

Recent results and near-term plans for Wendelstein 7-X

Thomas Sunn Pedersen on behalf of the W7-X team

Overview

- The optimized stellarator W7-X
- Planned operation phases
- Plasma-facing components and magnetic topology in OP1.1
- Examples of physics results in OP1.1
- Plans for OP1.2
- Summary

Tokamak and stellarator

- twisted magnetic field
- strong toroidal current in plasma

- excellent plasma confinement
- plasma instabilities require control
- steady-state operation requires strong current drive

- twisted magnetic field
- weak, self-generated toroidal current

- excellent plasma confinement to be proven: computer optimization needed
- Free of major disruptions
- steady-state

50 keV ion in a classical stellarator

50 keV D-ion in a B=2.5 T R=5 m classical stellarator – scales to α-particle in reactor

W7-X magnetic field optimization

50 keV D-ion in W7-X – scales to α-particle in HELIAS reactor

The optimized stellarator Wendelstein 7-X

Plasma volume 30 m³
Magnetic field 2.5 T (up to 3 T)
Superconducting coils 70
Magnetic field energy 600 MJ
Cold mass 435 t
Total mass 735 t

Wendelstein 7-X operational phases

OP 2: 2020 ...

Steady-state operation

Actively cooled divertor configuration

 $P_{cw} \sim 10 \text{ MW}$

 $P_{\text{pulse}} \sim 20 \text{ MW } (10 \text{ s})$

Technical limit 30 minutes @ 10 MW

OP 1.2: 2017 / 2018

Uncooled divertor configuration

P~10 MW

 $\int P dt \le 80 MJ$

 $\tau_{\text{pulse}} \sim 10 \text{ s at 8 MW}$

(... 60 s @ reduced power)

OP 1.1: 2015 / 2016 Limiter configuration

P < 5 MW -> 4.3 MW

 $\int P dt \le 2 MJ \rightarrow 4MJ$

 $\tau_{\text{pulse}} \sim 1 \text{ s} \rightarrow 6 \text{ s}$

PFCs and topology for OP1.1

- 5 shaped graphite limiters
- Designed to intersect >99% of the convective plasma heat loads
- The rest of the PFCs shielded from direct convective plasma loads
- Magnetic configuration without edge islands ensures "sharp edge"
- •Internal 5/6 island chain (+) serves as marker for the topology, indirectly confirming the absence of near-shadow island chains

Bare CuCrZr heat sinks (all being covered with graphite for OP1.2)

Confirming the topology

Measurements confirmed nested flux surfaces

- As reported earlier^{a,b}, the expected nested flux surface topology has been verified in great detail, including the intrinsic 5/6 island chain
- There were some deviations but all small
- The configuration chosen for OP1.1 plasma operation was particularly robust against field errors.
- With a different configuration^{c,d} we confirmed the topology to an accuracy of better than 1:100000

^aAPS-DPP meeting San Jose, CA (2016) ^bM. Otte et al., PPCF 58, 064003 (2016)

[°]S. Lazerson et al., Nucl, Fusion (2016)

dT. Sunn Pedersen et al., Nature Comm. (2016)

All goals of OP 1.1 were attained ...

OP 1.1 priorities: Integral commissioning and first plasma operation

- Integral commissioning of all systems needed for successful plasma operation
- 2. Existence of closed flux surfaces all the way to the limiter (at B=2.5 T)
- 3. Measurement and adequate reduction of B₁₁ field errors
- 4. Reliable ECRH plasma startup scenario in He
- 5. Basic ECRH interlocks and safe operation scenarios: ∫P dt ≤ 2 MJ
- 6. Basic impurity content monitoring
- 7. Central $T_e > 1$ keV at $n_e > 5 \cdot 10^{18}$ m⁻³ in at least 10 discharges in He

Confirmation of optimization goals of W7-X will be done in later operation phases

Plasma generation (early phase)

- Plasma break-down within 10ms
- Sniffer interlock (radiation collapse) terminates plasma after ~20 ms
- Hundreds of short ECRH cleaning discharges (3 days corresponding to about 4 sec plasma operation)

- ⇒ discharge length extended to ~50ms
- ⇒ With more pulses and glow discharge cleaning, eventually 6 seconds

Success of OP 1.1: A collaborative effort

- 402 out of 843 plasma experiments (discharges) with physics proposals
- 774 proposals conducted in the 402 physics programs

Measurement of basic plasma parameters

- Low densities and electron heating by ECRH resulted in $T_e >> T_i$
- Results in outward pointing electric field in the core giving so-called Core Electron Root Confinement (CERC) – more on that later

Characterization of energy confinement

Optimized confinement time as predicted for W7-X ion-regime ($\chi_{e,1/v} \sim \epsilon_{eff}^{3/2}$)

Confinement times during 1st W7-X campaign

- Best plasmas lie on ISS04-scaling
- Only 16 days of hydrogen operation
- Conditioning of wall was still ongoing; impurity issues

Demonstration of O2-ECRH

- Proof-of-principle for highdensity operation with ECRH in future operation phases
- Plasma start-up in X2-mode
 - X2-cutoff at $n_e = 1.2 \times 10^{20} \text{ m}^{-3}$
- For $T_e \ge 5$ keV simultaneous X2- and O2-heating
- Finally, sustainment of plasma with only O2-heating
 - O2-cutoff is at 2.4*10²⁰ m⁻³

Limiter heat load patterns and a slightly altered configuration

Pattern of connection lengths on limiters

F. Effenberg, O. Schmitz, University of Wisconsin-Madison

Heat load patterns in OP1.1 agree with predictions

IR camera temperature

G. Wurden, LANL, USA

"De-optimized" configuration for OP1.1

This configuration offered:

- Shift of 5/6 island chain inward, away from neutral source region:
 - (It is so small now that it's not visible on the Poincare plot)
 - Expected particle confinement time increase confirmed [collab, U. Wisconsin]
- Slightly higher iota
 - Shift of heat loads on the limiters
- Neoclassics de-optimized: ε_{eff} factor of 2 higher by increasing mirror term
 - ε_{eff}^{3/2} is a measure of losses due to bad orbits
 almost a factor of 3 naively expected
- More "risky" scrape-off layer topology: 5/5 island chain comes closer [was not a problem]

Heat load patterns in OP1.1 agree with predictions

IR camera temperature

G. Wurden, LANL, USA

Heat load patterns in OP1.1 agree with predictions

IR camera temperature G. Wurden, LANL, USA

"De-optimized" configuration

Confinement time with "de-optimized" configuration

Essentially no change in confinement, as expected Why expected? Because of electric field effects....

Strong electric fields in stellarators: CNT

This brings me back to the good old CNT days...

Particle drifts out – CNT is not an optimized stellarator

Add a strong radial electric field: Particle stays in

Experimental findings in CNT: 20 ms initially^a, then up to 320 ms^b

Conclusion: Radial electric fields can significantly heal bad stellarator orbits and therefore effectively mask any ϵ_{eff} dependences that there would have been otherwise

^a J. P. Kremer et al., PRL **97**, p. 095003 (2006),

^b P. W. Brenner et al., CPP **50** p.678 (2010)

Electric fields in stellarators

How large of a role does the bulk ExB drift play relative to the magnetic drifts?

$$\left| \frac{v_{ExB}}{v_{\nabla B}} \right| \approx \left| \frac{\nabla \phi / B}{(W_k \nabla B / qB^2)} \right| \approx \left| \frac{q\phi}{W_k} \right|$$

Pure-electron plasma: Dominant (factor of 10-1000, CNT: 50)

Thermal particles in a quasineutral plasma: Depends.. (0.2-5)

Set by ambipolarity

OP1.1 T_e>>T_i leads to relatively strong role in core - CERC

Fusion α 's: Negligible (~35 keV/3.5 MeV~0.01)

So, the orbit-healing effects of E_r is going to be smaller in later operation phases, and cannot "fix" α -confinement in a future reactor

Turbulence Filaments

3D turbulence in W7-X

- Structures are highly field-alignedfilamentary
- Rotate and pulsate

Filaments are visible when plasma is "cold"

- We have a diagnostic for that:
- Photron SA5 camera
 - 46.5kframe/s @
 384x352 pixels
- Field lines in the camera view shown here
- Visualizations can be induced with nitrogen injections from He-beam diagnostic

2.5 ms of dynamics just inside the LCFS

- This is radiation on closed flux surfaces
- Filaments are clearly seen
- They rotate clockwise in this view
- Assuming ExB drift
 - Inward pointing (negative) E-field
 - Expected at T_e~T_i at the edge of the plasma

G. Kocsis et al., Wigner RCP, Hungary

2.5 ms of dynamics just outside the LCFS

- This is radiation in the SOL induced by a nitrogen puff
- Counter-clockwise rotation initially at least!
- Assuming ExB drift:
 - Outward pointing (positive) E-field
 - Not surprising on open field lines

G. Kocsis et al., Wigner RCP, Hungary

Looking forward to OP1.2

Wendelstein 7-X heating systems

Development of heating systems

Method	OP 1.1	OP 1.2	OP 2
ECRH steady state 140 GHz 2.5 T	5 MW X2 LFS launch (front steering)	9 MW X2 / O2 LFS & HFS launch (front & remote steering)	9 MW X2 / O2 / OXB LFS & HFS launch (front & remote steering)
NBI pulsed 55 keV (H) 60 keV (D)		7 MW (H)	10 MW (D) 7 MW(H)
ICRH pulsed 25 – 38 MHz		² MW ³ He, H minority	4 MW ³ He, H minority
		Upgrade of power supplies	

Major topics for OP1.2

Optimization of confinement of W7-X ion-regime ($\chi_{e,1/v} \sim \epsilon_{eff}^{3/2}$)

- -Requires high heating power and high density
- -Strong coupling of ions and electrons
- -Involved issues: Fuelling (pellet injection), density limit

Investigation of confinement and core transport

- Anomalous versus neoclassical transport
- -Role of neoclassical effects (e.g. thermo-diffusion)
- Role of radial electric field
- Role of heating method and deposition profile
- -Tailoring of plasma temperature, density and ι-profiles

Heating scenarios, current drive and fast ion production and confinement

- -High density heating and current drive with ECRH (O2-heating beyond X2 cut-c
- Ion heating with NBI
- -Fast ion production with NBI and ICRH
- -Validation of W7-X drift optimization, fast ion driven instabilities (long-term)

Up-down asymmetry in divertor heat loads

- Up-down asymmetries of up to a factor of two in the divertor heat and particle fluxes have been observed in tokamaks and stellarators
- Effect reverses sign when the magnetic field changes sign
 - Guiding-center drift effect (ExB or magnetic drift)
- We will reverse the magnetic field towards the end of OP1.2b
- We have particularly well-diagnosed divertors in HM 30 and 51 (one up, one down)
- By applying an n=0 (ie radial) magnetic field with the trim coils, we can move the flux surfaces (and therefore the plasma) about 1 cm vertically – roughly the SOL width

Collaboration with Sam Lazerson, PPPL (USA)

High-pressure fast divertor gas injection system

- Multiple functions
 - Fast fuelling (H₂) in divertor region (msec time scale)
 - He-beam injection as He-beam divertor diagnostic
 - First results in OP1.1 improved design for OP1.2
 - Ar, Ne, CH₄, N₂ injection for edge radiative cooling in OP1.2
- Multiple locations
 - OP1.2: HM 30 and 51 (installation complete Dec 2016)
 - (Up-down symmetric)
 - OP2: All 10 divertor units

Pellet injection system(s)

Pellet injection system OP1.2

OP 1.2:

Collaboration IPP Garching: former AUG pellet injection system: operational

 Collaboration ORNL, USA: Microwave cavity inflight pellet mass detector: operational

Pellet size: 2 mm

Pellet speed: 250 m/s

Repetition rate: 25 Hz

Comparison LFS vs HFS injection

Unclear if HFS injection is better in stellarators

Pellet injection system OP2

OP 2:

- Collaboration NIFS, Japan and ORNL, USA
 - First hardware purchases now in Japan and Germany
 - Exact scope of ORNL part is not yet clear
- Pellet size: 3 mm x 3 mm
- Density increase per pellet ~3*10¹⁹ m⁻³
- Pellet speed: 600 m/s
- Repetition rate: 10 Hz for 30 minutes
- Low field side injection
 - Verification in OP1.2 that LFS injection works well
 - If not, a plan B for HFS injection will be challenging given pipe work for water cooling

Status January 2017: 46 new or upgraded diagnostics

4 Heating and fueling systems (1 upgrade, 3 new) plus 2 associated safety diagnostics

12 Must-have diagnostics (A) (2 new, 10 upgrades/exchanges)

23 Should-have diagnostics (B) 11 new, 12 upgrades/exchanges

11 Might-get diagnostics (C) 5 new, 6 upgrades/exchanges

Summary

- Successful first campaign produced many interesting and encouraging results
- Limiter operation provided a comparison basis for future divertor operation
- In general, good agreement between expected and observed phenomena
 - Data are still being analyzed...
- OP1.2 will be very important for the preparation of OP2, in particular with respect to divertor operation
- New tools are/will be ready for exciting physics program in OP1.2, e.g.:
 - > 15 new diagnostics
 - TDU scraper elements (PPPL/ORNL coll.): now at IPP
 - Two OP1.2 IR endoscopes: now at IPP
 - Pellet injection
 - More power: NBI (7 MW), ICRH (2 MW), ECRH (now up to 9 MW)