Materials Science & Technology Research Opportunities Now and in the ITER Era: A Focused Vision on Compelling Fusion Nuclear Science Challenges

> Presented by Steve Zinkle FESAC meeting Bethesda, MD Feb. 29, 2012

FESAC Materials sciences & technology subcommittee

Materials Degradation

Florida State Univ.

Name	Institution	Name	Institution
Steve Zinkle*(chair)	Oak Ridge National Lab	Chuck Kessel	Princeton Plasma Physics Lab
Rick Kurtz	Pacific Northwest National Lab	Rich Callis*	General Atomics
Brian Wirth	Univ. Tennessee-Knoxville	Dennis Whyte	Massachusetts Inst. of Technology
Jake Blanchard	University of Wisconsin	Richard Nygren	Sandia National Labs- Albuquerque

George Tynan

Harnessing Fusion Power

Univ. California-San Diego

Plasma-Materials Interactions

Name	Institution
Neil Morley	Univ. California-Los Angeles
Farrokh Najmabadi*	Univ. California-San Diego
Scott Willms	Los Alamos National Lab /ITER
Kathy McCarthy*	Idaho National Lab

*FESAC member

Peter Lee

Steve

Outline

- Overview of Charge
- Approach to Address the Charge
- Science Grand Challenges
 - Harnessing Fusion Power
 - Conquering Degradation of Materials and Structures
 - Taming the Plasma-Materials Interface
- Findings and R&D Options
 - Role of Technology Readiness Levels as a tool to focus R&D
 - Evaluation of Roles of Key Facilities
- Recommendations and Evaluation of Compelling Research Opportunities
- Summary Response to the Charge

FESAC charge on Materials science & technology

- "What areas of research in materials sciences and technology provide <u>compelling opportunities for US researchers</u> in the near term and in the ITER era? Please focus on research needed to fill gaps in order to create the basis for a Demo and specify technical requirements in <u>greater detail than provided in the MFE ReNeW (Research Needs</u> Workshop) report. Also, your assessment of the risks associated with research paths with different degrees of <u>experimental study vs.</u> <u>computation</u> as a proxy to experiment will be of value."
 - Consider near- and long-term (~0 to 5, 5-15, and 15+ years); what can be done with existing facilities, new facilities, and emergent international facilities
 - Experiment & the role of computation: Identify 2-3 paths with varying emphases on massively parallel computing–what are the risks associated with each path?
 - Materials defined to encompass nuclear (dpa's); non-nuclear (pmi); differential (single-effects) and integrated (multiple-effects) phenomena; harnessing fusion power

High level goal #2: Materials in a fusion environment

- Plasma/surface interactions: establishing boundary of a fusion plasma.
 Plasma facing surface survival, renewal: cracking, annealing. Fuel retention.
 Important for industrial, non-energy applications as well
- Nuclear effects on materials and structures, including the effects of > 100 dpa on structure integrity, helium creation in situ, and time evolving properties
- Harnessing fusion power depends on the nuclear material science above and is extended to tritium breeding and extracting fusion power

This requires the launching of a vigorous materials and nuclear science program that will be part of defining and constructing a fusion nuclear science facility, and will fill gaps en route to a DEMO.

The panel focused on three major science themes

Harnessing Fusion Power

2

- Conquering Degradation of Materials and Structures
- Taming the Plasma-Materials Interface


	•		/FESAC_MAT/						
	FESAC I	Materi	al Panel						
Home	Members	Charge	Community Input	Private					
		Annoucements	3						
FESAC materials	sciences subcommittee s	eeks community i	nput						
compelling opportuni of 14 scientists is eva	ties for US researchers in th aluating research needs to b	e near term and in t ridge current knowle	reas of materials sciences and t the ITER era", a FESAC subcom edge gaps in order to establish heduled to be completed by Jan	mittee consisting the scientific basis					
following topical area power conversion and	s: Plasma-materials interact d tritium fuel cycle technolog	tions, nuclear degrad gies. The contributio	at need to be resolved, particula dation of materials and structur ns should focus on the scientifi nt be important for resolving cu	es, and fusion c issue(s) to be					
Science barriers. Short white papers or suggested scientific questions or issues to be considered by the subcommittee can be submitted to the FESAC materials sciences web site (http://aries.ucsd.edu/fesac_mat/) by sending the contribution to Farrokh Najmabadi (fnajmabadi@ucsd.edu). Questions regarding the scope of issues to be evaluated can be submitted to the subcommittee chair, Steve Zinkle (zinklesj@ornl.gov).									
white paper	s and 5 emails	received a	ind discussed						
b teleconfere	nce (3 invited ta	alks) and tv	vo 2-day face-to-	face meetin					

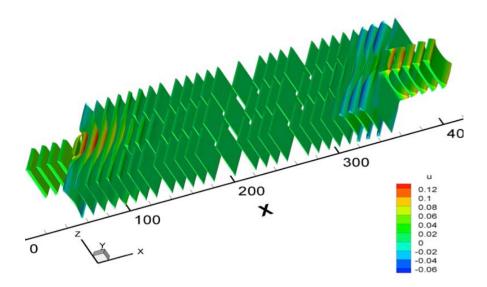
Identification of Grand Science Challenges Provided the Scientific Foundation for the Evaluation Examples for Harness Fusion Energy

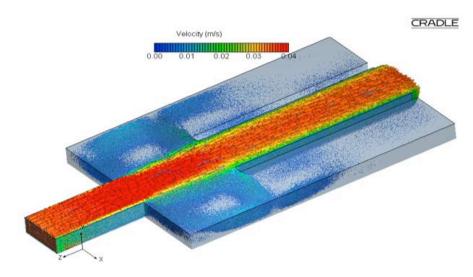
- H1. Develop a predictive capability for the highly non-linear thermo-fluid physics and the transport of tritium and corrosion products in tritium breeding and power extraction systems.
 - Can tritium be extracted from hot PbLi with the required high efficiency to limit tritium permeation below an acceptable level?
 - Can we simulate the 3-D MHD effects in flowing liquid breeders to the degree necessary to fully predict the temperature, temperature gradients and stress states of blanket components and materials?

Tritium Science & Technology for Fusion Reactor

T. Tanabe, ISFNT, Portland, 2011

MHD forces in flowing liquid metal coolants in MFE blankets can exceed normal viscous and inertial forces by >5 orders of magnitude

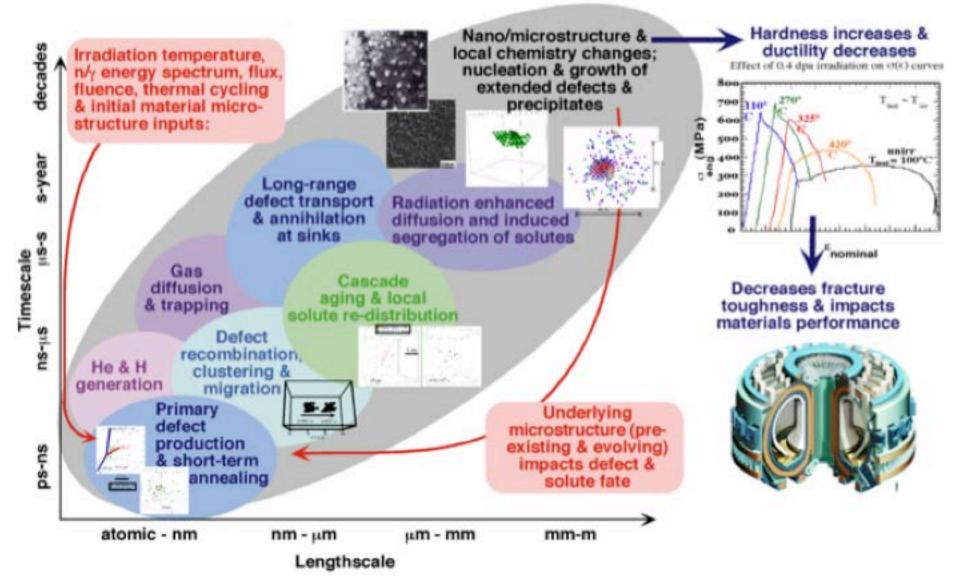

3D MHD simulation of flow distribution to 3 blanket channels from a common manifold


With B field

• Coolant flow is uniform within three channels

No B field

 Coolant flow is concentrated in center channel


Identification of Grand Science Challenges Provided the Scientific Foundation for the Evaluation

Examples for Conquering Degradation to Materials and Structures

- D1. Understand and devise mitigation strategies for deleterious microstructural evolution and property changes that occurs to materials exposed to high fusion-neutron fluence (dpa and H, He transmutations)
- D3. Comprehend and control tritium permeation, trapping, and retention in neutron radiation-damaged materials
 - Are materials development strategies for fusion neutron radiation resistance incompatible with minimizing tritium trapping?
- D4. Understand the fundamental mechanisms controlling chemical compatibility of materials exposed to coolants and/or breeders in strong temperature and electro-magnetic fields.
 - How do MHD and ionization effects impact corrosion

Identification of Grand Science Challenges Provided the Scientific Foundation for the Evaluation

Examples for Conquering Degradation to Materials and Structures

Materials science strategies to improve radiation resistance may lead to enhanced tritium retention

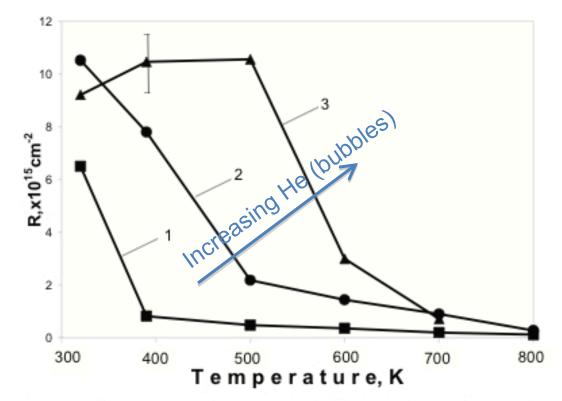
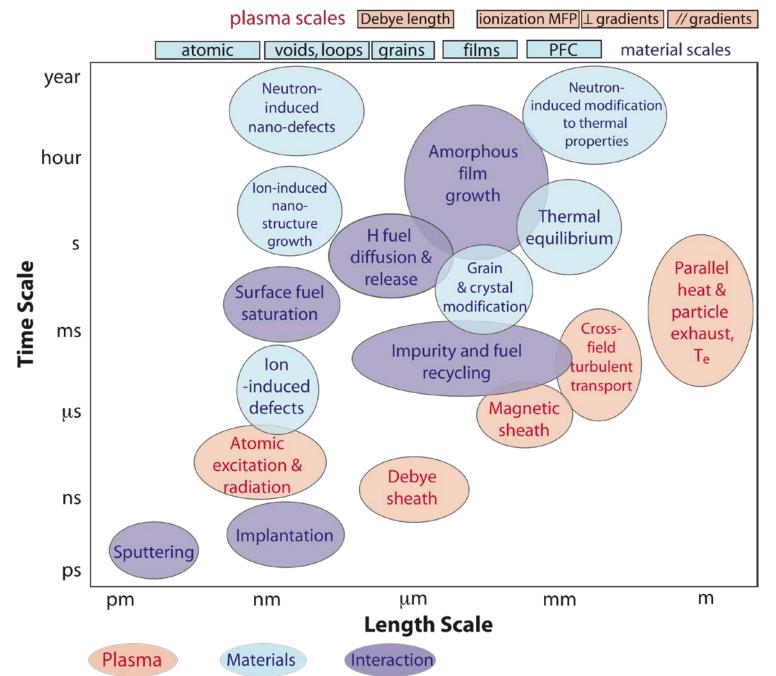


Fig. 8 Deuterium retention in 18Cr10NiTi steel implanted to $1x10^{16}$ cm⁻² without helium (1) and with helium to $5x10^{15}$ (2) and to $5x10^{16}$ cm⁻² (3).

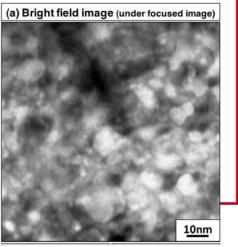

G.D. Tolstolutskaya et al., 12th Int. Conf. on Environmental Degradation of Materials in Nucl. Power System (TMS, 2005), p. 411

Identification of Grand Science Challenges Provided the Scientific Foundation for the Evaluation

Examples for Taming the Plasma-Materials Interface

- P1. Understand and mitigate synergistic damage from intense fusion neutron and plasma exposure.
 - How does the coupling of intense heat flux, high temperature, and associated thermal gradients provide failure modes for plasma facing components?
- P2. Understand, predict and manage the material erosion and migration that will occur in the month-to-year-long plasma durations required in FNSF/DEMO devices, due to plasmamaterial interactions and scrape-off layer plasma processes.
 - Can the boundary plasma and plasma-material interface be sufficiently manipulated to ensure that year-long erosion does not exceed the material thickness ~5-10 mm anywhere in the device?

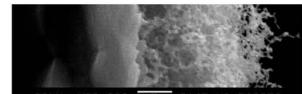
Plasma-material interactions are multiscale and interactive



W Temperature & PMI are coupled

~ 600 - 700 K

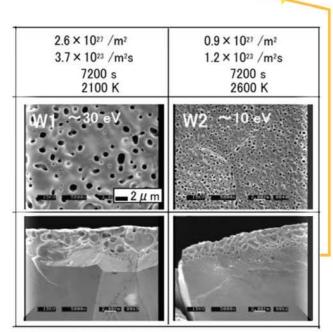
~ 900 – 1900 K


> 2000 K

PISCES-A: D₂-He plasma *M. Miyamoto et al. NF (2009) 065035* 600 K, 1000 s, 2.0x10²⁴ He⁺/m², 55 eV He⁺

- Little morphology
- He nanobubbles form
- Occasional blisters

PISCES-B: mixed D-He plasma M.J. Baldwin et al, NF 48 (2008) 035001 1200 K, 4290 s, 2x10²⁶ He⁺/m², 25 eV He⁺

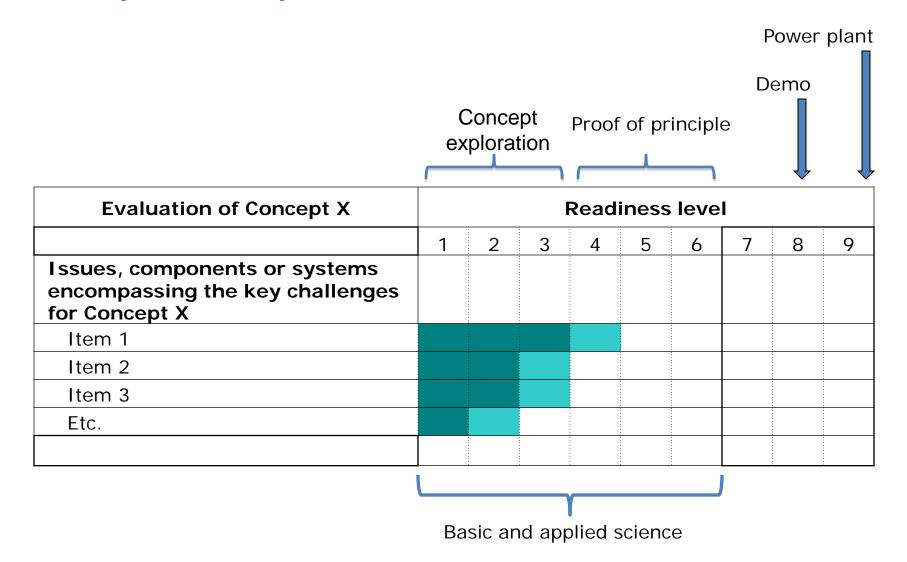


30kV X30,000 0.5µm 0147 UC PISCES

NAGDIS-II: pure He plasma N. Ohno et al., in IAEA-TM, Vienna, 2006 1250 K, 36000 s, 3.5x10²⁷ He⁺/m², 11 eV He⁺

- 100 nm (VPS W on C) (TEM)
- Surface morphology
- Evolving surface
- Nano-scale 'fuzz'

NAGDIS-II: He plasma D. Nishijima et al. JNM (2004) 329-333 1029 • Surface morphology


- Shallow depth
- Micro-scale

Evaluation of Research Options involved examination of Technology Maturity and Facility Capabilities

- Technology maturity evaluated using Technology Readiness Level (TRL) quantitative scale
 - Most fusion nuclear science is at a relatively immature TRL~3 (concept exploration stage)
 - The panel concluded optimal progress toward higher TRLs (proof of principle) is best achieved by focusing on front-runner candidates
- Facility capabilities to address knowledge gaps were examined for a broad range of scientific phenomena
 - A series of charts were constructed to quantify the contribution of different facilities to resolving knowledge gaps

Readiness levels identify R&D gaps between the present status and any level of achievement, for a particular concept. They help to identify which steps are needed next.

TRL's can be applied to components

	Generic Definition	Blanket Subsystem-Specific Definition
1	Basic principles observed and formulated.	System studies define tradeoffs &requirements: heat loads, tritium breeding, magnetic effects (MHD, loads under off-normal operation scenarios), material constraints (temperature, stress, tritium inventory, radiation effects).
2	Technology concepts and/or applications formulated.	Blanket concepts including breeding material, structural material and cooling configuration explored. Critical parameters characterized.
3	Analytical and experimental demonstration of critical function and/or proof of concept.	Coupon-scale experiments on heat loads (and thermal-hydraulic), tritium generation and mass transfer; modeling of governing heat transfer, thermal-hydraulic (including MHD) and mass transfer processes (tritium behavior and possibly corrosion) as demonstration of function of blanket concept. Maintenance methods explored.
4	Component and/or bench-scale validation in a laboratory environment.	Bench-scale validation through submodule testing in lab environment simulating heat fluxes or magnetic field over long times, and of mockups under neutron irradiation at representative levels and durations. Maintenance methods tested at lab-scale.
5	Component and/or breadboard validation in a relevant environment.	Integrated module in: (1) an environment simulating the integration of heat loads and magnetic fields (if important for concept) at prototypical levels over long times; and (2) an environment simulating the integration of heat loads and neutron irradiation at prototypical levels over long times. Coupon irradiation testing of structural materials to end-of-life fluence. Lab-scale demo of selected maintenance scheme for blanket unit.
6	System/subsystem model or prototype demonstration in relevant environment.	Integrated subsystem testing in an environment simulating the integration of heat loads and neutron irradiation (and magnetic fields if important for concept) at prototypical levels over long times. Full-scale demonstration of maintenance scheme.
7	System prototype demonstration in an operational environment.	Prototypic blanket system demonstration in a fusion machine (for chosen confinement), including demonstration of maintenance scheme in an operational environment.
8	Actual system completed and qualified through test and demonstration	Actual blanket system demonstration and qualification in a fusion machine (for chosen confinement) over long operating times. Maintenance scheme demonstrated and qualified.
9	Actual system proven through successful mission operations	Actual blanket system operation to end-of-life in fusion power plant (DEMO) with operational conditions and all interfacing subsystems.

Contribution of major facilities to PMI science and technology issues

Red:TRL 1-3 issuesYellow:TRL 4-6 issuesGreen:TRL 7-9 issues

ITER FNSF Demo

Major Science & technology issues: Plasma-Material Interactions

Facility	Plasma test stands	Non-DT confinement: inductive. low T	Non-DT confinement: non- inductive, low T	Non-DT confinement: non- inductive. high T	ITER: DT, inductive, low T	FNSF: DT, non-inductive, high T	DEMO
Divertor + Wall PM							
Quiescent plasma heat/energy exhaust	13. Sheath heat transmission, basica parallel plasma physics	35. Non-stationary T, but possible high parallel power loading at small size	35. Varying P/S ~ 0.2 - 1 MW/m2, activley cooled water	36. Varying P/S ~ 0.5 - 1 MW/m2, activley cooled with gas, constant T	45. Power density P/S~0.2 MW/m2,at reactor size, water cooled	7 - 8. Power density P/S-1 MW/m2, peak <10 MW/m2 one year /w neutron damage	
Transient plasma heat exhaust	13. Surface response > 0.1 MJ/m2		45. Disruption/ELM dynamics, too low W/S<0.02 MJ/m2		S7. Enery density W/S ~0.5 MJ/m2 in ~ms, pulsed	67. Energy density W/S~0.5 MJ/m2 for one year	78. Energy density W/S~1.5 MJ/m2 for one year
Erosion control	13. Sputter yield + morphology evolution	45. Cumulative erosion < 10 microns/year, local measurement rates + plasma Te reduction for control		iot > micron> cumulative yearly in ~ mm	45. Erosion at reactor size, W/C divertor, pulsed	78. Peak divertor erosion < 5- 10 mm/year, main-wall erosion < mm /year	
Dust and redeposit control	13. Response of redeposits to plasma load, dust transport	34. Basics of dust production and transport, redeposit properties	45. Basics of dust production and transport, redeposits at cumulative depths > 0.1-1 mm	46. Basics of dust production > 0.1-1 mm with T > 500 C	45. Deposits at reactor size, T<200 C	78. <10-100 kg mobile dust, no disrupting UFOs from deposits after one year (~1e4 kg eroded)	
Tritium fuel retention	14. Implantation & permeation from RT to > 500 C	3. High recycling but low and varying T	34. High recycling with constant low T	46. High recycling with constant high T	45. Beryllium or carbon at low T, reactor-level inventory	78. < 1 kg retained tritium per year, T>500 C	
Fueling, burn fraction & ash control		34. Helium confinement,	34. Helium confinement, transport, de-enrichment 45. Helium recy with hot W + surfa (fuzz		46. Fueling at reactor size, divertor He ash exhaust required	78. <10% density variation, burn fraction > 1%, core He < 10% for one year	
Integrated viability of PMI with core plasma		35. Core contamination, Zeff		at non-inductive densities towards 1 MW/m2	45. Inductive scenario with low T walls	67. Robust non-inductive low-Q scenario near density limit & heat removal limit	
Integrated viability of PMI + nuclear damage effects	4. Irradiated sample testing					67. <10 dpa radiation damage, -30 TJ/m2 convected energy	78. >10 dpa radiation damage, > 30 TJ/m2 convected energy

Contribution of major facilities to PFC development

				ITER		FNSF	Demo
Facility	test stands and design studies	Short pulse toroidal devices; upgraded test stands	Non-nuclear SS Toroidal Devices	ITER and ITER TBM	PFC test device and/or Blanket Test Stand	FNSF	DEMO
Device Requirements for PFC Development	2 odeo modeline	2 odes modelins	E hottos modele anu	A lease and adapt	and the other states of the second	7 and this models	9 sectors as formand
Understand power flow, predict heat loads	2 edge modeling, development of new diagnostics	3 edge modeling, deployment of new diagnostics	5 better models, new diagnostics, more power	4 improved edge modeling, ITER H and D plasmas	materials for diagnostics in IFMIF	7 predictive models, right plasma edge (need rad-hard diag.)	8 confirm peformanc for DEMO size & power
Relevant divertor size (area ratio to FW)	3 design studies	?4 MAST Super-X divertor experiment	5 EAST or other	3 ITER plasmas, wrong divertor	?6 PFC Test Device	7 right configuration, based on modeling	8 confirm peformanc for DEMO size & power
DEMO relevant disruption mitigation	3 modeling, design studies	4 improved models, DIII- D experiments	5 improved techniques, experiments	6 ITER plasmas, system information, wrong edge plasma	76 PFC Test Device	7 solution with right plasma	8 confirm peformance for DEMO size & power
Representative edge (density; parallel power flux)	3 modeling, design studies	4 improved models, experiments	5 better models, higher power	4 ITER plasmas, system information, wrong edge plasma	76 PFC Test Device	7 solution with right plasma	8 confirm peformance for DEMO size & power
Solid PFC Configuration			develop poloidal		-		
Relevant high temp operation	3 design studies,	4 design studies; HHF	5 400-600C PFCs			8 relevant operation,	8 preferred,
Relevant night temp operation	HHF Tests 400-600C, small mockups	Tests 600-800C; hot wall tiles	5 400-000C Fres	some experience with recessed FW	NA	confirm performance	optimized mat. & tempertures
DEMO relevant launchers, mirrors, etc.	2 modeling, design studies	3 better models & designs, HHF experiments	5 mature designs, deployed units, confirm performance	4 ITER plasmas, system information, wrong edge plasma	76 PFC Test Device	7 relevant operation, confirm performance	8 preferred, optimized mat. & tempertures
W-based divertor	2-3 design studies, HHF experiments	4 HHF mockups; W tiles, hot wall (C-MOD); W div EAST	5 W div East-U (higher power) & Satellites	4 W div in ITER H & D plasmas	divertor materials in IFMIF	7 relevant operation, confirm performance	8 preferred, optimized mat. & tempertures
W-based limiters, recessed or highly-shaped high temp FW	2-3 design studies, HHF experiments	4 improved models, HHF experiments	75 deployed W lim & recessed FW	data from port plugs, FW modules	FW materialsin IFMIF	7 relevant operation, confirm performance	8 preferred, optimized mat. &
Understand PFC failure modes, predict lifetime	2-3 design studies, HHF experiments	4 improved models, HHF experiments	4 models + HHF tests, anecdotal data	anectdotal data, new failure modes	76 PFC Test Device	6-7 real data, predictive models, benchmarks	8 mature models, optimized mat.
Demonstrate acceptable div. life	2 design studies, HHF tests 400-600C	3 improved models; HHF tests, He-600C; He- cooled div., EAST	4 hot He-cooled W div East-U (more power) & Satellites	anectdotal data	test samples with n-damage	7 real data, confirm performance, models, data 20 dpa; He-600C	8 opt. mat., confirm performance, data 50 100 dpa; He-600C
Demonstrate acceptable life, integrated FW	2 design studies, HHF tests 400-600C	3 improved models; HHF tests, He-600C and blanket coolant	NA	anectdotal data, shaped FW	4-5 Blanket Test Stand	7 real data, confirm performance, models, data 20 dpa; He-600C	8 opt. mat., confirm performance, data 50 100 dpa; He-600C
Liquid Divertor (with solid FW)		2	6			And the second	5
Demonstrated heat removal	2 modeling, design studies	3 improved models, HHF tests small area	4-5 HHF mockups; deployed liq. divertor	NA	75 liquid divetor test in blanket test stand	6-7design based on models, confirm performance	8 opt. mat., confirm performance
Integrated op., acceptable life	2 modeling, design studies	3 improved models, improved designs and materials data	4 improved design models, mat. irradiations and PIE	NA	75 data on failures from liq. div.tests in blanket test stand	5-6 design based on models, progressive phases to confirm performance, 20 dpa	7-8 opt. mat., matue life model, 50-100 dpa
Qualified PFC Supply							
Develop/qualify divertor fabrication process Develop/qualify limiter fab process	2-3 design studies; 2-3 design studies;	4-6 HHF and mat tests, irrad 4-6 HHF and mat tests, irrad				7 opt. process, large material lot., good QA 7 opt. process, large material lot., good QA	8 near commercial material and QA 8 near commercial material and QA

Contribution of major facilities to Diagnostics science and technology issues

			l	DEMO Relavent Diagnostics R&	\$D	ITER	FNSF	Demo
Key facilities/Hardware	Computer simulation / integrated modeling	Non-nuclear test stands (mechanical, fabrication) (HHF, PSI, LM PFC, etc)	lon beams & fission reactor	Short pulse Toroidal devices (DIII-D, CMOD, NSTX, etc.)	Non-nuclear SS Toroidal Devices (EAST, KSTAR, JT60-SA)	ITER	FNSF	DEMO
Define Minimum Set of Measurer	nent Requirements for DEMO C							
DEMO relevant diagnostics		 Can computer simulation be used to compensate for lack of spacial resolution? 		 Explore if "detuned" diagnostics can safely control the plasma 				
DEMO relevant FW & divertor instrumentation		2. Prototype robust instrumentation "smart tiles,"		 Deploy "smart files," on short pulse toroidal devices. 				
Sensor proximity viability				2-3.Explore sensor proximity effectiveness				
Diagnostic robustness		2 Test prorotypes of new diagnostic sub-elements on single-effect test stands		3. Test prototypes of new diagnostics on existing devices	 Develop prototypes of new diagn and test on non-nuclear devices and/o 		7. Test new diagnostics using reactor relevant material on FNSF	8. Validatef new diagnostics at full parameters
Material Selection of FW Compo								
Material qualification: mirrors, front end effectors	 Modeling , design studies 		 Rad. stability of joints & fabrication approaches, up to 70 dpalno He 		45. Develop prototypes of mirrors fal and test on non-nuclear SS toroidal di performance		7. Relevant operation, confirm performance	8. Validatef mirror performance at fu parameters
Material qualification: insulators		 Identify candidate materials, prioritizes into primary and secondary candidates 	 Fabricate, and test samples for irradiation affects, up to 150 dpal He, stress. 	or 3. Develop prototypes of ceramic With insualtor material and test on existing devices	 Develop prototypes of mirrors fabric and test on non-nuclear SS toroidal de effects 			
Develop Real-Time Interpretation	and Analysis of Diagnostic Me	easurements						
Explore real-time measurement and analysis capability	2. Evaluate enhanced modeling of diagnostic measurements			3. Demonstrate the effectiveness of modeling on DIII-D, CMOD diagnostic	4 Use detuned diag. & modeling to show effective plama control			
	and recovery from "off-normal" events		3-	4 Improved models, DII-D experiments	4.5. Improved techniques, experiments	56. ITER Plasmas, systm information, (wrong edge plasma)	7. Validate with right plasma edge	8. Confirm performance for DEMO size & Power
Calibration, Reliability and Robu	stness							
In-situ Claibration		2-3. Explore real time in-situ calibration systems on single-effect test stands		 Demonstrate techniques for in-situ diagnostic calibration 	5.6. Demonstrate in-situ diagnostic calibrate on SS toroidal devices			
Integrated remote maintenance strategy		2-3. Develop llarge scale, radiation- hard robotic devices				67. Demonstrate llarge scale, radia	tion-hard robotic devices.	8.Confirm performance for DEMO size

Contribution of major facilities to Plasma Heating science and technology issues

Red: TRL 1-3 issues Yellow: TRL 4-6 issues Green: TRL 7-9 issues

ITER FNSF Demo

DEMO Relavent Ion Cyclotron, Lower Hybrid, and Electron Cyclotron Launcher R&D												
Key Facilities/Hardware	Computer simulation / integrated modeling	Non-nuclear test stands (mechanical, fabrication) (HHF, MPRF, MWTS, etc)	Ion beams & fission reactors	Short pulse Toroidal devices (DII+D, CMOD, NSTX, etc.)	Non-nuclear SS Toroidal Devices (EAST, KSTAR, JT60-SA)	ITER	FNSF	DEMO				
Advancement of ICILHIEC Anter	Advancement of ICILHIEC Antennal Launcher Technology											
Improve RF Sheath & near field	2-3. Improve models for sheath											
modeling	physics											
Measure the SOL near and in front of		3. Validate diagnosic performance on		4. Perform diagnostic performance	56. Perform diagnostic performance							
the ICI LHIEC antennasilaunchers		plasma-wall interaction test stands.		validation on DIII-D, CMOD & NSTX	validation on ISS toroidal devices							
Effects of heat load, neutrons & T	2. Model heat and particle fluxes to	23. Qualify structural, shield and	3. Test coating techniques a 3.4. D	evelop and test designs that	56. Validate antennal launcher	6-7 Evaluate the anticipated contribu	for indust formation from the	8. Validate ICILH/ EC				
retention on antennallauncher	high-power, energized components.	coating material for	advanced refractory alloys a incorpo	vate active cooling	performance on SS toroidal devices.	materials selected for ICLHEC anter		anternas/launchers at full				
materials			doping					parameters				
Increase Antennal Launcher Power Density												
Validate new ICILHEC	2. Develop improved models of the	3. Validate antenna launcher concepts		3. Test advanced ICILHEC	45. Test ICILHIEC antennal launcher	6. Test advanced ICUHEC	7.Perform engineering validation	8. Validate advanced ICLHIEC				
antennallauncher concepts	properties that cause arcing.	on long pulse MPRF, MWTS test		antennasilaunchers on non-nuclear	concepts using nuclear grade	Antennaslaunchers in a nudear	(RAMI) on a FNSF device	antermasi launchers at full				
		stands		facilities	materials	ervironnen		parameters				

С	Contribution of major facilities to Materials degradation										
SC	science and technology issues Non- Fusion-										
Y	ellow: TRL	1-3 issues 4-6 issues 7-9 issues			ITER- TBM	test stands	neutron	FNSF	Demo		
	Facility	Non-nuclear Test Stands (thermo- mechanical)	Non-nuclear Test Stands (corrosion)	Ion beams and Fission Reactors	ITER TBM	Non-nuclear Test Stands (partially integrated)	Fusion Relevant Intense Neutron Source	Fusion Nuclear Science Facility	DEMO		
	First-Wall/Blanket Struct	ural & Vacuum Vesse	Materials								
	Science-based design criteria (thermo- mechanical strength)	2. Develop high temperature creep-fatigue design rules for nuclear components				4. Validate high temperature creep-fatigue design rules w/o irradiation	5. Validate irradiated high temp structural design criteria (50-150 dpa with He, stress)	7. Code qualified designs	7-8. Code qualified designs		
	Explore fabrication & joining tradeoffs	2. Conventional & advanced manufacturing technologies	2. Loop tests of joints & novel fabrication approaches	2. Rad. stability of joints & novel fabrication approaches		5. Validate near prototypic fabrication and joining technology w/o irradiation	6. Validate near- prototypic fabrication & joining technology (50- 150 dpa with He, stress)	7. Demo-relevant fab processes	8. Prototypic advanced fabrication		
	Resolve compatibility & corrosion issues		3. Basic and complex flow loops			5. Validate corrosion models w/o irradiation		7. Near prototypic operating environment	8. Prototypic extended operating environment		
	Scientific exploration of fundamental radiation effects in a fusion relevant environment			3. Up to 150 dpa/With He, stress (ion beams, fission reactors)			6. 50 - 150 dpa/With He and stress				
	Material qualification: Structural stability in fusion environment (e.g., void swelling, irradiation creep)			3. Up to 70 dpa/no He (fission reactors)	2. Materials behavior in a low-dose, low- temp. env. (not Demo-relevant matl, <2 dpa, low temperature)		6. 50 - 150 dpa/With He and stress	7. 10 - 50 dpa, Demo prototypic environment	7-8. Prototypic operation, 50 - 150 dpa/With He/Fully Integrated		
	Material qualification: Mechanical integrity in fusion environment (e.g., strength, rad resistance, lifetime)	2. Unirrad. mech. prop. data (tensile, creep, fatigue, fract. toughness, da/dN, etc)		3. Up to 70 dpa/no He (fission reactors)	2. Materials behavior in a low-dose, low- temp. env. (not Demo-relevant matl, <2 dpa, low temperature)	5. Qualify components w/o irradiation	6. 50 - 150 dpa/With He and stress	7. 10 - 50 dpa, Demo prototypic environment	7-8. Prototypic operation, 50 - 150 dpa/With He/Fully Integrated		
	Fusion environment effects on tritium retention & permeation		2. Unirradiated diffusion and permeation data	3. Effect of radiation damage at Demo-relevant temperatures			6. Demo-relevant materials (up to 50-150 dpa with He at correct temp.)	7. System-scale tritium permeation and loss mechanisms	7-8. Prototypic permeation & losses		

Contribution of major facilities to DCLL chamber blanket science and technology issues

Red: TRL 1-3 issues Yellow: TRL 4-6 issues Green: TRL 7-9 issues

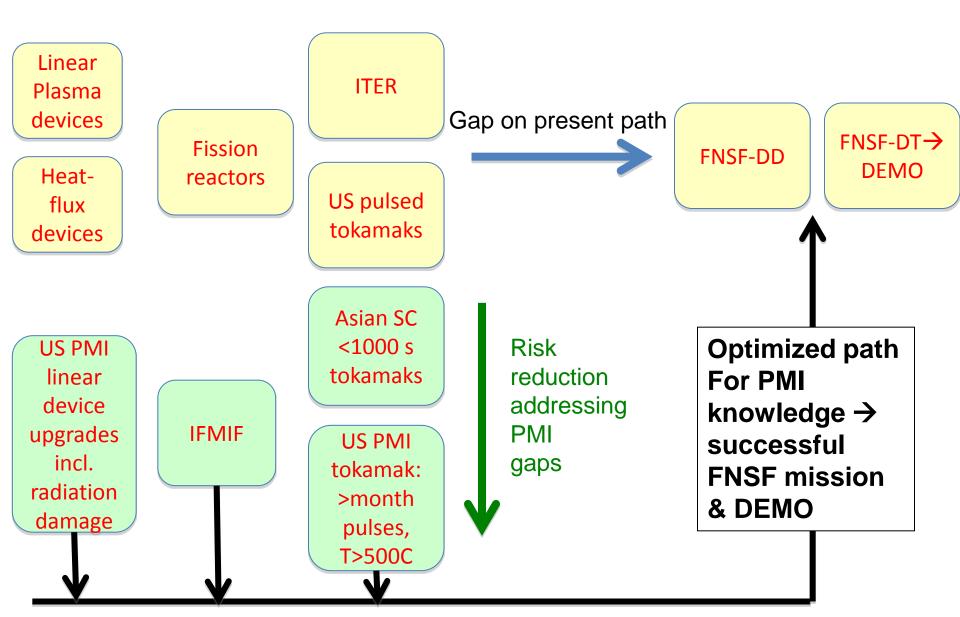
> Tritium science facilities

ITER-TBM

Demo

FNSF

Tritium Breeding Blanket Systems						
Key Experiments	Basic Experiments	Development Experiments (e.g. PMTF, MTOR, others)	Partially-Integrated (e.g. BT3F, TBEF)	ITER-TBM	FNSF	DEMO
	Basic Experiments	(e.g. Pivitr, WTOR, others)	IBEF)	TER-TBIVI	FNSF	DEMO
Performance Requirement						
Helium Temp/Flow Rate/Pressure per blanket	gas bottle discharge or air					
module	simulant	600C, 0.1 kg/s, 4 Mpa	500C, 1.5 kg/s, 8 MPa	500C, 1.5 kg/s, 8 MPa	500C, 3 kg/s, 8 MPa	500C, 3 kg/s, 8 MPa
PbLi Temp/Flow Rate/Pressure per blanket	PbLi properities, static testing,					
module	MHD	400C, 5 kg/s, 0.2 MPa	700C, 30 kg/s, 1 MPa	700C, 30 kg/s, 1 MPa	700C, 50 kg/s, 2 MPa	700C, 50 kg/s, 2 MPa
	Contact heaters on small					
Surface Heating, module area	samples	1 MW/m2, 1 m2	0.5 MW/m2, 2 m2	0.3 MW/m2, 1.5 m2	0.5 MW/m2, 4 m2	0.5 MW/m2, 4 m2
Tritium extraction rate	Property measurements	Concept tests	~0.002 g/hr	~0.002 g/hr	2 g/hr	13 g/hr
Fraction tritium recovered	Property measurements	30% (7)	99.9%	90%	99.99%	99.99%
Magnetic Field	NA	2 T	2 T	4 T + poloidal field	5 T + poloidal field	8 T + poloidal field
Volumentric heated (as NWL), volume	NA	simulated w/ heaters, 0.01 m3	sim. w/ heaters, 2 m3	0.7 MW/m2 wall load, 0.5 m3	1-2 MW/m2, 2 m3	2-3 MW/m2, 2 m3
Max Operating time to replacement	NA	months	months to years	2 years	2-10 years	5 years
			Coupling to fission or accelerator			
Tritium production per module, TBR	Cross-sections	NA	source	0.002 g/hr, 0.5	0.04 g/hr, >1 .0	0.07 g/hr, > 1.05
Tritium containment	NA	NA	Concept tests	Collect data	Fully Integrated	Fully integrated
No. Modules	NA	NA	1	6	50	200
Availability (on demand)	NA	NA	0.7	0.85	0.9	0.95
Duty factor (annual)	NA	NA	0.5	0.05	0.3	0.5
Pulse length w/ integrated conditions	NA	NA	weeks	1 hr	weeks	months
Fusion Fluence per component	NA	NA	NA	0.1 MW.yr/m2	1-6 MW.yr/m2	7.5 MW.yr/m2


Contribution of major facilities to Tritium science and technology issues

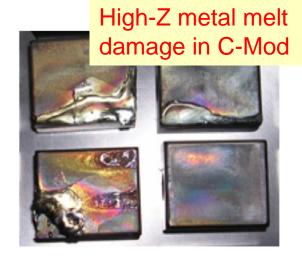
Red: TRL 1-3 issues Yellow: TRL 4-6 issues Green: TRL 7-9 issues

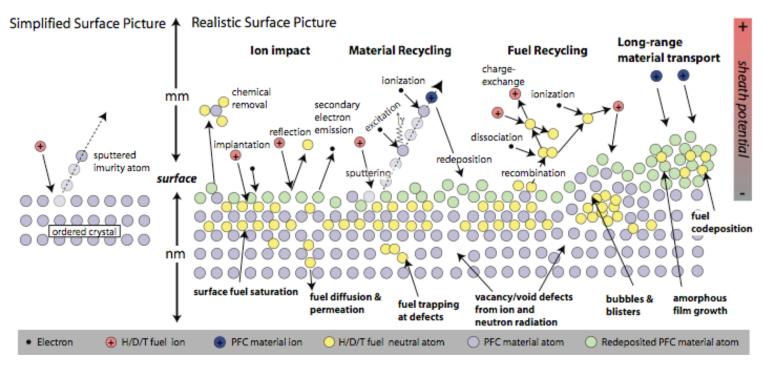
ITER, FNSF Demo

Tritium Processing Systems						
Key Experiments	5 Basic experiments	Development experiments	Partially-Integrated (e.g. TSTA/TFTR/JET)	ITER, FCDF	FNSF, FCDF	DEMO
Performance Requirement						
Supplied T Conc	Few%	10's of %	50%	50%	50%	50%
DT Flowrate	Low sccm	high sccm	6 SLPM	120 SLPM	80 SLPM	120 SLPM
Tritium inventory	~1 gm	~10 gm	100 gm	4000 gm	4000 gm	6000 gm
		Standalone confinement and	Partially integrated confinment	Fully integrated confinment and	Fully integrated confinment	Fully integrated confinment and
Tritium containment	Hoods	detritiation	and accident response	accident response	and accident response	accident response
Recycle time requirement	NA	NA	24 hr	1 hr	1 hr	1 hr
Degree of integration	NA	NA	70%	85%	100%	100%
Overall Facility Size	NA	NA	3000 m3	40000 m3	35000 m3	30000 m3
DEMO relevance	NA	NA	0.3	0.6	0.85	1
Availability (on demand) (%)	NA	NA	70	85	90	95
Duty factor (annual)	NA	NA	5	5	30	50

Example of PMI-PFC Facilities Options Assessment

Panel Findings regarding R&D options Overarching findings

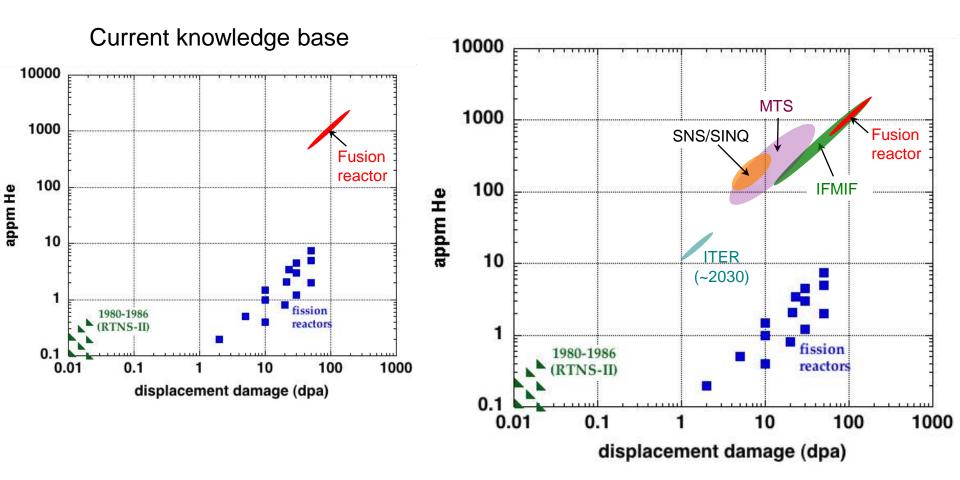

- Time to focus: Research to explore the scientific proof of principle for fusion energy (TRL>3) is most expediently accomplished by focusing research activities on the most technologically advanced option.
- Time to make selective reinvestments: Most existing US fusion technology test stands are no longer unique or world-leading. However, numerous compelling opportunities for high-impact fusion research may be achievable by making modifications to existing facilities and/or moderate investment in new medium-scale facilities.


Panel Findings regarding R&D options <u>Plasma-material interactions findings</u>

- P1. Power handling on the first wall, divertor, and special plasma facing components is challenging in steady state, and is severely aggravated by non-steady loading.
 - Efforts to mitigate transient and off-normal loads are critical, requiring compromises between loading conditions, plasma operating modes, material properties optimization, design solutions, and component lifetimes.
- P2. Materials suitable for plasma facing components (PFCs) are limited and their performance in the fusion environment is highly uncertain.
 - Establishing material and design candidates will require significant efforts in experimentation and multi-scale simulation, and the coupling of plasma science, materials science, and advanced engineering and manufacturing technology.

Plasma-material interactions

- P1. Power handling on the first wall, divertor, and special plasma facing components is challenging in steady state, and is severely aggravated by non-steady loading.
- P3. Observing behavior at the plasma material interface during integrated <u>month-long plasma operation</u> AND at <u>relevant high temperatures</u> requires capabilities beyond present day and planned facilities.


Panel Findings regarding R&D options <u>Plasma-material interactions findings (continued)</u>

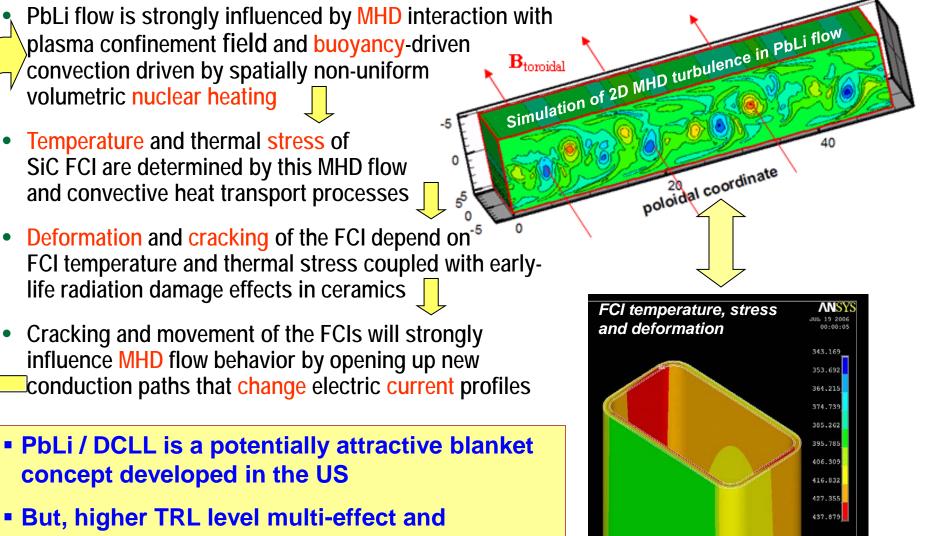
- P3. Observing behavior at the plasma material interface during integrated month-long plasma operation requires capabilities beyond present day and planned facilities.
 - Predicting the long-term system behavior in light of this response requires some combination of non-nuclear month-long plasma PFC/PMI linear and confinement facilities and an extensive non-nuclear (or DD) phase of FNSF in order to alleviate risk to the nuclear (DT) phase of the FNSF.
- P4. Developing measurement systems and the launching structures for plasma heating, that can survive the fusion environment, is a significant challenge.
 - A significant effort is required to establish viable materials, configurations, operating modes, and overall feasibility in the combined plasma and nuclear loading conditions expected in a FNSF.

Panel Findings regarding R&D options Degradation of materials & structures findings

- D1. The lack of an intense fusion relevant neutron source for conducting accelerated single-variable experiments is the largest obstacle to achieving a rigorous scientific understanding and developing effective strategies for mitigating neutron-induced material degradation.
- D3. Knowledge of the processes controlling tritium permeation and trapping in advanced nanostructured alloys designed to manage high levels of helium is inadequate to ensure safe operation of next-step plasma devices.

There are several options to close the current knowledge gap in fusion-relevant radiation effects in materials

Option A: IFMIF + fission reactors +ion beams + modeling Option B: robust spallation (MTS) + fission reactors + ion beams + modeling Option C: modest spallation (SNS/SINQ) + fission reactors + ion beams + modeling


Panel Findings regarding R&D options Degradation of materials & structures findings (cont'd)

- D4. Current understanding of the thermo-mechanical behavior and chemical compatibility of structural materials in the fusion environment is insufficient to enable successful design and construction of blankets for next-step plasma devices.
- D5. Disruptive advances in fabrication and joining technologies may offer new routes to high-performance materials with properties that enable construction of fusion power systems that fulfill safety, economic and environmental attractiveness goals.
- D6. The performance and economics of Magnetic Fusion Energy is significantly influenced by magnet technology.
 - There is value in continuously exploring improvements in superconducting magnet capability

Panel Findings regarding R&D options <u>Harnessing Fusion Power findings</u>

- H1, H2. The ultimate attractiveness of a fusion system depends on the performance of power extraction and tritium breeding systems that surround the plasma.
 - But, at present these systems are at a low TRL with high uncertainty as to the performance of envisioned solutions and material systems.
 - Efforts to improve current knowledge are hampered due to a lack of resources and test facilities.
- H3. The US has developed a potentially attractive family of first wall / blanket concepts
 - based on the use of Pb-Li as a breeder/coolant, separate gas cooling of reduced activation ferritic steel first wall and structure, and the use of thermal / electrical insulating inserts based on silicon carbide.

Harnessing fusion power

integrated interactions must be explored

Panel Findings regarding R&D options Harnessing Fusion Power findings (continued)

- H4. Public acceptance and safety of fusion energy is strongly dependent upon the ability to reliably control the chemistry and permeation of tritium
 - (compared to fission reactors, fusion requires five orders of magnitude better control of tritium losses per unit of production).
 - ITER represents a large step forward in the handling of DEMO scale tritium flow rate, but ITER tritium systems will not be available to serve as test facilities to develop improvements still needed in processing time and system availability.
 - The ITER device does not address removal and processing of tritium from candidate breeder blanket systems.
- H5. A fully integrated and coherent US strategy to develop and utilize non-nuclear test facilities, irradiation facilities, and fusion devices to understand the engineering feasibility invessel materials and components is needed.

Panel overarching recommendations

- Now is an appropriate time to focus: As fusion nuclear science matures from concept exploration studies (TRL 1-3) to more complex proof of principle studies (TRL 4-6), it is appropriate to focus R&D on front-runner concepts.
- Moderate facility investments should be considered: Numerous fusion nuclear science feasibility issues can be effectively investigated during the next 5 to 10 years by efficient use of medium-scale facilities.
 - Several facilities, e.g. Fast neutron source, Blanket Thermofluid / Thermomechanics, Linear Plasma Device, etc. are explored in the report
- The key mission of the next step device beyond ITER should be to explore the integrated response of tritium fuel, materials and components in the extreme fusion environment in order to provide the knowledge bases to contain, conquer, harness and sustain a burning DT plasma at high temperatures.

Panel recommendations on Plasma-material interactions

- P1. Significant confinement plasma science initiatives are required to provide any confidence in the extrapolated steady and transient power loadings of material surfaces for a FNSF/DEMO.
- P2. The leading FNSF/DEMO candidate solid material to meet the variety of PFC material requirements is tungsten.
 - Several new initiatives should be started in the near term to resolve major feasibility questions
- P3. Opportunities to access plasma pulse lengths in relevant exposure environments must be pursued in order to bridge the large gap in pulse lengths between present experiments and FNSF/DEMO.
 - Linear plasma devices and a non-nuclear PMI facility
- P4. Substantial effort in the areas of measurements (and their diagnostics) and heating/current drive systems that can survive the harsh FNSF environment should be maintained.

Panel recommendations on Material degradation

- D1. Re-engagement in the IFMIF Broader Approach Engineering Validation and Engineering Design Activity (EVEDA) should be initiated, in parallel with limited-scope neutron irradiation studies in upgraded existing spallation sources such as SINQ or SNS.
- D2. A detailed engineering design activity should begin that is closely integrated with materials research activities including ~20 dpa data from SINQ or SNS to permit selection of a prime candidate reduced activation steel for FNSF.
- D3. A robust experimental and theoretical effort should be initiated to resolve scientific questions associated with the permeation and trapping of hydrogen isotopes in neutron-irradiated materials with microstructures designed to mitigate transmutation produced helium.
- D4. Science-based high-temperature design criteria and fundamental studies of chemical compatibility in the fusion environment should be significantly enhanced.

Panel recommendations on Harnessing fusion power

- H1. Develop a fully integrated strategy to advance the scientific and engineering basis for power extraction and tritium breeding systems.
- H2. Examine key feasibility issues for Pb-Li blanket concepts as soon as possible
 - $-T_2$ extraction from hot Pb-Li, MHD flow effects, chemical compatibility, etc.
- H3. Predictive capabilities that can simulate time-varying temperature, mass transport, and mechanical response of blanket components and systems should be emphasized.
- H4. Near-term research should be initiated on blanket and tritium extraction systems performance and reliability with prototypic geometry and loads
 - Explore possibility of unanticipated synergistic effects

Panel statement on role of computational modeling

- Computational modeling is viewed as an essential, integral component to fusion nuclear science R&D
 - Particularly for multiple-effects phenomena associated with proof of principle research (TRL4-6), computational modeling is essential to guide and interpret experimental studies
- For the same reasons that experimental research without robust modeling is sub-optimal, computational research in isolation as a proxy to experiment is not recommended
 - The most expedient and cost-effective approach to fusion research involves careful integration of modeling, computational studies, and experimental research

Conclusions

- A careful focusing of breeding blanket and T₂ transport/recovery options to front-runner candidates is recommended to accelerate the development of fusion energy
- Utilization of a systems approach is important for prioritizing scope and schedule of R&D activities
- Considering the large gap in technology readiness between what will be obtained from ITER and medium-scale fusion facilities, an FNSF that focuses on the integrated response of tritium fuel, materials and components in the extreme fusion environment is recommended
 - Specific aspects of the potential vision of this facility need further analysis and research community input