US ITER Project Progress

Brad Nelson

Chief Engineer, US ITER Project Office

Fusion Energy Sciences Advisory Committee September 23, 2014

ITER Tokamak Core in Building

Site Progress

Recent Activities

Cryostat Workshop (India)

Poloidal Field Coil Winding Facility (EU)

9/23/14

FESAC ITER Progress/Nelson

Tokamak Complex Floor (B2 Slab)

9/23/14

FESAC ITER Progress/Nelson

Tokamak Complex Floor (B2 Slab)

Tokamak Complex Floor (B2 Slab)

Fabrication of ITER Components by Global Partners is Underway

Sample toroidal field conductor has been produced by the six responsible Domestic Agencies.

ELISE ion source at IPP, Garching, Germany

Neutral beam injector test facility

Neutral beam injector test facility in Padova, Italy

Extraction grid power supply in San Giorgio di Piano, Italy

FESAC ITER Progress/Nelson

1MW gyrotrons for plasma heating & current drive and mode suppression

US FY14 Status and Achievements

Tokamak Cooling Water System

- a - a

al Solenoid

Scope Delivered in 2 Phases All Designs Completed Before 1st Plasma

1st Plasma

Toroidal field

conductor

Steady-state

electrical network

 Central Solenoid

Partial Production Delivered

- Ion/electron cyclotron heating
- Diagnostics
- Roughing pumps
- Pellet injection
- Tokamak cooling water system
- Vacuum auxiliary system

Post-1st Plasma

Completion of Production

- Ion/electron cyclotron heating
- Diagnostics
- Roughing pumps
- Pellet injection
- Tokamak cooling water system
- Vacuum auxiliary system

Full Production

- Tokamak exhaust processing
- Disruption mitigation

Toroidal Field Coil Conductor

Toroidal Field Coil

- Total Magnetic Energy of all TF Coils: 41 GJ
- Maximum Magnetic Field: 11.8 T
- Number of Coils: 18
- Total TF Coil Weight: 6540 t
- TF Coil Height: 16.5 m
- TF Coil Width: 9 m
- Operating Temperature: 5.7 K
- Current in 1 TF Coil: 9.11 MA
- Number of turns in 1 TF coil: 134

Toroidal Field Conductor FY 14 Status

- US responsible for providing nine 800 m TF conductor unit lengths (8% of the total)
- Fabrication contracts
 - All of the superconducting strand (from OST and Luvata), jacket sections (e-Energy), and spiral core tubing have been provided
 - Remaining fabrication work is at NEWT for cabling the superconducting strand and HPM for integration (jacket assembly; cable insertion, compaction, and spooling; and testing)

800 m Dummy Spool shown in turn-over frame at HPM

FY 2013 US Achievement: Completion of Toroidal Field Strand

Production conductor strand at Luvata Waterbury Inc. in Newark, NJ

Production conductor strand at Oxford Superconducting Technology in Carteret, NJ

FY 2014 US Achievement: Toroidal Field Cabling

High Performance Magnetics jacketing and integration facility in Tallahassee, Florida Photo: US ITER

FY 2014 US Achievement: Deliveries to EU Coil Winding Facility

US TF 800 m Dummy Conductor and 100 m production conductor delivered to EU winding facility

US contribution includes over 4 miles of conductor, which is constructed from 40 tons (over 4000 miles) of niobium-tin superconducting strand

US TF 800 m Dummy Conductor -Delivery at ASG in Italy

Truck arriving at ASG in Italy with US TF 800 m dummy conductor

Central Solenoid

Central Solenoid

The most powerful pulsed superconducting electromagnet in history (5.5 Gigajoule stored energy capacity)

Central Solenoid (CS) FY 14 Status

- Successful FDR in Nov 2013
- Completed design modifications based on FDR feedback
- Final 3D model submitted to IO
- Final design documentation (specifications, drawings, and analysis reports) being submitted for IO approval
- Completed Manufacturing Readiness Review (MRR) for winding station
- Began winding mock-up coil

Module Weight: ~120 Tonne

32

FY 2014 US Achievement: Module Tooling Stations are Being Installed at General Atomics

1: Conductor receiving inspection

2: Winding (2)

3: Joints & Terminals Preparation

4: Stack and Join/ Helium Penetrations

5: Reaction Heat Treatment

6: Turn Insulation

7: Ground Insulation

8: Vacuum Pressure Impregnation

FY 2014 US Achievement: 1st Winding Station Installed

MRR Conducted in July 2014

Dummy conductor shown loaded on winding machine – in prep for mock-up winding

4 central solenoid active conductor spools and 1 dummy at General Atomics

FY 2014 Achievements Mock-up Winding Has Begun

Conductor routed from de-spooler

Conductor routed through straightener
FY 2014 Achievements Reaction Heat Treatment Furnace Installed

Specifications for heat treatment furnace:

- Height 7 m
- Diameter 5.56 m
- Weight 132 Tonnes (including Module)
- Power 800 kW
- Medium Argon
- Pressure 1 x 10⁻² mbar

US

Heat treatment furnace and associated equipment being installed at General Atomics.

FY 2014 Achievements Turn Insulation Station Being Installed

- Factory acceptance testing completed at vendors
- Units will be re-assembled and commissioned using mock hexapancake

Automated taping heads from Ridgeway have been delivered to GA.

Central Solenoid Structures FY 14 Status

- Successful FDR in Nov 2013
- Placed first production contract with Peterson (Ogden, UT) for lower key blocks and isolation plates
- Issued RFP for tie-plate procurement

One piece tie-plate prototype forged at Kind LLC (Gummersbach, Germany)

Central Solenoid Assembly Tooling

- Completing the final design for the early need fixtures (assembly platform, module rotating fixture, and module lifting fixture)
- FDR for early need fixtures in September 2014

Tokamak Cooling Water System

Total installed heat removal capacity: 1,000 MW (thermal)

- 100+ major industrial pieces of equipment operating with maximum design temperatures of 400 °C (gas) and maximum pressure of 5 MPa (water @ 240 °C)
- Max coolant operating temperature: 126 °C (plasma), 240 °C (baking), 350 °C (gas baking)
- Max design pressure: 5.0 MPa
- Radioactive water storage capacity: over 1,000,000 L

Tokamak Cooling Water System (TCWS)

Configuration:

36 km (22 mi) of piping, ~230 pieces of equipment, safety important for the confinement of radioactivity

Status:

In fabrication: Drain tanks In final design: Integrated system and equipment

Recent Achievements:

- Drain tank fabrication progressing and scheduled for completion in 2014
- First tank fabrication completes this month
- Shipment to the site in early 2015
- Arrangements between US ITER and the ITER Organization to complete the final TCWS design, and procure and prefabricate piping on behalf of US ITER

Drain Tanks in the Tokamak Building

TCWS Arrangement with IO for "Captive Piping"

- US scope defined in PA
 - Piping and equipment design, configuration management, fabrication, and delivery
- "Captive piping" and 1st Plasma design effort is priority
- Ongoing "design optimization" efforts (heat exchanger example)
- US and IO "Arrangement" to deliver final design / "captive piping" by IO

Managed by USDA

Design & Piping Multiple (16) Contracts Managed by ITER IO Review by USDA

Fabrication Contract(s) Of 100+ major pieces managed by USDA

FY 2014 Achievements Tokamak Cooling Water System

First of four 61,000 gallon drain tanks nears completion at Joseph Oat in Camden, New Jersey. (Fifth tank Is ~30,000 gallons) Photo: US ITER

Steady State Electrical Network

4 power feeds:

- 2 at 6.6 kV distribution
- 2 at 22 kV distribution

Standards: International Electrotechnical Commission standards for 50Hz operation

Steady State Electrical Network (SSEN)

- 11 of 16 procurement have been awarded, total value ~ \$33M (FY14 unescalated)
- Deliveries have started; 400kV HV Substation delivery dates based substation construction starting 10/1/14 and energization on 10/1/15, others to support timeline of commissioning of ITER subsystems
- Remaining procurements timed to avoid contract awards in FY15
- All shipments will be completed by the end of FY17

FY 2014 US Achievements: Steady State Electrical Network

First of four HV substation transformer units undergoing factory acceptance tests at the Hyundai Heavy Industries factory in Ulsan, Korea

One of four sets of 400kV, 3-phase HV circuit breakers undergoing factory acceptance test at Alstom SAS, Villeurbane, France

One of four 400kV, 3-phase HV disconnect switches undergoing factory acceptance tests of the Alstom SpA factory in Noventa di Piave, Italy

FY 2014 US Achievements: Steady State Electrical Network

High voltage surge arresters were the first plant components delivered to the ITER site, on September 4, 2014. Photo: ITER Organization

Pellet Injection and Disruption Mitigation Systems

Pellet Fueling and Pellet Pacing

Delivers hydrogen, deuterium and deuterium/tritium pellets to:

- Provide a steady supply of deuterium and tritium fuel
- Mitigate the impact of ELMs

Configuration:

- Two pellet injection casks with dual injectors in each cask
- Guide tubes to inner and outer wall locations
- Guide tube selector to route pellets as needed

Disruption Mitigation System

Requirements:

- Rapid plasma thermal quench to mitigate localized heat loads (response time ~10 ms)
- Plasma current quench to mitigate mechanical loads (response time ~200 ms)
- Suppress or dissipate runaway electron current (response time ~500 ms)

Configuration:

- Shattered pellet injector (SPI) located in upper port cell with pellet shattered near plasma edge
- SPI has multiple barrels for redundancy and injection adjustment
- Massive gas injection (MGI) valves located in equatorial port cell

FY 2014 US Achievements Pellet Injection and Disruption Mitigation

Twin-screw pellet extruder

Pellet guide tube selector test unit

Deuterium-neon pellet formation testing

3-barrel unit prototype for disruption mitigation

9/23/14

FESAC ITER Progress/Nelson

55

FY 2014 US Achievements **Pellet Fueling and Pellet Pacing**

Status:

In design: Prototype extruder, pellet cutter and gas gun; fuel recirculation loop; propellant recirculation loop; guide tube selector

Recent Achievements:

- Fabrication of test articles for extruder
- Fabrication and acceptance test of guide tube selector
- Long-term reliability tests of tritium compatible piston pump for recirculation loop
- Demonstration, on DIII-D, of pellet ELM pacing at 12 X natural rate and associated 12 X reduction in ELM intensity

Small pellets fro ELM pacing and larger pellets for D/T fueling

Equipment located in cask for frozen pellet

FY 2014 US Achievements Fabrication and Acceptance Test of Guide Tube Selector

Pellet guide tube selector with internal views of actuators for routing pellets for multiple inputs to multiple outputs

Operation demonstrated at vendor site. Selector shipped to ORNL for pellet tests

FY 2014 US Achievements Massive Gas Injection Valve Prototype

Valve based on a design used on JET but modified for ITER tokamak environment and injection rate requirements.

Modified valve uses flyer plate to achieve fast opening time and incorporates T compatible components

FY 2014 US Achievements Shattered Pellet Injection 3-Barrel Testing

- Barrel diameter increased to 25 mm (from 16 mm diameter) in order to study scaling of freezing/forming
- Larger size will reduce the number of barrels needed for Disruption Mitigation System.

9/23/14

(3)

4/1/2010

1260

(4)

- Ne

FY 2014 US Achievements Deuterium Pellets Formed and Accelerated from Three 25 mm Barrels

- 3 ea. ~ 25 mm pellets formed and accelerated to 330 m/s
- 1.5 kPa m³ of deuterium each. 2 pellets exceed the requirement of 2 kPa m³ for thermal mitigation

Ion Cyclotron System Transmission Lines

Ion Cyclotron System Transmission Lines

- Provide efficient transfer of 24 MW 40–55 MHz RF power from sources to plasma antennas using coaxial line and load tolerant matching/tuning
- Transmit up to 6 MW per line for up to 1 hour
- Total of 1.5 km of line connects 8 sources to 16 antenna feeds
- Two 8-channel matching networks weighing 27 t each
- Two 8-channel pre-matching networks weighing 14 t each
- Maximum losses: 2.5% of source power in the transmission line system, 10% in the matching syste

FESAC ITER Progress/Nelson

Ion Cyclotron System Transmission Line and Matching System Status

Status:

In design: Transmission line components, tuning components, gas cooling system, instrumentation and control

- Successful cooling of inner conductors with circulating air at 3-atmosphere pressure
- High-power (6 MW), high-voltage (40 kV), long-pulse (1 hour) tests of 2 candidate straight transmission lines
- High-voltage (40 kV), long-pulse (1 hour) tests of 3 candidate gas barriers
- Fabrication and performance verification test of 50/50 hybrid power splitter. The power splitter enables passive tolerance to plasma ELM events

Milestone Completed: 3 dB Hybrid Splitter Component Qualification Test

FESAC ITER Progress/Nelson

Electron Cyclotron System Transmission Lines

Electron Cyclotron System Transmission Lines

- Provide efficient power transfer from 170 GHz gyrotron sources to launchers
- Transmit up to 2 MW per line for 1 hour
- Transmission lines from 24 sources to 56 feeds

Electron Cyclotron System Transmission Lines

Design Progress: Transmission Line Movement

TL will move due to:

- Thermal expansion
- Building movements due to external loads

TL and Support system must be designed to accommodate these movements

- During Operations
 - Minimize extent of WG bending
 - Use Expansion Units to avoid WG bending
 - WG must move axially through supports
- Non–Operational conditions
 - Expansion units to take up some building movements
 - WG bends at building interfaces

Wind loads on Assembly and RF buildings can cause buildings to move/sway by more than 10 mm

FY 2014 Achievement 30% Final Design Intermediate Design Review

US

FY 2014 Achievement Completed Conditioning Power Load SOW

Vacuum Auxiliary System and Roughing Pumps

Vacuum Auxiliary System and Roughing Pumps

- Tokamak vacuum volume: 1330 m³
 Cryostat vacuum volume: 8500 m³
 Neutral beam injectors' volume: 8600 m³
- Vacuum system performance: 105
 Pa to 10 Pa in 24 hours, operating pressure 1 x 10⁻⁴ Pa
- Roughing pumps: 400+ vacuum pumps utilizing 10 different technologies
- Service vacuum system: >1500 clients
- Vacuum piping: 6 km

Roughing Pump System FY 14 Status (1)

- The Roughing Pump System (RPS) achievements for FY14 consist of providing tritium compatible vacuum pump development support via the two Task Arrangements in effect.
- Successful manufacture and testing of the prototype tritium compatible roots and screw pumps
- Testing is underway at present at ORNL

Tritium compatible screw pumps in test stand at ORNL

Roughing Pump System FY 14 Status (2)

Manufacture of the prototype tritium compatible Cryogenic Viscous Compressor (CVC) is being completed at Major Tool and Machine, Indianapolis, IN

Multilayer insulation film surrounds the CVC core

9/23/14
Diagnostics

Diagnostics FY 14 Status

- USIPO is responsibility for 14% of port based diagnostic systems, including integration of four diagnostics port plugs and seven instrumentation systems; achievements include:
 - Completed FDR of the Diverter Residual Gas Analyzer (DRGA) Sampling Tube
 - Awarded Subcontract for Low Field Side Reflectometer (LFSR) Physics Design
 - Awarded Subcontract for Electron Cyclotron Emission (ECE) Design
 - Awarded Subcontract for Upper Camera Design
 - Pending award subcontract for Toroidal Interferometer/Polarimeter (TIP) Design

3-D CAD Model of RGA Diagnostic

The residual gas analyzer and part of the low-field side reflectometer will be installed for 1st Plasma.

FY 14 Status

Diagnostics

Diagnostic residual gas analyzer in development at ORNL. Photo: US ITER/ORNL

Diagnostics Design Status

System	Procurement Arrangement	Design Phase
Upper Port 11	v	PD
Upper Port 14	\checkmark	PD
Equatorial Port 3	imminent	PD
Equatorial Port 9	\checkmark	PD
Upper Visible/IR Cameras	~	PD
Low Field Side Reflectometer	~	PD
Motional Stark Effect Diagnostic	imminent	PD
Electron Cyclotron Emission	~	PD
Residual Gas Analyzer	\checkmark	FD
Toroidal Interferometer/Polarimeter	~	PD
Core Imaging X-ray Spectrometer	imminent	PD

Tokamak Exhaust Processing

Configuration:

- TEP equipment located in Tritium Building
- Tritium Confinement provided by nitrogen inerted gloveboxes and Tritium Building
- Gamma Decay Tanks located on separate floor

Status:

- In preliminary design
- TEP required for DT Plasma

Some Current Technical Challenges

Tokamak Cooling Water System	 Finalize 1st Plasma scope and requirements, including role in N¹⁶ gamma dose reduction Oversight of IO as TCWS designer and piping manufacturer Design changes that implement design optimization (i.e., Heat Exchanger options)
Ion and Electron Cyclotron Heating Systems	Building interfaces for penetrations through Tokamak Building wall and Port Cell wall for transmission line, services and cabling especially meeting fire requirements
Diagnostics	Meeting radiation shielding requirements in the port plugs while simultaneously satisfying diagnostic measurement requirements and weight limits.

Summary: **Project Execution Well Underway!**

* ETC, escalated w/o Contingency

US

Summary: 5 Hardware Systems in Fabrication

TF Conductor

- All strand complete
- 1st conductor (of 7) fabricated and undergoing leak testing
- 2 production cables are complete and jacketing of 1st cable is underway
- All deliveries will be complete in 2016

CS Modules fabrication

- 5 spools of JA conductor received
- Tooling stations being installed
- Mock-up coil fabrication started
- Winding of 1st module to begin in 2014

Tokamak Cooling Water System (TCWS) drain tanks

• All 5 tanks ready for shipment by end of 2014

Steady State Electric Network (SSEN)

- 11 fabrication contracts in process
- All deliveries will be complete in 2017

Vacuum Auxiliary

• 15 of 16 components for test stand complete

Summary: Design, Contracts, Fabrication, Deliveries

Design well underway

~2/3 (by value) of US Hardware systems in final design or beyond

Contracts are in place

~1/2 (by value and number) of planned contracts have been awarded

Fabrication underway for critical-pacing items

Key hardware deliveries on-going

At the end of FY16:

- Only one PA remaining
- Design >80% complete
- 28% of US Hardware Deliveries needed for 1st Plasma will be complete
- One US Hardware contribution will be complete in FY16 (TF)