
x-ray emission in these conditions, we select 750 random
electrons in energy to match the overall spectrum
[Fig. 4(c)]. The simulation is run again while also tracking
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FIG. 3. (a) Normalized x-ray yield through filters of Fig. 1 (red
dots) for a0 ¼ 3.05 and ne ¼ 1019 cm−3 and critical energy fits
calculated with Eq. (1), with Ec ¼ 5 keV, 10 keV, and 15 keV
(solid, dashed, and dotted lines). Inset: stacked image plate data
RE;i (red dots) and fit RT;i for a photon distribution [Eq. (2)] with
Ec ¼ 10 keV, A ¼ 0.000 14, and T ¼ 200 keV. (b) Deduced
betatron and bremsstrahlung spectra (see text for details).
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Electrons accelerated in the SMLWFA regime 
produce betatron x-rays

30
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Betatron x-rays have critical energies of 10-40 keV

31F. Albert et. al, Phys. Rev. Lett. (2017) 

Measured/calculated x-ray spectrum

Ec = 40 keV

Ec = 10 keV

Noise level

Betatron - Experiment
PIC simulation
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Optimized betatron radiation produces the most 
photons for energies <40 keV

32

Betatron, Ec = 10 keV

ne = 1.5 x 1019 cm-3

Elaser = 150 J
a0 ~ 3

Laser
Gas
ne ~ 1019 cm-3

Nozzle

𝒇 𝑬 ~ 𝑬
𝑬𝒄

𝟐
𝑲𝟐/𝟑𝟐 𝑬

𝑬𝒄

F. Albert et. al, Phys. Rev. Lett. (2017) 
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Compton scattering allows for increased photon 
flux up to a few 100 keV

33N. Lemos et. al,  Phys. Plasmas (2019)

Compton scattering
𝒇 𝑬 ∝ 𝑬𝒙𝒑 − 𝑬
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Compton scattering allows for increased photon 
flux up to a few 100 keV

34N. Lemos et. al,  Phys. Plasmas (2019)

Compton scattering
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LWFA-driven bremsstrahlung produces the most 
photons at MeV energies

35N. Lemos et. al,  PPCF (2018)

LWFA-driven bremsstrahlung
𝒇(𝑬) ∝ 𝑬𝒙𝒑[−𝑬/𝑻]

T = 838 keV (Step wedge)
Step wedge

Laser
Gas
ne ~ 1019 cm-3

Nozzle

ne = 4 x 1018 cm-3

Elaser = 120 J
a0 ~ 3

W 
100 µm
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We can control the x-ray flux and energy by 
combining several processes

36
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Spectral and flux tuning allows for optimized 
radiography applications

37N. Lemos et. al, In preparation 
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We can reproduce radiographs of test objects 
using the x-ray ray tracing code HADES

38I. Pagano et. al, In preparation 

4 cm
Experimental Radiograph Simulated Radiograph Comparison

Experiment
HADES

Laser
Gas
ne ~ 1019 cm-3
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SM-LWFA driven x-ray source shows 1.4x higher 
radiography SNR for the same conditions

39I. Pagano et. al, In preparation 
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Understanding electron-ion 
equilibration in warm dense matter
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Betatron x-ray source development at LCLS-MEC

41
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Application: detection of nonthermal melting
in SiO2

42

Non thermal 
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Absorption spectroscopy of SiO2 a the 
O K-edge (535 eV)

43
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No absorption of x-ray probe photons below
O K-edge energy

44
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Sharp transition corresponds to strong absorption 
of x-ray photons for energies above the O K-edge

45
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Multiphoton absorption causes electrons to cross the 
bandgap and leave vacancies in the valence band

46
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1s-valence band transitions are now authorized: 
strong absorption peak 9 eV below the edge

47
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Defect states also allow absorption within bandgap 
upon heating, K-edge is broadened and red shifted
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Defect states also allow absorption within bandgap 
upon heating, K-edge is broadened and red shifted
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We have demonstrated the use of betatron x-
rays as a tool for absorption spectroscopy
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We have demonstrated the use of betatron x-
rays as a tool for absorption spectroscopy

51
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We have demonstrated betatron x-rays 
absorption spectroscopy with sub ps resolution
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3. Time-resolved XANES (4/5)!

•  Pre-edge level extracted from integration of “hot” – “cold” averaged"
–  Pre-edge time evolution versus delay gives an upper limit for temporal resolution"

!  Just considering date on am-SiO2 … but the run #568 seems to be aberrant"
!  Without it, the best fit gives a temporal resolution = 0.48 ± 0.13 ps rms"
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We still have a lot of ongoing exciting projects

53

New acceleration 
mechanisms 

-
2 mm

keV-MeV sources and 
applications

Platform development on 
larger HEDS lasers

LaserNetUS experiments 
using betatron source3
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FIG. 2: Measured electron energy spectra for a plasma
with electron density ne = 3⇥ 1017 cm�3 dispersed
(A) perpendicular and (B) parallel to the linear laser
polarization direction. The contrast is adjusted and a
line-out along the dashed line is plotted (solid line) to
emphasize the forking feature in the dispersed electron
profile. The signal above 100 MeV is multiplied by 10
and 20 in (A) and (B), respectively, to emphasize the

spectrum at high energy. The dashed black line
indicates the acceptance aperture of the magnet. Note
that (A) and (B) were taken on two di↵erent shots with

similar laser energies.

ing structure is seen, and the FWHM beam divergence
is instead 21 mrad [red curve in Fig. 2(B)] at the same
energy. The elliptical beam profile of the electrons shown
in Fig. 1(C) gives the overall full-angle divergence at half-
maximum charge of the electron beam in the two planes
as 47 and 27 mrad in the x and y directions, respectively,
consistent with the dispersed spectra.
The forking structure gives clear evidence that elec-

trons above 60 MeV are gaining some or most of their
energy by the DLA process [22, 27]. Electrons acceler-
ated mainly through DLA generally exhibit higher energy
and greater divergence along the laser polarization di-
rection compared to electrons accelerated predominantly
through SM-LWFA. This larger divergence is evident in
the forking structure seen only for high-energy electrons
dispersed perpendicular to the laser polarization, as in
Fig. 2(A).
To discern the relative contribution of the various

mechanisms to the final energy of the electrons, we simu-
lated the full acceleration process with particle tracking
using the quasi-3D algorithm of the Osiris PIC simula-
tion framework [31, 32] for laser and plasma parameters
similar to those used in the experiment (see supplemen-
tal material). This algorithm allows us to unambiguously
determine the work done by the longitudinal field of the
plasma wave (Ez,m=0), as well as the transverse (Ex,m=1)
and longitudinal (Ez,m=1) fields of the laser. This has
allowed us to more correctly determine the overall DLA

contribution. Here m = 0 and m = 1 refer to the cylin-
drical modes corresponding predominantly to the wake
and the laser, respectively.

FIG. 3: Snapshot of the electron density profile after
4.64 mm of propagation (left to right) through the
plasma; z and x are the longitudinal and transverse
directions, respectively. Also shown are the m = 0

longitudinal electric field (SM-LWFA) overlaid in red
and the m = 1 transverse electric field envelope (DLA)
in green. The dashed green line shows the vacuum laser
field envelope at the focus. The tracked electrons, with

x positions given by their radial distance (only
half-space is shown), indicate where in space each
acceleration mechanism is dominant. The charge

density has been integrated in ✓.

Figure 3 shows the envelope of the transverse laser field
Ex,m=1 (green), the plasma density (blue) and the on-
axis longitudinal electric field of the plasma wave Ez,m=0

(red) 4.64 mm into the plasma. Clear modulation of both
the laser envelope and plasma waves is evident. How-
ever, a hydrodynamic channel is not fully formed (not
shown) within the laser pulse; the ion density remains
above 0.9n0 across the first bucket (potential well) and
above 0.7n0 where the laser field is of significant ampli-
tude, where n0 is the initial plasma density. The wave-
length of the plasma wave is increased for the first three
buckets by strong beam loading, but for subsequent buck-
ets it is close to 2⇡c/!p. The plasma electrons trapped
by the plasma wave are color-coded to indicate which
acceleration mechanism is at work (see subsequent para-
graphs). The accelerated electrons group together in the
later plasma buckets, where they gain energy predomi-
nantly by interacting with the longitudinal field of the
wave associated with SM-LWFA. However, the electrons
trapped in the front three buckets of the wake gain net
energy predominantly through the DLA process as they
interact with the peak-intensity portion of the laser pulse.
Relativistic self-focusing helps to maintain the peak in-
tensity of the laser pulse (see dashed green line).
To quantify the contribution of each acceleration mech-

anism (i.e., SM-LWFA and DLA), we use electron track-
ing in Osiris to calculate the work done on each electron
by the di↵erent spatial components of mode 0 (wake) and

• Role of Direct Laser 
Acceleration in Self-
modulated LWFA*

• 3D OSIRIS PIC simulations 
confirm observation (UCLA 
collaboration)

*P.M. King et al, PRAB (2021)

• Betatron, Bremsstrahlung, 
Compton sources for 
radiography applications

• LaserNetUS experiment at 
Texas Petawatt on radiography
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• 150 MeV, 700 nC beams at 
OMEGA EP*

• 150 MeV > µC at NIF- ARC
• Development of new targets 

and diagnostics
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• Study of warm dense iron 
with XANES 

• Phase contrast imaging of 
laser-driven shocks in water

*J.L. Shaw et al, Sc. Rep (2021)

*M. Berboucha, E. Galtier et al
**C. Kuranz et al
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Conclusions and future work

54

§ We have demonstrated the production of novel x-ray sources from laser-plasma accelerators on 
several laser facilities

§ They are broadband (keV - MeV), ultrafast (fs - ps), small source size (µm), collimated (mrad), 
synchronized with drive laser

§ They enable new applications
— Study of ultrafast non-thermal melting in SiO2
— Radiography of dense objects
— Phase contrast imaging of laser-driven shocks and hydrodynamic instabilities
— Study of opacity in HED matter

§ Future work and challenges
— Improving sources stability and flux
— Applications from proof-of-principle to practical
— LWFA sources as probes for HED science experiments, single shot and rep-rate
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Access to this type of research will be facilitated 
by networks 
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