

Federal Energy Standing Advisory Committee, 01 February 2017

Page 2/56

2015: managing the need for change

Final Report of the

2013 ITER Management Assessment

(Contract-ITER/CT/13/4300000830)

October 18, 2013

Action Plan 2015

Set clear priorities and timeline for reform

- ✓ Reorganized, integrated ITER Central Team with Domestic Agencies
 - Clear decision processes and accountability
 - ✓ Executive Project Board, Reserve Fund, Project Teams
- ✓ Finalized and stabilized ITER critical component design
- Comprehensive integrated bottom-up review of all activities, systems, structures, and components to build the ITER machine
 - Developed an optimized resource-loaded schedule for timely, cost-effective construction and operation through D-T plasma. Updated the 2010 Baseline.
- Developed and promoted a strong, organization-wide nuclear project culture

Federal Energy Standing Advisory Committee, 01 February 2017

Page 3/56

2016: Performance & Follow-through

Code	Name	ORG 1	Target						
01	Tier-1 of Cryostat base Section deliver to IN-DA Workshop at ITER Site	IN	Q1 2016						
02	Start of B1 Civil works in Tokamak Building	EU	Q1 2016						
03	Lot-1 Piping - Delivered by IN-DA to IO at ITER-Site	IN	Q1 2016						
04	Erection of Tokamak Main Cranes in Assembly Hall	EU	Q2 2016						
05	Completion of First EU TF Winding Pack	EU	Q2 2016						
06	Fabrication of all TF Conductors from RF, CN and JA Completed	CN,JA,RF	Q2 2016						
07	All Magnet Conductor Fabrication Complete for PF5 and PF2	CN	Q2 2016						
08	Completion of Performance Tests of Full-W Divertor OVT Plasma Facing Units	JA	Q2 2016						
09	Installation of WDS Tanks in Tritium Building	EU	Q2 2016						
10	Complete CS Module 1 Winding	US	Q2 2016						
11	Signature of CMA Contract	ю	Q3 2016						
12	Complete 4th (of 9) TF Conductor Unit Length	US	Q3 2016						
13	First Sub Segment Assembly VV Sector 5 Completed	EU	Q4 2016						
14	First Liquid Nitrogen Refrigerator Equipment Factory Acceptance Tests Completed	EU	Q4 2016						
15	Steady State Electrical Network - Delivery of Power	US	Q4 2016						
16	From July 2016 Progress R	eport	5						
17	Blue – completed		5						
18	Green - on schedule		7						
19	Vellow – delays anticipated		7						
î8	Tenow – delays anticipated		7						
19	Red – delayed, mitigation needed								
20	• · •								

In November 2015 the ITER Council defined 29 milestones for 2016-2017. 19 milestones set for 2016 were achieved on schedule, on budget. The last one is postponed three months (welding control).

Strong performance: meeting demands of external validation while maintaining construction and manufacturing at full pace in accordance with agreed milestones

April 2016: intensive, in-depth review by independent expert group declares:

- "...substantial improvement in project performance..."
- "...high degree of motivation...
- "...considerable progress during the past 12 months..."
- "...sequence and duration of future activities have been fully and logically mapped in the resource-loaded schedule..."
- "...resource estimate is generally complete [...] and provides a credible estimate of cost and human resources..."

Report to Congress from US Secretary of Energy

- "The project appears to be technically achievable, although significant technical and management risks remain."
- "The U.S. ITER in-kind contributions have been designed, constructed and delivered consistent with the key milestones. Four of the twelve U.S. hardware systems are currently in final fabrication."
- "DOE recommends continuing the reforms already underway, implementing additional measures as described in this report, and revisiting this recommendation as part of the FY 2019 budget process (end of 2017 to early 2018)."

iter china eu india japan korea russia usa

Federal Energy Standing Advisory Committee, 01 February 2017

Page 6/56

A staged approach to DT plasma

Extensive interactions among IO and DAs to finalize revised baseline schedule proposal

- Schedule and resource estimates through First Plasma (2025) consistent with Members' budget constraints
- Proposed use of 4-stage approach through Deuterium-Tritium (2035) consistent with Members' financial and technical constraints

Major assembly milestones

	Level 0 Schedule											
		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
	Major ITER Milestones			🔿 Start	Machine /	Assembly	Phase I		Cryostat	Closed C 1 st	Plasma 🔿	
\$ (00.01/00.02)	TF Coils (1.1.P1A.EU.01) TF Coils (1.1.P1B-JA.01) Central Solenoid (1 1 P4A US 01)		TF C	TF Coi Coils 12, 13,	s 11,09, 06,04 08, 10,0	05,03, 01,18,1 2,16, 07, 1	7,14 5,19					
			Fi	rst CS Modul	e CSL3	Last CS M	Nodule CSU3					
NOI	Poloidal Field Magnets			PF Coils	05, 06,02	04, 01	03					
ITER CONSTRUCTION AND OPERATI	Vacuum Vessel (1.5.P1A.KO) Vacuum Vessel (1.5.P1A.EU) Vacuum Vessel (1.5.P1A.IO Transferred Sectors)		VV s	ector 06,	01(07) VV Sector V Sector	05,04, 03,02,	09					
	Building Construction (6.2.P2.EU.05)		Assembly BI 13 RFE 1A	dg Bldg 11 Stage 1 Bldg 11 F	RFE 1B	dg 11 RFE 10 Start Sub-	C VV Sector 08 Assembly	3		Cryostat C (Install Bios End Machir Assembly F	l losed hid Lid) he Phase I	
	Construction (2.2.P1.IO)		Assembly Start Asse	Machine mbly Phase I	Lowe Asse Com	er Cryostat embly pleted	VV Sect Sub-Ass Complet	or VV S sembly Asse	ector mbly		1 st Plasma	
	Operations			Star Sub	t VV Sectors -Assembly					Start Ir Comm	itegrated	

18th & 19th ITER Council endorse updated Schedule

ITER Council convenes twice a year in June and November at ITER Headquarters

First Plasma in December 2025, first physics experiment in 2028, DT commissioning December 2035.

The updated Schedule is challenging but technically achievable.

It represents the best technically achievable path forward to First Plasma.

Members now have all the elements needed to go through their domestic processes of obtaining approval for the Resource-Loaded Integrated Master Schedule

Federal Energy Standing Advisory Committee, 01 February 2017

Page 9/56

Construction-Management-as-Agent Contract Signed

On 27 June, the ITER Organization signed a 10year Construction Management-as-Agent (CMA) contract with the MOMENTUM joint venture, to manage and coordinate the assembly and installation of the Tokamak and associated plant systems

Federal Energy Standing Advisory Committee, 01 February 2017

Page 10/56

Entering the industrial phase with highly challenging specifications

Manufacturing of ITER components is taking place at the cutting edge of technology:

- Geometrical tolerances measured in millimetres for steel pieces up to 17 m tall weighing several tons
- Superconducting power lines cooled to minus 270 degrees Celsius
- Plasma facing components to withstand heat flux as large as 20 MW per m²
- Cryoplant cooling capacity up to 110 kW at 4.5 K; maximum cumulated liquefaction rate of 12,300 litres/hr
- Etc.

Federal Energy Standing Advisory Committee, 01 February 2017

Page 11/56

Federal Energy Standing Advisory Committee, 01 February 2017

Page 12/56

Federal Energy Standing Advisory Committee, 01 February 2017

china eu india japan korea russia usa

43 metres above the building's basemat the double overhead crane is now

installed

On 14 June lifting operations begin.

Each pair of cranes will have a lifting capacity of 750 tons.

On 22 June, the 4 beams and 2 of 4 trolleys (100 t.) are installed.

An auxiliary overhead crane (50 t) was installed on 8 December 2016

Federal Energy Standing Advisory Committee, 01 February 2017

Page 18/56

Federal Energy Standing Advisory Committee, 01 February 2017

Page 19/56

Federal Energy Standing Advisory Committee, 01 February 2017

Page 20/56

Federal Energy Standing Advisory Committee, 01 February 2017

Page 21/56

Cryoplant

iter china eu india japan korea ru

Foundation works and column construction are ongoing on what will be the largest single platform cryoplant in the world. The ITER Cryoplant will distribute liquid helium and nitrogen to various machine components (supraconducting magnets, thermal shield, cryopumps, etc.).

Page 22/56

Too large to be transported by road, four of ITER's six ring-shaped magnets (the poloidal field coils, 8 to 24 m in diametre) will be assembled by Europe in this 12,000 m² facility. Fabrication of a dummy for PF Coil # 5 (17 m. in diametre) is ongoing.

iter china eu india japan korea russia usa

Federal Energy Standing Advisory Committee, 01 February 2017

23/56

PF6

Page 24/56

Tooling for Poloidal Field coil #6 (350 tons, 10 meters in diameter), is now complete and being commissioned.

The first of three power transformers for the pulsed electrical network is being equipped on site.

Magnet Systems, Power Systems, Blanket, Fuel Cycle, Diagnostics

iter china eu india japan korea russia usa

At ASIPP, the first-of-series, multiple-pancake bottom correction coil winding is prepped for the wrapping of ground insulation.

Correction coil vacuum pressure impregnation of a dummy double pancake at ASIPP.

Magnet Systems, Power Systems, Blanket, Fuel Cycle, Diagnostics

iter china eu india japan korea russia usa

Federal Energy Standing Advisory Committee, 01 February 2017

Page 27/56

Buildings, Magnet Systems, Heating & Current Drive Systems, Vacuum Vessel, Divertor, Blanket, Power Systems, Fuel Cycle, Tritium Plant, Cryoplant, Diagnostics, Radioactive Materials

iter china eu india japan korea russia usa

Page 28/56

The manufacturing of the Full-scale Divertor Cassette Body Prototype is well advanced.

Part of the 35m transmission line connected to the SPIDER vessel at the Neutral Beam Testing Facility (NBTF) site in Padua, Italy.

Buildings, Magnet Systems, Heating & Current Drive Systems, Vacuum Vessel, Divertor, Blanket, Power Systems, Fuel Cycle, Tritium Plant, Cryoplant, Diagnostics, Radioactive Materials

iter china eu india japan korea russia usa

India is responsible for fabrication and assembly of the 30 x 30 meter ITER cryostat. The base plates for Tier 1 & 2 have been delivered to ITER.

Prototype Cryoline have been successfully tested at ITER-India.

Cryostat, Cryogenic Systems, Heating and Current Drive Systems, Cooling Water System, Vacuum Vessel, Diagnostics

iter china eu india japan korea russia usa

Thousands of in-wall shielding pieces have been manufactured, passed factory acceptance, and are being prepared for shipment.

A 3 MW radio frequency high voltage power supply was successfully operated at ITER parameters.

Cryostat, Cryogenic Systems, Heating and Current Drive Systems, Cooling Water System, Vacuum Vessel, Diagnostics

iter china eu india japan korea russia usa

Federal Energy Standing Advisory Committee, 01 February 2017

Page 31/56

012

Toroidal field coil high-temperature treatment to form niobium-tin supraconductor compound.

Connection of segments for the first inboard Toroidal Field Coil structure.

Magnet Systems, Heating & Current Drive Systems, Remote Handling, Divertor, Tritium Plant, Diagnostics

Series production of central solenoid conductor continues. 28 of 49 conductors have already been shipped to the US.

Assembly tests on the 1 MV bushing at Hitachi for the full-scale ITER neutral beam injector.

Magnet Systems, Heating & Current Drive Systems, Remote Handling, Divertor, Tritium Plant, Diagnostics

iter china eu india japan korea russia usa

Federal Energy Standing Advisory Committee, 01 February 2017

Page 33/56

Japan

At Hyundai Heavy Industries, welding on the upper section of the inner shell for Sector #6.

Welding operations of the first 800-ton Sector Sub-Assembly Tool, one of 128 purpose-built tools for assembly.

Vacuum Vessel, Blanket, Power Systems, Magnet Systems, Thermal Shield, Assembly Tooling, Tritium Plant, Diagnostics

iter china eu india japan korea russia usa

At Sam Hong Machinery in Changwon, fabrication is progressing on all nine 40° thermal shield sectors, including outboard welding. Staff inspects the outboard columns of the giant sector sub-assembly tool at Taekyung Heavy Industries in Changwon.

Vacuum Vessel, Blanket, Power Systems, Magnet Systems, Thermal Shield, Assembly Tooling, Tritium Plant, Diagnostics

iter china eu india japan korea russia usa

Fabrication and qualification tests of PF1 winding pack stack sample were successfully completed.

Winding of first double pancake for poloidal field coil #1 inside the clean room.

Power Systems, Magnet Systems, Blanket, Divertor, Vacuum Vessel, Diagnostics, Heating & Current Drive Systems

îter china eu india japan korea russia usa

Federal Energy Standing Advisory Committee, 01 February 2017

Page 36/56

Russia completed its share of toroidal field conductor in June 2015, marking the end of a 5-year campaign to manufacture 28 production lengths (more than120 tons of material).

Welding of double-wall parts of the Upper Port Stub Extensions #12 and 02 for the vacuum vessel are complete.

Power Systems, Magnet Systems, Blanket, Divertor, Vacuum Vessel, Diagnostics, Heating & Current Drive Systems

iter china eu india japan korea russia usa

Federal Energy Standing Advisory Committee, 01 February 2017

Page 37/56

General Atomics is fabricating the 1000-ton Central Solenoid (CS). In April 2016, winding of the first CS module was completed.

Module tooling stations are in place and being commissioned, including the heat treatment furnace shown here.

Cooling Water System, Magnet Systems, Diagnostics, Heating & Current Drive Systems, Fuel Cycle, Tritium Plant, Power Systems

iter china eu india japan korea russia usa

The turn insulation station wraps each bar of conductor The top plate of the central solenoid assembly platform during fabrication at Robatel.

Cooling Water System, Magnet Systems, Diagnostics, Heating & Current Drive Systems, Fuel Cycle, Tritium Plant, Power Systems

with Kapton® fiberglass tape.

Forging of a tie-plate first article. The tie-plates are part of a substantial structural cage surrounding the central solenoid magnet.

After forging, the tie-plates are machined to required specifications.

Cooling Water System, Magnet Systems, Diagnostics, Heating & Current Drive Systems, Fuel Cycle, Tritium Plant, Power Systems

iter china eu india japan korea russia usa

The cryoviscous compressor full-scale prototype was successfully tested at the ORNL Spallation Neutron Source cryo facility.

A roots pump prototype has been successfully tested at ORNL.

Cooling Water System, Magnet Systems, Diagnostics, Heating & Current Drive Systems, Fuel Cycle, Tritium Plant, Power Systems

iten china eu india japan korea russia usa

Federal Energy Standing Advisory Committee, 01 February 2017

Page 41/56

A blower for cooling transmission lines will be tested on the highpowered ORNL resonant test line. A radio-frequency discharge system for diagnostic mirror cleaning is in development and testing. [Inset: Electron cyclotron emission prototype developed at General Atomics and tested on DIII-D.]

Cooling Water System, Magnet Systems, Diagnostics, Heating & Current Drive Systems, Fuel Cycle, Tritium Plant, Power Systems

iter china eu india japan korea russia usa

USA

The US has delivered an array of components for the steady state electrical network and will complete deliveries in 2017.

Cooling Water System, Magnet Systems, Diagnostics, Heating & Current Drive Systems, Fuel Cycle, Tritium Plant, Power Systems

iter china eu india japan korea russia usa

Page 43/56

ITER's Role in the US Fusion Program

National Research Council (2004) From the "Executive Summary":

"...<u>A burning plasma...is an essential</u> step to reach the goal of fusion power generation....The committee concluded that there is high confidence in the readiness to proceed with the burning plasma step. <u>The International</u> <u>Thermonuclear Experimental Reactor</u> (ITER), with the United States as a significant partner, was the best choice. Once a commitment to ITER is made, fulfilling it should become the highest priority of the U.S. fusion research program." DOE Secretary Moniz's report to Congress (May 2016)

From the "Message from the Secretary":

"ITER remains the best candidate today to demonstrate sustained burning plasma, which is a necessary precursor to demonstrating fusion energy power."

Coordinating ITER Physics R&D

First ITER Scientist Fellows' Workshop ITER HQ, September 2016

- Emphasis on mobilization of fusion community:
 - ✓ Develop key R&D activities
 - Support Research Plan development
 - ✓ Prepare for efficient operation
- Mechanisms to integrate fusion community into ITER programme:
 - International Tokamak Physics Activity (ITPA)
 - ✓ IEA TCP on Co-operation on Tokamak Programmes (CTP)

Key ITER Physics R&D

Extensive Physics R&D programme in collaboration with international fusion community – critical for addressing remaining design issues and preparing for Operations

✓ Effective disruption management essential to reliable operation

- $\checkmark\,$ Addressing disruption detection, avoidance and mitigation
- ✓ International collaboration on development of shattered pellet injector concept for disruption mitigation (IO-CT/ USIPO/ DIII-D/ JET)
- ELM control by magnetic perturbations, including spectral requirements and control of divertor heat loads
- ✓ Optimized approach to Error Field correction
- ✓ Impact of fuel and impurity transport on plasma performance in ITER

iten china eu india japan korea russia usa

Engineering innovation : superconductors

200 km, 2,800 tons of superconductors (90% of the total required) have been manufactured and validated

Six ITER Members—China, Europe, Japan, Korea, Russia and the United States—have been responsible for the production of cable-in-conduit conductors worth a total of EUR 610 million.

The eight-year campaign to produce the superconductors for ITER's powerful magnet systems is in its final stages.

*Harmonized global standards for production methods, quality controls, testing protocols, etc.

*Groundbreaking work in materials science.

*Largest superconductor procurement in industrial history.

china eu india japan korea russia usa

Federal Energy Standing Advisory Committee, 01 February 2017

Page 47/56

Engineering innovation : gyrotrons

t (=) china eu india japan korea russia usa

Federal Energy Standing Advisory Committee, 01 February 2017

Page 48/56

Engineering innovation: cleaning methods

New cleaning techniques are being developed for ITER first mirrors.

Federal Energy Standing Advisory Committee, 01 February 2017

Page 49/56

Engineering innovation: vacuum systems

8-tonne machined flange of the first Torus Cryo-pump

Neutral Beam Injection Cryo-pump: 8 meters long, 2.8 meters high

The ITER vacuum system will be one of the largest, most complex vacuum systems ever built: the cryostat, at ~ 8500m3; the torus, at ~1330 m3; the neutral beam injectors at ~180m3 each; plus lower volume systems.

More than 400 vacuum pumps will employ 10 different technologies.

Final design involved new fabrication methods to reduce cost and manufacturing time of cryo-panels and thermal shields within the pumps.

Engineering innovation: Robotics and remote handling

tera china eu india japan korea russia usa

Due to the massive size of the ITER Tokamak components, as well as the intense neutron flux that will occur during operations, the ITER machine has required the development of cutting-edge robotics and remote handling tools, which will be used in both the assembly and operational phases.

Federal Energy Standing Advisory Committee, 01 February 2017

Page 51/56

Innovation: other areas...

Federal Energy Standing Advisory Committee, 01 February 2017

Page 53/56

Federal Energy Standing Advisory Committee, 01 February 2017

Page 54/56

Federal Energy Standing Advisory Committee, 01 February 2017

Page 55/56

Federal Energy Standing Advisory Committee, 01 February 2017

Page 56/56

iter china eu india japan korea russia usa