

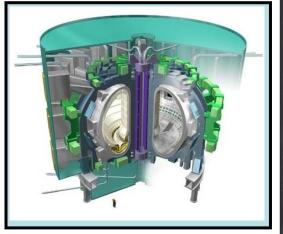
On the program, vision, and budget for the fusion and plasma sciences

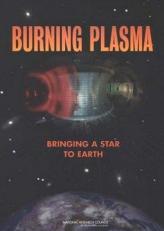
E.J. Synakowski

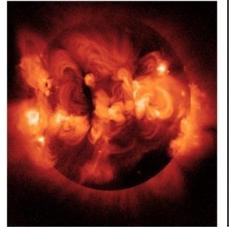
Associate Director, Office of Science For Fusion Energy Sciences U.S. Department of Energy

Presented to the Fusion Energy Sciences Advisory Committee

February 28, 2012

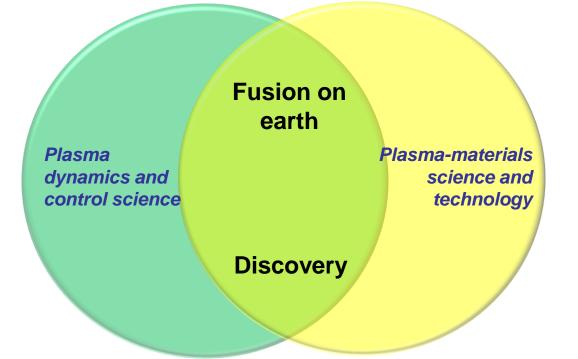



The science at the heart of fusion energy is far-reaching and is poised for a transformation


Ambition: Fusion contributes to energy and climate solutions by midcentury

Office of Science role: Establish the plasma sciences broadly for fusion as well as discovery

This proposal was developed with a long-term view for fusion and the plasma sciences, framed by Administration priorities for near-term payoffs


- This budget was developed in part considering the Administration's high priority of investment in research relevant to clean energy with near-term payoff.
- With this as backdrop, the Administration affirms a strong commitment to ITER, recognizing its importance to fusion and potentially to the energy economy in the second half of this century, the U.S.'s leading scientific role in getting us to this point, and international commitments
- Cuts are realized in a large majority of the non-ITER part of the program. Exceptions are where modest increases are proposed in international research and materials
- With this proposal, a program structure is maintained that can lead to where we need to be in 10 years

Fusion and plasma science elements are intimately linked

Mission

The mission of the Fusion Energy Sciences (FES) program is to expand the fundamental understanding of matter at very high temperatures and densities and to develop the scientific foundations needed to develop a fusion energy source. This is accomplished by the study of the plasma state and its interactions with its surroundings.

Priorities

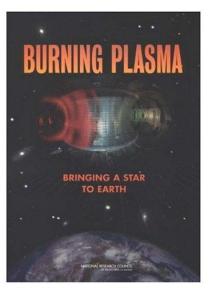
 Advance the fundamental science of magnetically confined plasmas for fusion energy

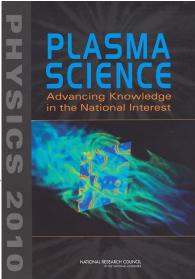
 Pursue scientific opportunities and grand challenges in high energy density plasma science

• Support the development of the scientific understanding required to design and deploy fusion materials

 Increase the fundamental understanding of plasma science beyond burning plasmas

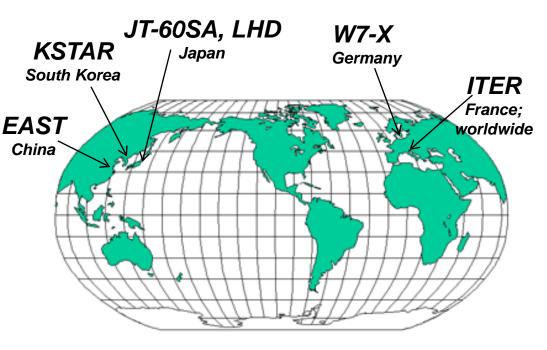
- After more than 50 years of research, fusion is ready to embark on the ultimate test – determining the scientific and technical viability of fusion on earth.
- ITER is the scientific vehicle for this test. It will enable the study of high gain fusion plasmas, fusion systems that release more energy than is required to initiate and control them.
- The U.S. has had a major, leading role in developing the scientific basis girding ITER, its design, and its operating scenarios.
- The FY'13 budget proposal is for a program that will be highly impactful for ITER construction, fusion research and the plasma sciences overall, preserves a structure that can effectively engage the world in the ITER era, and is fiscally responsible.




High-level considerations and budget overview

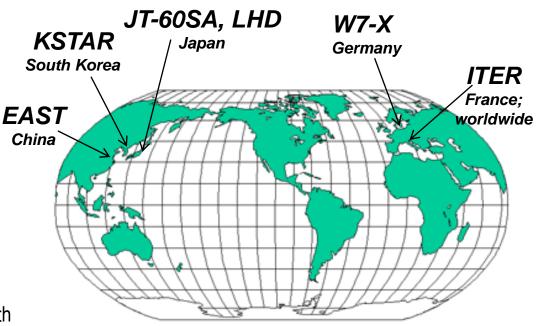
Overarching consideration: where we need to be in ten years

- Total FES budget request is \$398.3M.
 Compare to \$401M appropriated in '12.
 - The U.S. needs to lead in burning plasma science → Support ITER project at \$150M, an increase of \$45M over FY 12. Maintain DIII-D run time with no upgrades at this time. However, the Alcator C-Mod facility will cease operations in FY'13
 - Position the U.S. to assert leadership in present gaps → Modest increases in international opportunities on long-pulse facilities, both tokamak and stellarator. In materials science, continue support of the NSTX Upgrade project and DIII-D to enable an informed decision on an FNSF later this decade, and begin a modest initiative in materials science
 - Steward the broader plasma sciences → Overall FES Program structure is maintained as the non-ITER program faces an overall reduction of about 16%, including closure of the Alcator C-Mod program. Joint programs with NNSA and NSF in non-MFE research are maintained at a reduced level



The U.S. fusion program has to evolve if we are to retain a world leadership position in fusion: **new** capabilities are emerging overseas

- In the next decade:
 - ITER will be constructed, and the frontier of burning plasma science will be there. Liken it to LHC in high energy physics – if the U.S. is not engaged, we will lose out.
 - First-of-a-kind, \$B-class research facilities in magnetic fusion will be on line in Europe and Asia. The class of physics they will enable will include but extend beyond what U.S. facilities are capable of exploring. The U.S. domestic program can and must be sensibly levered to take advantage of these research resources.
 - The U.S. has a leadership opportunity in fusion materials science.

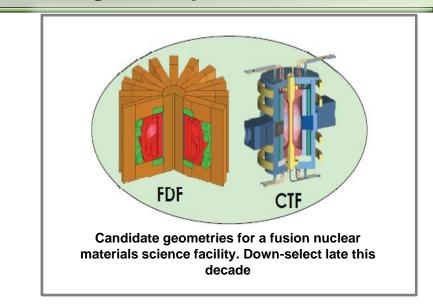


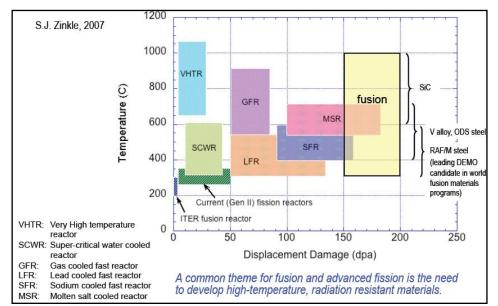
This budget proposal makes steps in engaging these changes in a constrained budgetary environment

A leading challenge is engaging in this new global fusion enterprise in a manner that amplifies U.S. capabilities and brings home benefit

- What we have going our way in this budget that can make this happen
 - A student population of over 400 students
 - Outstanding facilities in DIII-D and NSTX-U
 - Viable core elements elsewhere, with leverage opportunities within the U.S.
 - A clearly defined gap in fusion materials
 - International research relationships at the emergent facilities that are strong and will enable growth
 - Materials science research opportunities with high potential for leverage with BES
- Examples of what we have to overcome
 - Loss of a major facility, Alcator C-Mod, with student education
 - Reductions in effort in nearly every area except international research and materials

- Examples of what we can do to mitigate the effects of the losses
 - Increase student education opportunities at DIII-D and NSTX-U
 - Vigorously develop, and understand limits, of research opportunities overseas
 - Develop leverage with NNSA, BES, and ASCR

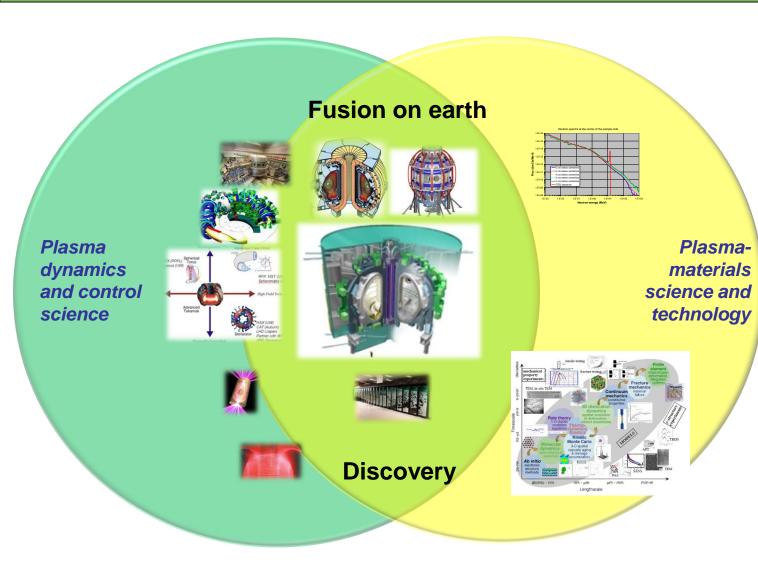



U.S. research has to evolve if we are to retain a world leadership position in fusion: fusion materials science, and extracting fusion power

FESAC "Priorities, Gaps, and Opportunities" report points to fusion materials as the next leading frontier to be mastered in parallel with ITER

To increase our impact in materials science, both nuclear and non-nuclear.

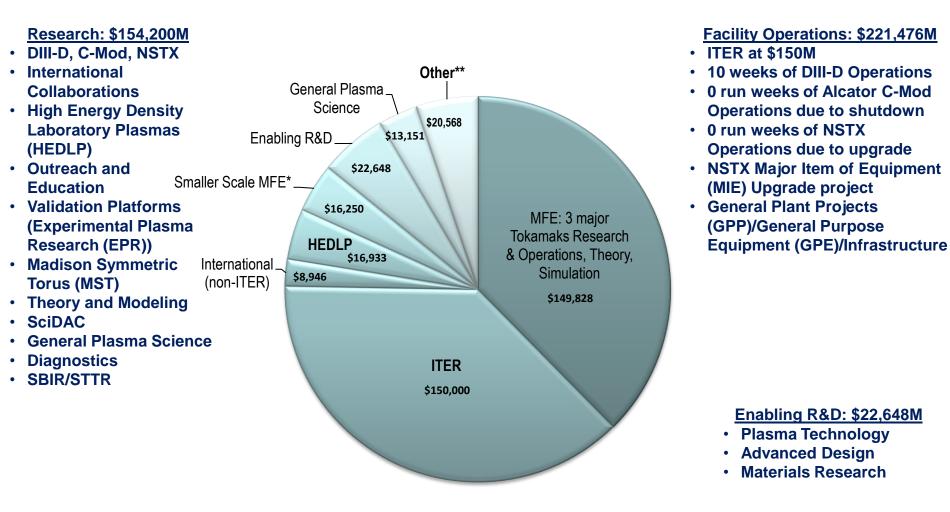
- Lever common interests in MFE, IFE, NE, SC, NNSA
- Complementarity of DIII-D and NSTX-Upgrade will inform the decision on a Fusion Nuclear Science Facility later in this decade.
- Launch a prerequisite computational materials and beam line programs. Strong university role



• Note, from the narrative:

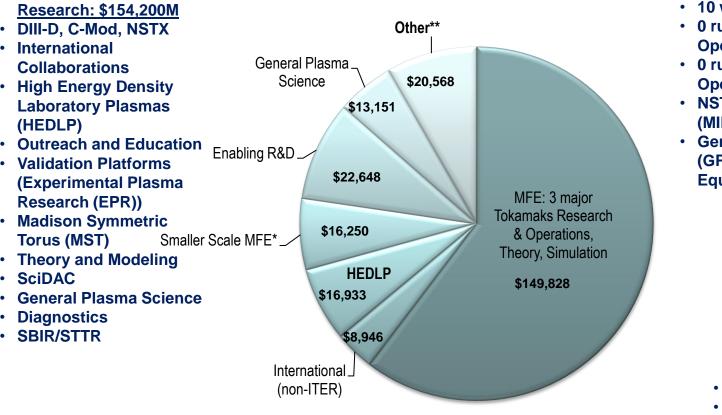
"The U.S. remains committed to the scientific mission of ITER, while maintaining a balanced research portfolio, and will work with ITER partners to accomplish this goal."

Ultimately, the U.S. fusion's path forward will be expressed in terms of scientific elements and will include changes of emphasis


• Burning plasma science and stewarding broader plasma science will be key elements, but program scope may have to be reduced for lower funding level scenarios

•Major domestic facilities will still engage in plasma dynamics and control, but will shift focus towards challenging metrics relevant to fusion materials science

 Leverage between domestic and international research opportunities in MFE will become even more important in tough budget times, if the U.S. is to obtain access to the leading scientific questions in the next decade



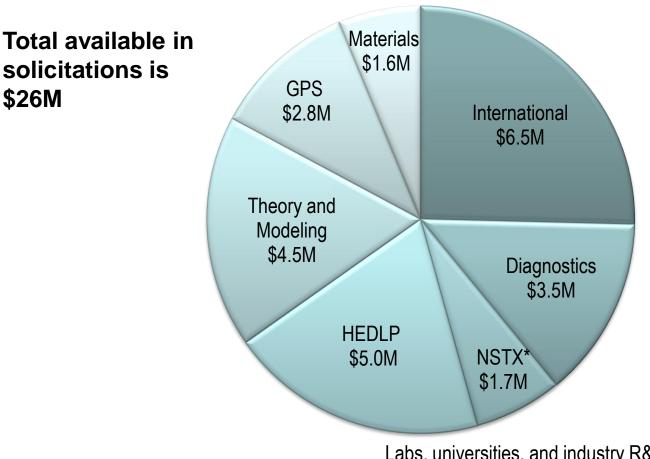
Office of Science FY 2013 FES Congressional Request (\$398.324M)

Office of Science FY 2013 FES Congressional Request (\$398.324M): Non-ITER

- Facility Operations: \$71,476M
- 10 weeks of DIII-D Operations
- 0 run weeks of Alcator C-Mod Operations due to shutdown
- 0 run weeks of NSTX
 Operations due to upgrade
- NSTX Major Item of Equipment (MIE) Upgrade project
- General Plant Projects (GPP)/General Purpose Equipment (GPE)/Infrastructure

Enabling R&D: \$22,648M

- Plasma Technology
- Advanced Design
- Materials Research


Fusion Energy Sciences FY 2013 Congressional Budget

(Budget Authority in thousands)

	FY 2011	FY 2012	FY 2013		FY 2011	FY 2012	FY 2013
	Actual	Approp	Request		Actual	Approp	Request
Science				Facility Operations			
DIII-D Research	30,716	30,300	26,703	DIII-D	35,699	38,319	33,260
C-Mod Research	10,056	10,454	8,396	C-Mod	17,518	18,067	7,848
International Research	6,105	7,435	8,946	NSTX	32,559	32,134	29,393
Diagnostics	4,115	3,519	3,519	Other, GPE, and GPP	4,568	975	975
Other	8,085	11,919	9,193	MIE: U.S. Contributions to ITER			
NSTX Research	16,107	17,549	16,836	Project	80,000	105,000	150,000
Experimental Plasma Research	17,745	11,000	10,500	Total, Facility Operations	170,344	194,495	221,476
HEDLP	25,727	24,741	16,933	Enabling R&D			
MST Research	7,005	6,000	5,750	Plasma Technology	14,501	13,911	11,666
Theory	25,663	24,348	20,836	Advanced Design	2,752	4,337	1,611
SciDAC	7,057	8,312	6,556	Materials Research	6,469	7,729	9,371
General Plasma Science	14,810	16,780	13,151	Total, Enabling R&D	23,722	25,977	22,648
SBIR/STTR	_	8,326	6,881				
Total, Science Research	173,191	180,524	154,200	Total, Fusion Energy Sciences	367,257	400,996	398,324

Funds will be available through solicitations in FY2013

Labs, universities, and industry R&D groups may compete for all solicitations except:

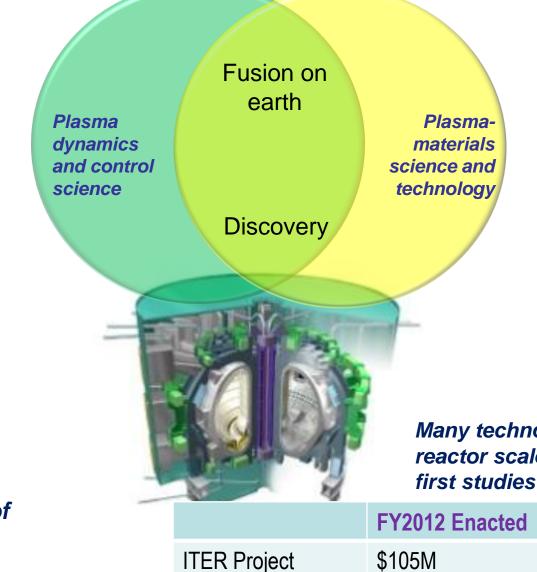
- NSTX Research—Labs only in FY13
- Theory/Modeling—Universities and industry groups in FY13

On ITER

The driving force

International project construction and status

International commitments


U.S. obligations, US. ITER Project performance, and impact on the international ITER schedule

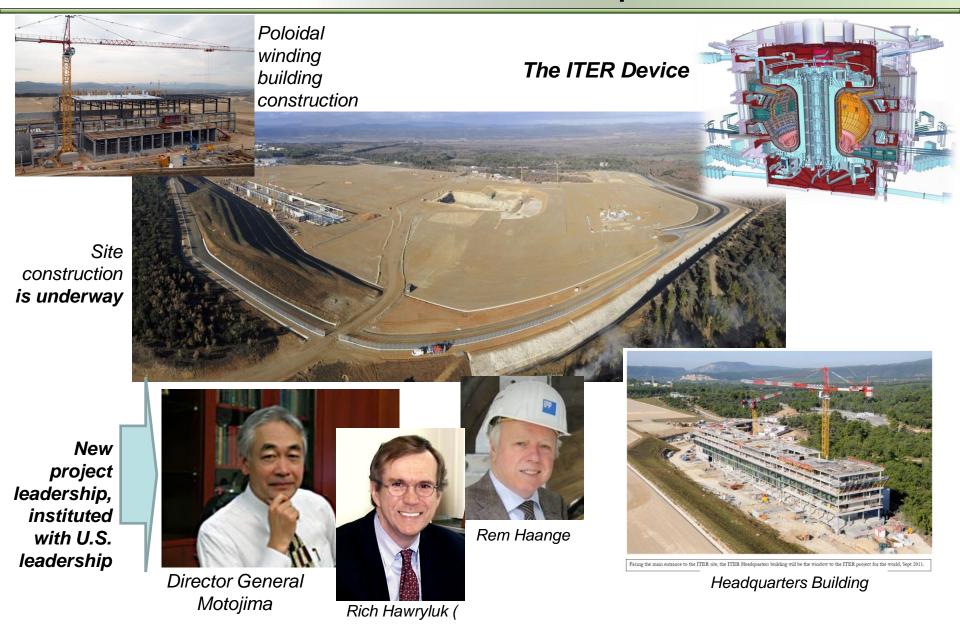
ITER is the keystone for establishing the scientific and technological feasibility of magnetic fusion energy

ITER will advance every element of the FES program, and will be the world's first entry into Burning Plasma Science

The scientific question of how to optimize the plasma distribution function in a burning plasma is at the center of ITER's plasma science

Will create the world's first sustained selfheated plasma: numerical goal of Q = 10, pulsed, 500 MW; Q = 5 steady-state.

U.S. research has had a defining impact on ITER design and operating scenarios


Designs will be completed with industry input for the majority of U.S. hardware needed for first plasma

Many technologies will be at reactor scale, or will enable first studies at reactor scale

> d FY2013 Proposed \$150M

International Organization management changes have made an enormous positive impact

Overarching considerations regarding ITER

"Why does the ITER project need to grow in such a challenging budget?"

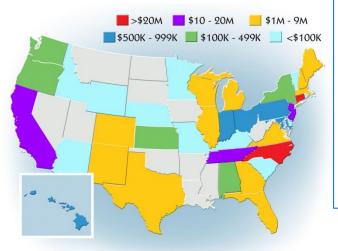
- ITER is the capstone of over 50 years of research in magnetic fusion. This time is critical for its success, and for fusion's success
- The project is moving out smartly in construction, and the U.S. needs to keep pace to the best of its ability. Now and the coming years is when contracts need to be placed so that ITER construction can be completed on time.
- The U.S. is at the very edge of having a negative impact on the international schedule at a time when the other Members have demonstrated extraordinary commitment. Further reductions in the U.S. ITER budget will yield an international schedule slip with unpredictable consequences on the political front, and will add to costs for everyone.

The demonstration of international commitment to ITER during extraordinary times has been exceptionally strong

Member	Comments
China	Highly committed to ITER and fusion overall. Their plan to aggressively invest in fusion requires ITER success, including schedule success. Expressed interest in fusion comes from highest levels of government, including a visit by China's President and Vice Premier to their leading fusion laboratory.
European Union	They are in for 45% of the cost. The EU recently committed to \$1.3B additional Euro of ITER funding to a total of \$2B Euros over the next two years, despite extraordinary financial times . They have recently forged a deal with JA to trade in-kind contribution obligations to help entire project stay on schedule discussions.
India	They fight hard every year for their budget in a complex process, but outward indications of support are very strong. They see ITER is a vehicle for advancing their whole fusion R&D enterprise.
Japan	Their FY'12 funding of \$224M has been approved. This is more than a 3-fold increase in funding over FY'11, despite the earthquake and tsunami.
Russia	Cash is in-hand, and they are eager to spend and get on with the project fully and to stay on schedule
South Korea	Strong commitment; Eager to demonstrate industrial capabilities. Catalyzing trade of obligations between EU and JA. Strident about sticking to schedule.

A significant portion of U.S. ITER funding is spent with U.S. industry, universities, and national labs

Funding in FY12 will be utilized to:


- allow the US to progress as needed to remain a viable partner in this collaboration
- retain or create jobs in >300 industries and universities and 8 National Laboratories in 37 states
- provide US industry experience with advanced manufacturing techniques
- Funding to DOE Labs March 2006 – December 2011

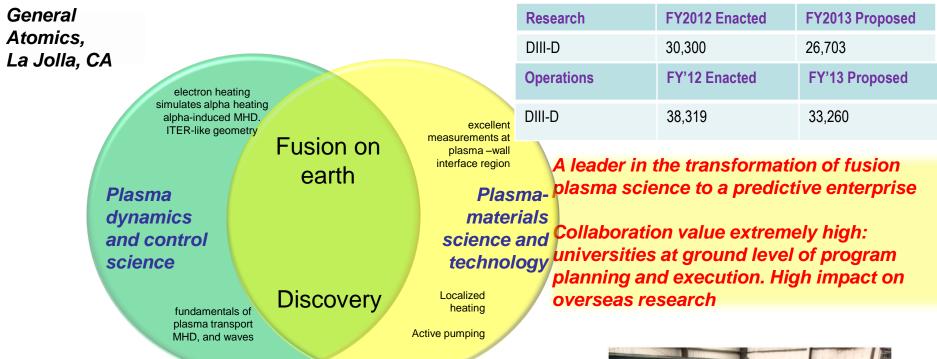
Total ~\$168M

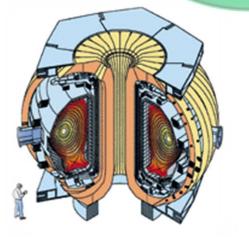
Funding to Industries and Universities March 2006 – December 2011

Total ~\$171M

Attracting business

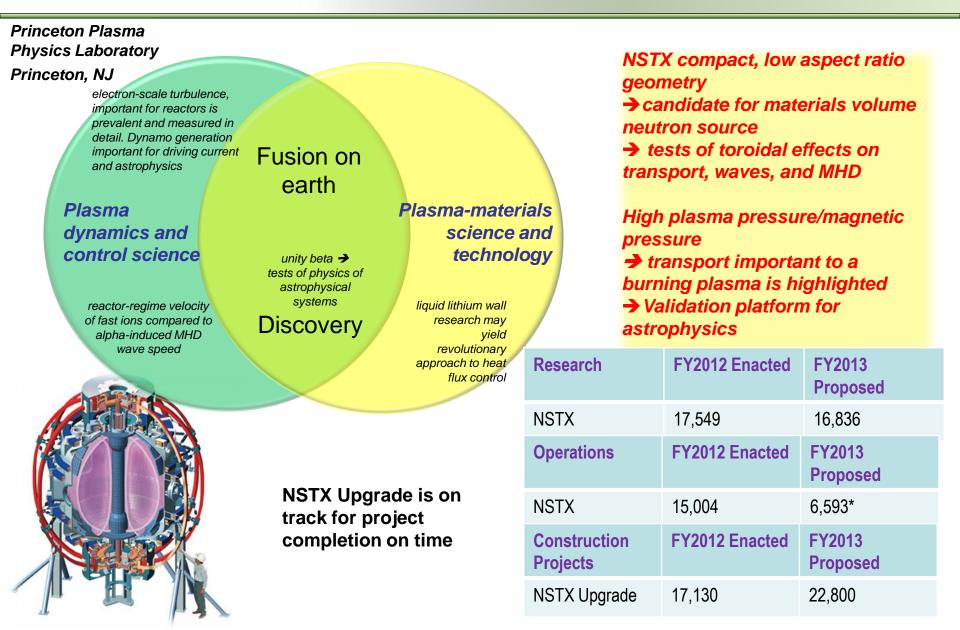
- The EU has let a contract to Oxford Instruments for its superconducting strand (\$58M; New Jersey)
- Luvata Connecticut s supplying US TF strand to the EU (\$26M)



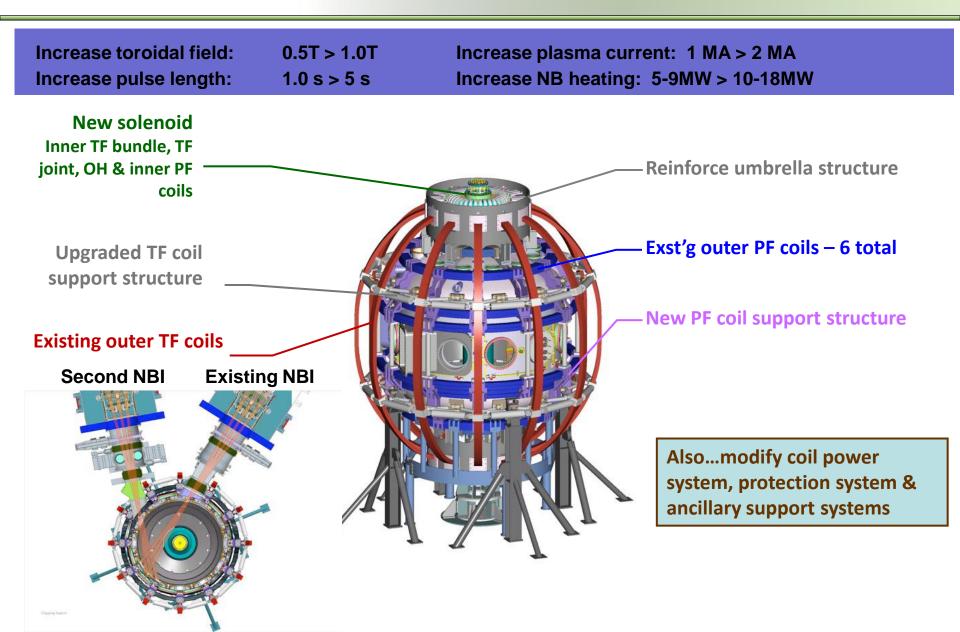

An understandable concern is: can the U.S. program be impactful with the proposed reductions in the non-ITER budget, and are we positioning ourselves to get good scientific return during the ITER era?

The view of FES and Office of Science regarding these questions is "yes," but there is loss, and near-term choices will be important

DIII-D has had an enormous influence on establishing a scientific understanding and optmization of magnetically confined plasmas


DIII-D research is at the heart of plasma dynamics and control: it forms the basis of many research scenarios and control tools for ITER and reactors

The Operations funding reduction will halt all major facility upgrades and defer system refurbishments, but still allow for 10 weeks of operation in FY2013.

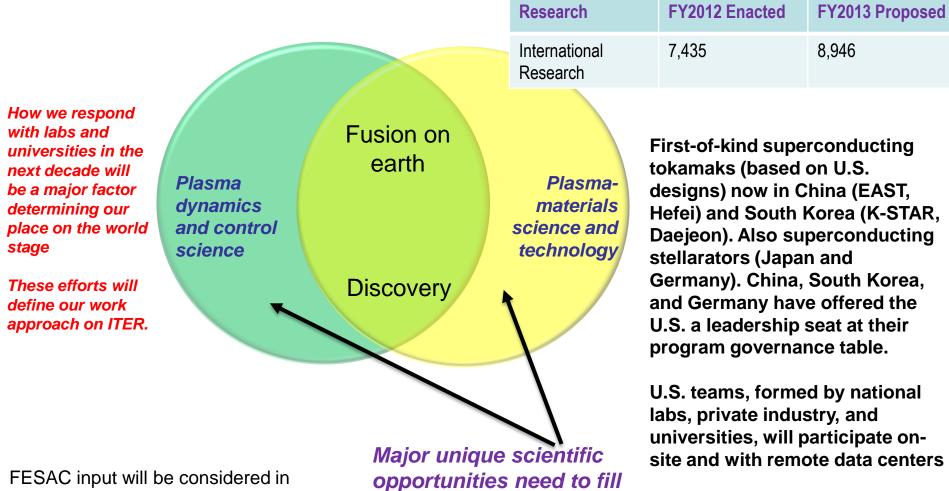


The commitment to the National Spherical Torus Experiment Upgrade is high

Workscope of the NSTX upgrade

Alcator C-Mod closes in FY2013. It has been a testbed for materials science and wave physics relevant to advanced reactor scenarios

projects


MIT, Cambridge, MA			Research		FY2012 Enacted	FY2013 Proposed
World-leading studies of plasma rotation in reactor-like scenarios and wave-particle physics at reactor conditions		Alcator C-Mod		10,454	8,396	
			Operations		FY2012 Enacted	FY2013 Proposed
	Fusion on earth		Alcator C-I	Mod	18,067	7,848
Plasma dynamics and control science Mentification of optentially advance modes of ITER operation, and development of actuators for them	d Discovery			F` ar st F` F` tra ac in FI in re	he Alcator C-Mod facil Y2013. No operations and the funding will prov nutdown of the facility. Y2013 will see analysis Y2012 and publication ansition of research sta ctivities on other dome ternational experiment ES will work with MIT in pacts, enabling those search to finish, and s	will be conducted vide for the safe s of data taken in the results. A aff into collaborative estic and ts will begin. regarding student in their last stage of supporting relocation

This will lead to a research team

model to be implemented on

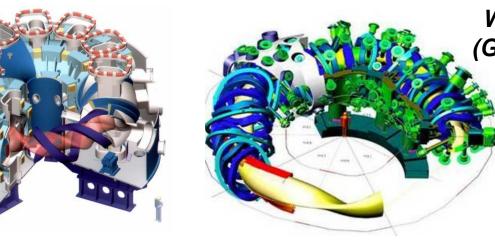
ITER

FESAC input will be considered in developing the details and approach

Major unique scientific opportunities need to fill fusion gaps and teach us how to engage internationally for ITER

Emergent opportunities for plasma control research, with superconducting magnetic technology, reside overseas

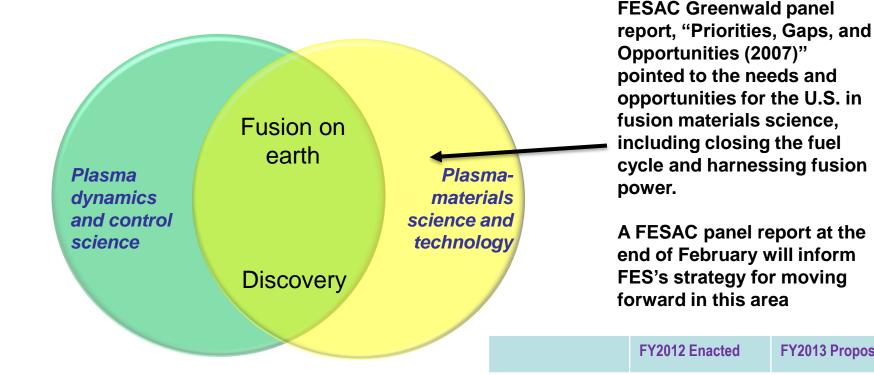
K-STAR Daejeon, S. Korea Goal: 300 s pulse 2 MA



EAST Hefei, China Goal: 1000 s 1 MA

The U.S. DIII-D control system has been implemented on K-STAR and EAST devices

LHD stellarator (Japan – operating)

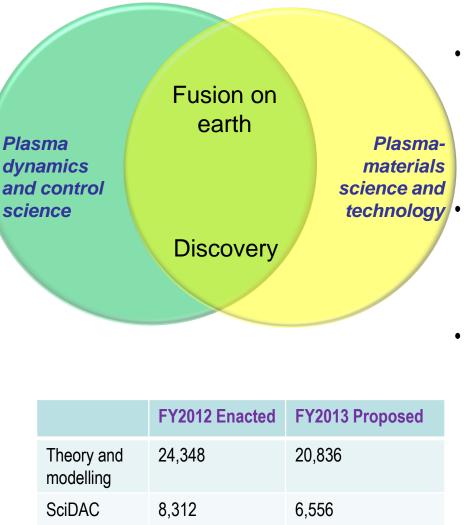


W7-X stellarator (Germany – 2014)

Enabling technologies is being directed towards a materials science

emphasis

- An initiative in fusion materials research is proposed
- The level of support for design studies of future facilities and for the Virtual Laboratory for Technology (VLT) will be reduced.
- The level of support for advanced technologies for future facilities will be reduced.


	FY2012 Enacted	FY2013 Proposed
Plasma Technology	13,911	11,666
Advanced Design Studies	4,337	1,611
Materials Research	7,729	9,371
Total Funding, Enabling R&D	25,977	22,648

Advances in validated simulation are critical for fusion's future success

How we use validated simulation as instruments of scientific discovery is a great question for science overall.

How we execute our simulation efforts in terms program governance, including the relation between universities and labs, is critical.

- Theory and computation is an important element of every aspect of the fusion and plasma sciences
 - In FY2013, the scope of the Theory program will be narrowed
- SciDAC: the scope and balance of the portfolio will be maintained, but fewer Centers may be selected for an award following the FY2012 recompetition of a significant portion of the FES SciDAC program.

Experimental Plasma Research Portfolio and MST are nearly flat-funded

		FY'12 Enacted	FY'13 Proposed
	Madision Symmetric Torus	6,000	5,750
	Experimental Plasma Research	11,000	10,500
si cc m gu pl oi bi al cc	Il concepts are moothly pagnetic eometry → alpha particle Low Field Twist hysics studied n ITER can be ridged to ternate panfigurations		Reversed Field Pinch
Fr	om EPAct plan	Externally Controlled	(IPP, Germany)

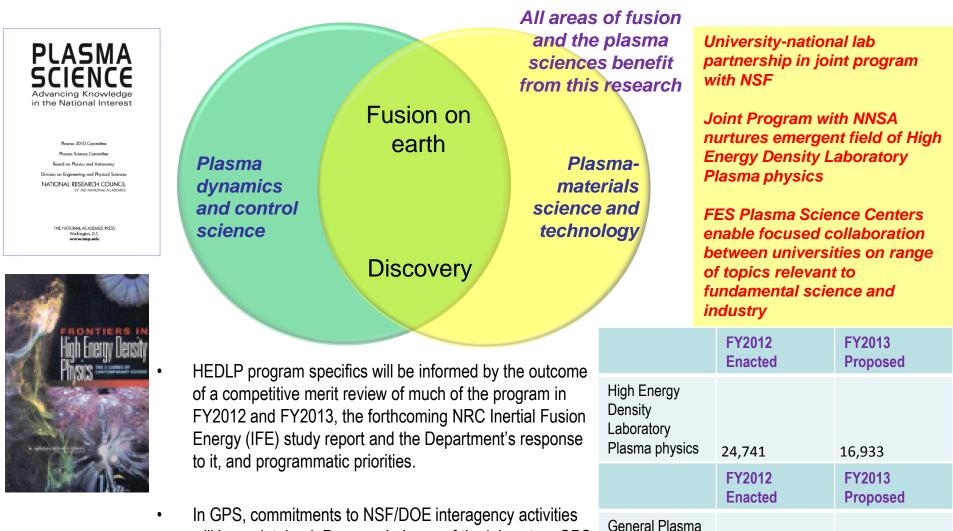
Maintains critical level of effort to enable connections between non-tokamak and tokamak configurations

Validation and verification emphasis maintained

•

National lab/university teaming among confinement concepts is being developed to address questions of universal importance to magnetic fusion

Major elements of the U.S. magnetic configuration portfolio

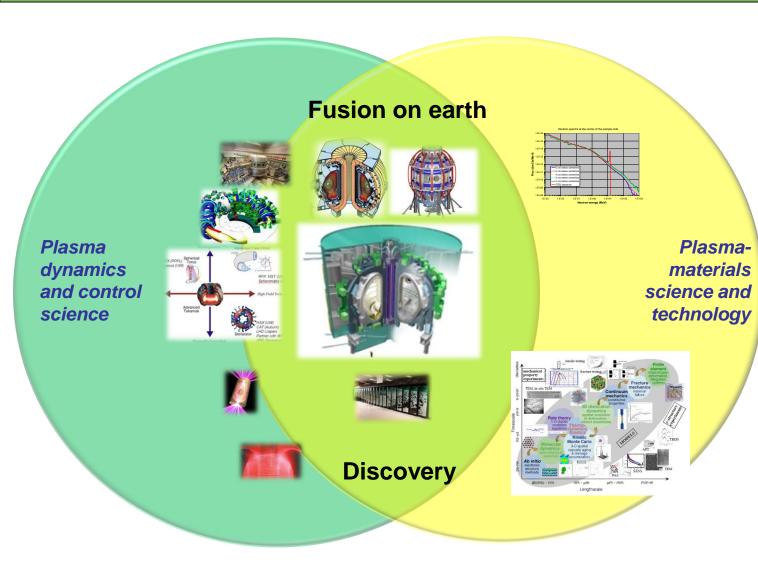

General Plasma Science and HEDLP portfolios emphasize discovery and the science of inertial fusion

energy

Science

16,780

13,151


In GPS, commitments to NSF/DOE interagency activities will be maintained. Program balance of the laboratory GPS projects will be critically reviewed through competitive peer review.

On program planning

Ultimately, the U.S. fusion's path forward will be expressed in terms of scientific elements and will include changes of emphasis

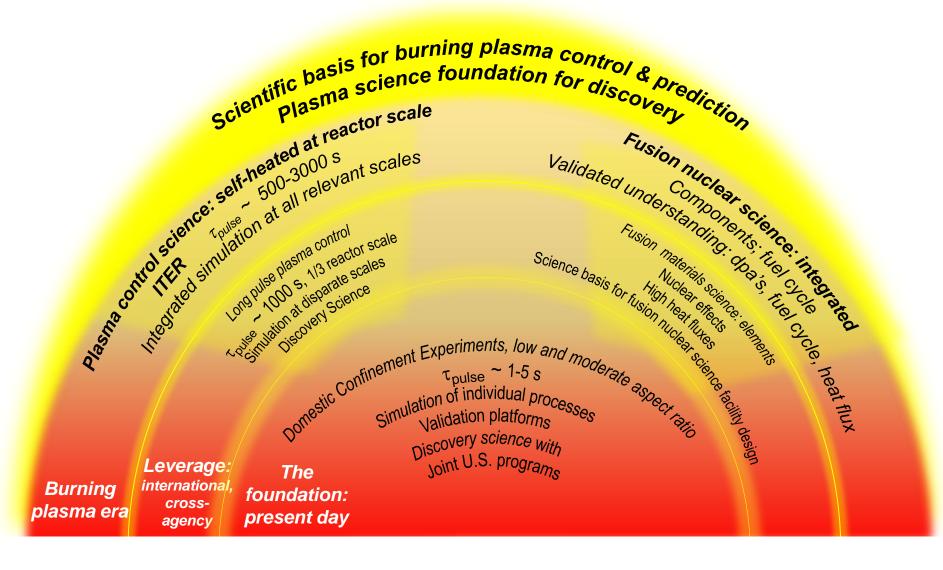
• Burning plasma science and stewarding broader plasma science will be key elements, but program scope may have to be reduced for lower funding level scenarios

•Major domestic facilities will still engage in plasma dynamics and control, but will shift focus towards challenging metrics relevant to fusion materials science

 Leverage between domestic and international research opportunities in MFE will become even more important in tough budget times, if the U.S. is to obtain access to the leading scientific questions in the next decade

FES is developing a strategic plan, to be presented to Congress in December 2012

- Mandated by legislative language accompanying the FY'12 appropriation
- Technical community input is needed
- What we have in hand includes ReNeW reports, the "Priorities, Gaps, and Opportunities" analysis, and FESAC's new input on international research and fusion materials science.


- FES will present a charge to FESAC to seek advice in time to be impactful. A charge or charges is/are being developed, and your thoughts on this will be welcome
- *Timing: clarification on a couple of fronts will be beneficial*
 - the Administration approach to ITER and the domestic program
 - the House and Senate marks this year
- Input from individuals on programmatic concerns and possible future structures is welcome at any time
- Plan will be developed by FES and shared with FESAC for comment, likely in the fall of '12

- The nurturing of a domestic program that enables a high degree of leverage and influence in the world, and will engage ITER in as scientifically constructive a manner as possible, with a high return for the U.S.
- Such a program must include a vigorous international component if U.S. scientists are to have access to research questions that will remain inaccessible within the U.S. alone.
- The development of a capability to make major contributions in fusion materials science and harnessing fusion power
- A priority of maintaining program breadth if budgets permit, noting that the prospect of further non-ITER program reductions may make it impossible to maintain present program scope.

Establishing the scientific basis for fusion requires strong domestic research and leverage across national and institutional boundaries

Thank you