Research Needs Workshop on Advancing Fusion with Machine Learning

D. Humphreys (GA), A. Kupresanin (LLNL), Workshop Co-chairs

FESAC Meeting Gaithersburg, MD 24 August 2020

Outline

- Motivation and background for Research Needs Workshop
- Workshop structure, approach, and overview
- Priority Research Opportunities identified
- Foundational resources and activities
- Maximizing effectiveness of fusion machine learning research
- Mathematical solutions and PRO's
- Summary and conclusions

Growth and Success of Machine Learning Has Motivated Focused DOE Assessments for Potential to Contribute to Areas Including Fusion Energy

- Machine Learning and Artificial Intelligence:
 - Rapidly growing fields
 - Extensive/successful commercial and research applications (but also lessons and caveats...)
- Several DOE assessments and workshops held in the last ~2 years:
 - FESAC Transformative Enabling Capabilities for Efficient Advance Toward Fusion Energy (2017)
 - Advanced Scientific Computing Research:
 Scientific Machine Learning (January 2018)
 - Fusion Energy Sciences/ASCR: Advancing Fusion with ML (May 2019)
 - DOE-wide: Al Town Halls (mid-to-late 2019)

FUSION ENERGY SCIENCES

ADVISORY COMMITTEE REPORT

Research Needs Workshop on Advancing Fusion with Machine Learning Apr. 30 – May 2, 2019; Gaithersburg, MD

- Goals: Identify Priority Research Opportunities including...
 - Areas in fusion science where ML/AI can be transformative
 - Gaps in ML/AI for applicability to areas under FES mission
 - Research principles for effective use of ML for fusion
- Joint FES/ASCR Workshop Team and Participation:
 - Technical ~ 60;DOE/Observers ~ 10 → Total ~ 70
 - FES/ASCR/Other Community Participants ~ 43%/38%/20%
- Panels and Participation:
 - Control 10
 - Models 12
 - Predictors 11
 - Science 12
 - Data 13

Workshop Structure

Approach:

- Pre-workshop document defined structure/goals
- Balance time equally between presentations (plenary) and discussions
- Start workshop with context, end with identification of draft PRO's in each panel
- Final output: initial text descriptions of draft PRO's

Agenda highlights:

- ~50% plenary, 50% breakout sessions: equal time for cross-panels discussion & panel focus
- Day 1: All plenary...
- Day 2: ~ All breakout (1 talk AM)
- Day 3: 50% plenary, 50% breakouts

Time	Session Title	Chair(s)	Rapporteur
8:00 - 9:00	Registration	N/A	N/A
9:00 - 9:05	General Announcements	N/A	N/A
9:05 - 9:15	Welcome: James van Dam	N/A	N/A
9:15 – 10:00	Workshop Intro:	Kupresanin/ Humphreys	N/A
	Humphreys/Kupresanin		
10:00 – 11:00	Plenary 1: Data Assimilation and	Kupresanin	Humphreys
	Machine Learning as Statistical Physics Problems		
	Henry Abarbanel		
11:00 – 11:45	Science Panel:	Kupresanin	Sabbagh
	Canik/Hittinger		
11:45 – 13:00	Lunch		
13:00 – 13:45	Control Panel:	Kupresanin	Wild
	Kolemen/Patra		
13:45 – 14:30	Models Panel:	Humphreys	D'Elia
	Boyer/Cyr		
14:30 – 15:15	Predictors Panel:	Humphreys	Rea
	Granetz/Lawrence		
15:15 – 15:45	Coffee Break		
15:45 – 16:30	Data Panel: Schissel/Pascucci	Humphreys	Grierson
16:30 -	Wrapup/Summary Day 1;	Humphreys	Kupresanin
17:30		Hompileys	Kopiesuiiii
	Brief for Day 2		

Workshop Results

7 Priority Research Opportunities identified:

- 1. Science Discovery with ML
- 2. ML-boosted Diagnostics
- 3. Model Extraction and Reduction
- 4. Control Augmentation with ML
- 5. Extreme Data Algorithms
- Data-Enhanced Prediction
- 7. Fusion ML Data Platform

Foundational Activities and Resources:

- Experimental fusion facilities/programs
- Theory & HPC/exascale computing resources
- Connections among domain experts (fusion science, computer science, statistical inference mathematics)

Workshop on Advancing Fusion with Machine Learning Priority Research Opportunities (PROs)

Accelerating Science	Enabling Fusion Energy	
PRO 1: Science Discovery with ML Hypothesis Generation and Experimental Guidance	PRO 4: Control Augmentation with ML Diagnostics to Data, Dynamic Models for Control, Fusion Trajectory Design	
PRO 2: ML Boosted Diagnostics ML Boosted Diagnostics, Physics Enhanced Data	PRO 5: Extreme data algorithms Extreme-scale Processing, In-situ Data Analysis	
PRO 3: Model Extraction and Reduction Data-driven Models, Reduction of Complex Code Algorithms	PRO 6: Data-enhanced Prediction Prediction of Disruption Events and Effects, Plasma Phenomena and State Prediction	

PRO 7: Fusion Data ML Platform

PRO #1: Science Discovery with Machine Learning

 Approaches to bridge gaps in theoretical understanding through identification of missing effects using large datasets

- Accelerating hypothesis generation and testing
- Optimizing experimental planning to help speed up progress in gaining new knowledge
- Example activities:
 - Theory-data hybrid models for tokamak confinement, resistive MHD, PWI
 - Priority planning for tokamak experiments to maximize effective use of limited machine time

PRO #2: Machine Learning-Boosted Diagnostics

- Application of ML methods to maximize the information extracted from measurements
- Enhanced interpretability with datadriven models
- Systematic fusion of multiple data sources
- Generation of synthetic diagnostics that enable the inference of quantities that are not directly measured

Example activities:

- Data fusion to infer detailed 3D MHD modal activity from many diverse diagnostics
- Enhancing 3D equilibrium reconstruction fidelity
- Extracting meaningful physics from extremely noisy signals

PRO #3: Model Extraction and Reduction

- Construct models of fusion systems and plasmas to enhance understanding of complex processes
- Accelerate computational algorithms with model reduction for multi-scale/multi-physics simulations
- Support hierarchies of fidelity in computer codes for whole device modeling
- Expose and quantify key sources of uncertainty

- Example activities:
 - Enable faster than real-time execution of tokamak simulations
 - Improve understanding of empirical turbulent transport coefficients

NubeamNet: NN ~10⁶ x faster than NUBEAM NBI calculation (Boyer NF 2019)

PRO #4: Control Augmentation with Machine Learning

 Control-level models for model-based design through data-driven methods

Real-time signal analysis algorithms

Optimize plasma discharge trajectories for control scenarios using algorithms derived from large databases

Example activities:

 Manage and reduce uncertainty in real-time modelbased control algorithms for tokamak operation

 Enable complex analysis of real-time signals for control decision making and exception handling

CAUTION required for reinforcement learning study...

PRO #5: Extreme Data Algorithms

- In-situ, in-memory analysis and reduction of extreme scale simulation data
- Methods for efficient ingestion and analysis of extreme-scale fusion experimental data into the new Fusion Data ML Platform (see PRO 7)
- Manage amounts/speed of data generated by fusion codes on exascale computers
- **Example activities:**
 - Preprocessing algorithms to increase throughput and efficiency of collaborative analysis and interpretation of long pulse tokamak pulse data as it is produced
 - Enhancing interpretability of data through optimized combination with simulation 11

results

(near) Real-Collaborative, 1st phase: time smart ~100 remote. Scientific feedback for automated, & recognition steering reduced Fast Lane Async. streaming, analyses on analysis & available reduction, at and resoruces near sensors Slingshot_/ Cloud./. Slow Lane Streaming data reduction 2nd phase: 1,000s post-Scientific analyses, results & Smart-reduced data worldwide conclusions can be stored

PRO #6: Data-Enhanced Prediction

- Algorithms for prediction of key plasma phenomena and plant system states
- Projection of complex fault and disruption effects for purposes of design and operational analysis
- Reliable disruption prediction with lead time sufficient for effective control action
- Example activities:
 - Quantifiably effective tokamak disruption prevention system enabling control action
 - Tokamak fault prediction and handling satisfying power plant requirements

ITER PCS Forecasting System Functional Block Machine State System Plant System State Health Projection Pulse Schedule Tokamak Faster Than State **Exception Modified** Forecasting Realtime Pulse Schedule Results Simulation Realtime Control Stability/ Boundary Equilibrium Proximities Control Reconstruction Boundaries Other Diagnostics Forecasting Results

PRO #7: Fusion Data Machine Learning Platform

- Cross-cutting collection of research and implementation activities to develop specialized computational resources to support scalable application of ML/AI methods to fusion problems
- Novel system for managing, formatting, curating, and enabling access to fusion experimental and simulation data for optimal usability in applying ML algorithms

Example activities:

- Algorithms to automatically populate Fusion Data ML Platform
- Tools for production and storage of key metadata and labels
- Methods for rapid selection and retrieval of data to create local training and test sets

Foundational Resources and Activities

- Many resources and activities ongoing in DOE Office of Science were identified, essential to enable effective use of ML/Al to solve fusion problems
- Fusion experimental facilities and programs
 - US & international devices, teams
 - Next-step devices: ITER, DTT, CFETR, STEP, ...
- Theory programs and computational resources:
 - Theory teams, simulation/analysis codes
 - High Performance Computing/exascale
- Robust connections among domain experts

Research Guidelines: ML/Al for Knowledge Extraction and Models

- ML goals include:
 - Extracting maximum knowledge from data
 - Bridging gaps in knowledge using data
 - Creating (compact) models from data
- Interpretability is important to identify role/relevance of physical parameters
 - Quantify new physical dependencies

- Uncertainty quantification is essential for ALL results
 - Quantify accuracy/reliability of new knowledge
 - Quantify performance of data-driven theory
- Validation measures must be identified in general
 - Quantify space of validity and extrapolability

Research Guidelines: Unique Requirements of ML/AI for Realtime Control

Requirements on Realtime Predictors for Control:

- Predict quantities for control of specific phenomena
- Output parameters that enable realtime control action
- Well-behaved, defined validity and extrapolability

Models for Control Design:

Quantifiable region of validity

Caveats on Reinforcement Learning for Control:

- Successful in domains that can be completely characterized (board games, video games, elements of autonomous vehicles...)
- Valid and important area of ML research...
- BUT not appropriate without detailed performance guarantees, UQ, validation... for controllers generated

Mathematical Approaches for PRO's 1-2: Scientific Discovery & Models

Transfer learning:

- Bridge gaps in existing theories with data
- Hybrid models: theory + data-driven
- Extend initial models with incremental data

Unsupervised learning:

- Discover trends and dependencies
- Classification studies

Structured equation parameter identification:

Analytic physics descriptions

Surrogate models:

 Encapsulate physical behavior with (compact) models

Data Constraints
$$\frac{dx_1}{dt} = A_{11}x_1 + A_{12}x_2 + C_{112}x_1x_2$$

$$\frac{dx_2}{dt} = A_{21}x_1 + A_{22}x_2 + C_{212}x_1x_2$$

17

Mathematical Approaches for PRO's 3-6: Control/Data/Predictors

Models for Control Design, Realtime use:

- Data-driven models
- Surrogate models from simulations
- Model reduction: speed, reduced accuracy

Performance quantification:

- Uncertainty quantification
- Dynamic accuracy/precision
- Regions of validity

Math implications of predictor principles:

- Interpretability to identify actions
- Classification for specificity of response
- Realtime-capable computation

Tokamak Control Operating Regime Map

Mathematical Approaches for PRO 7: Fusion Data Platform

- Automated meta-data extraction:
 - Create additional data labels to enable large-scale ML analysis
 - Federated availability of all data

Operations metadata: reveals key correlations

Targeted data formatting and curation: accelerates ML analysis

Unsupervised/supervised learning:

- Identify data and regimes of interest in fusion experiments
- Use meta-data to create better understanding of operational impacts
- Tools/Workflows for Fusion Data Platform:
 - Rapid data staging for ML applications
 - Curation for efficient access and use
 - ML-specific queries and visualization

ML user tools for data queries and visualization: enhance human effectiveness in scientific discovery

Summary and Conclusions

 Growth and success of machine learning/AI have motived several DOE assessments of potential for advancing many areas including fusion energy science

Joint FES/ASCR Research Needs Workshop, held on "Advancing Fusion Energy with Machine

Learning", April 30 – May 2, 2019, identified:

- Areas in fusion science where ML/AI can be transformative

- Gaps in ML/AI for applicability to areas under FES mission
- Research principles for effective use of ML for fusion
- Seven Priority Research Opportunities were identified:
 - Science Discovery with ML
 - 2. ML-boosted Diagnostics
 - 3. Model Extraction and Reduction
 - 4. Control Augmentation with ML
 - 5. Extreme Data Algorithms
 - 6. Data-Enhanced Prediction
 - 7. Fusion ML Data Platform

