

Present State and Future Plan of MCF Research in China

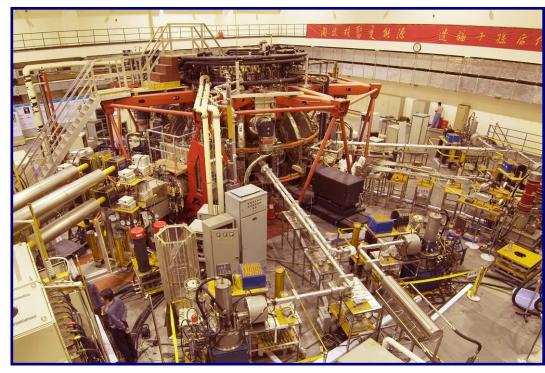
Jiangang LI

Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

HL-2A Tokamak

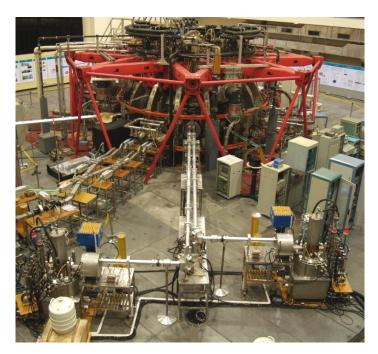
- **EAST Tokamak**
- > Physical engineering capability
- > Main experimental results
- Research Plan in next 2-5 years

ITER-CN Activities


Future Plan of CN-MCF program

Summary

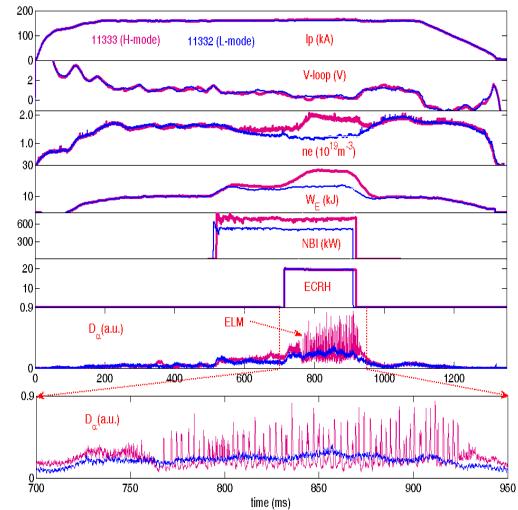
Status of HL-2A


1.65 m								
0.40 m								
1.2~2.8 T								
Configuration:								
Limiter, LSN divertor								
150 ~ <mark>480 kA</mark>								
1.0 ~ 6.0 x 10 ¹⁹ m ⁻³								
1.5 ~ 5.0 keV								
0.5 ~ 1.5 keV								

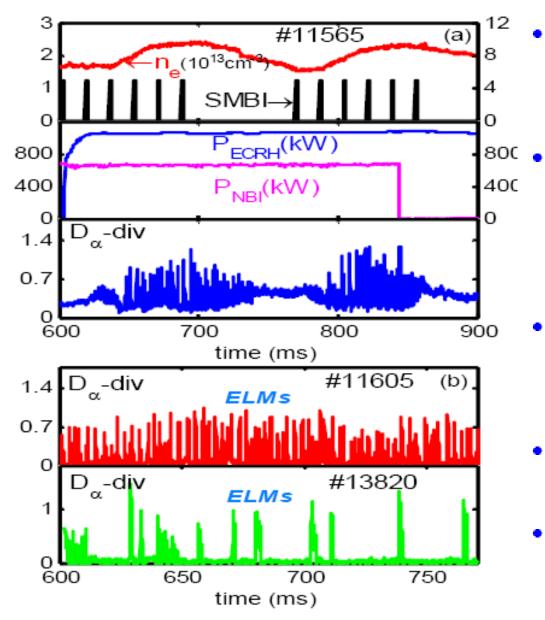
Auxiliary heating: ECRH/ECCD: (3+2)MW (6/68 GHz/500 kW/1 s) modulation: 10~30 Hz; 10~100 % NBI(tangential): 1.5 MW LHCD: 1 MW (2/2.45 GHz/500 kW/1 s) Fueling system (H₂/D₂):

Gas puffing (LFS, HFS, divertor)

Pellet injection (LFS, HFS)


SMBI (LFS, HFS) LFS: f =1~80 Hz, pulse duration > 0.5 ms gas pressure < 3 MPa

3MW ECRH ,68GHz/1s NBI :1.5 MW 40-60 keV,



ELMy H-mode discharges were achieved on HL-2A tokamak

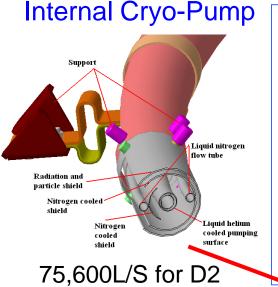
H-mode Physics

 Combination of NBI with ECRH is for Hmode discharge

HL-2A

- No clear difference is observed for power threshold between the ECRH and NBI
- SMBI fueling is beneficial for L-H transition
- Typical ELM period is a few milliseconds
- Largest one is a few tens of milliseconds.

HL-2A Tokamak


- **EAST Tokamak**
- > Physical engineering capability
- > Main experimental results
- Research Plan in next 2-5 years

ITER-CN Activities

Future Plan of CN-MCF program

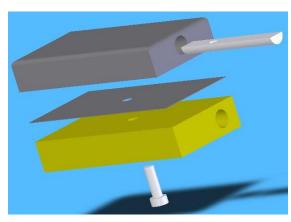
Summary

Key elements in-vessel

With DIII-D

•Actively-cooled PFC

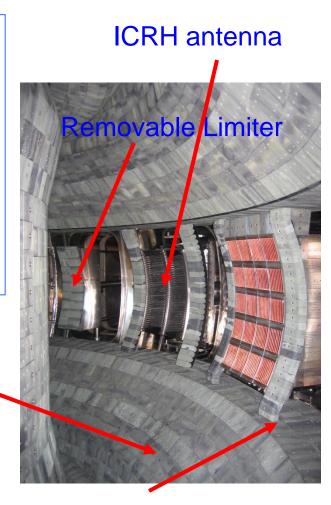
(~9000 tiles)


•Internal Cryo-Pump

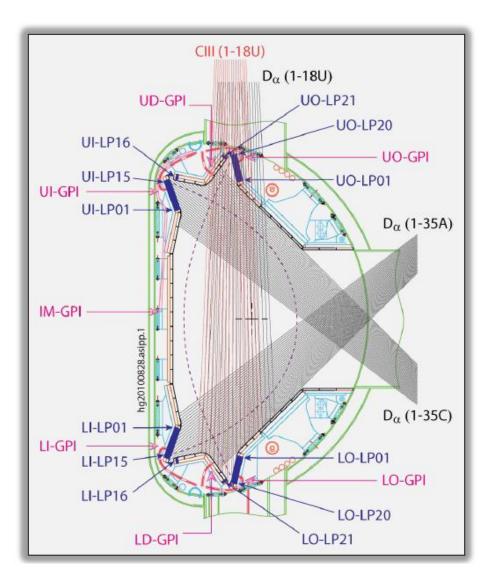
•LHCD: 2.45GHz, 2MW

•ICRF: 30-110MHz,1.5MW

•Magnetic sensors


• 2 Removable limiter

High heat flux region 2MW/m²



Total 37 flux loop

LHCD antenna

Main diagnostics (~50)

Main Edge diagnostics

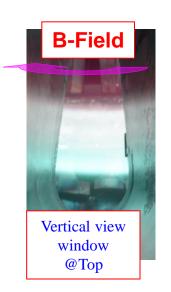
- Langmuir Probe System
 - 222 divertor target embedded graphite probes, configured as 74 triple or single probes.
 - 2 sets of reciprocating probes from the opposite sides of the mid-plane.

Spectroscopy

- 18-channel D_α/CII/CIII, viewing the lower outboard divertor from the top of the machine.
- 2 arrays of 35-channal D_α, viewing inner target and dome of both upper and lower divertors from outer midplane through in-vessel reflection mirrors.

RF Conditioning

- 1. ICR conditioning were successfully carried out in EAST, a divertor SC tokamak with metal/C walls.
- 2. ICR cleaning, recycling control, boronization and oxidation have been carried out and compared with GDC.
- **3.** High pressure and RF power are favorable for removal of hydrogen and impurities.
- 4. Wider operation widows (EAST: 15-30kW, 10⁻⁴-10Pa) and higher removing rate were obtained.
- 5. RF-Boronization has been routinely used for all campaigns with about 200nm thickness. 30-60 min. He RF conditioning was used for control recycling. Very good plasma performance can been easily obtained.



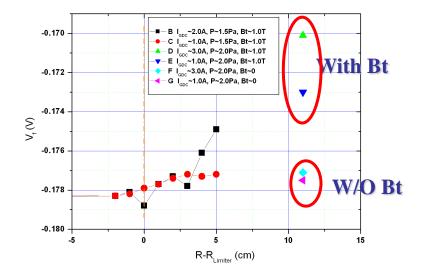
RF C antenna

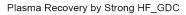
New Method : HF_GDC

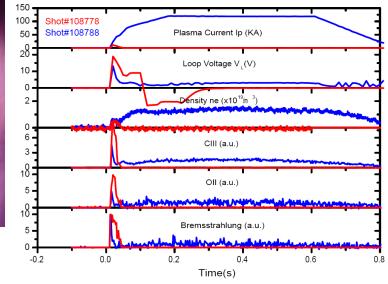
Power Supply: U=1.0KV, f=100KHz, I~0.5-1.0A
Work Gas: Ar, He, H2.
GDC electrode
HT-7: 5x10-4Pa-0.5Pa, Bt=0.5-2

HF-GDC is routinely used in HT-7 for wall conditioning, siliconization and recycling control between shots which shows almost the same effects with RFWC.

P=5.0E-2Pa, IGD=1.0A, Bt=1.0T, He



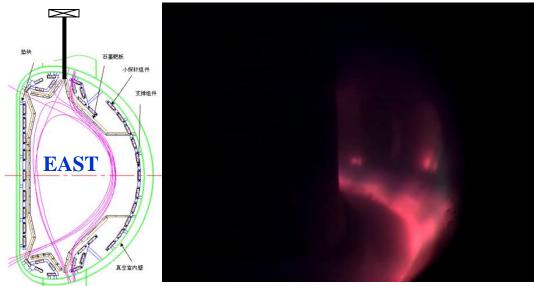

P=5.0E-2Pa, IGD=1.0A, Bt=1.0T, H2

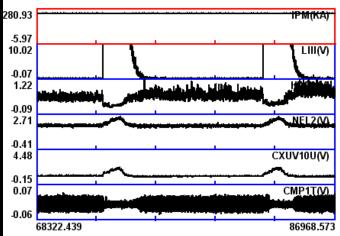

P=5.0E-4Pa,

IGD=1.0A,

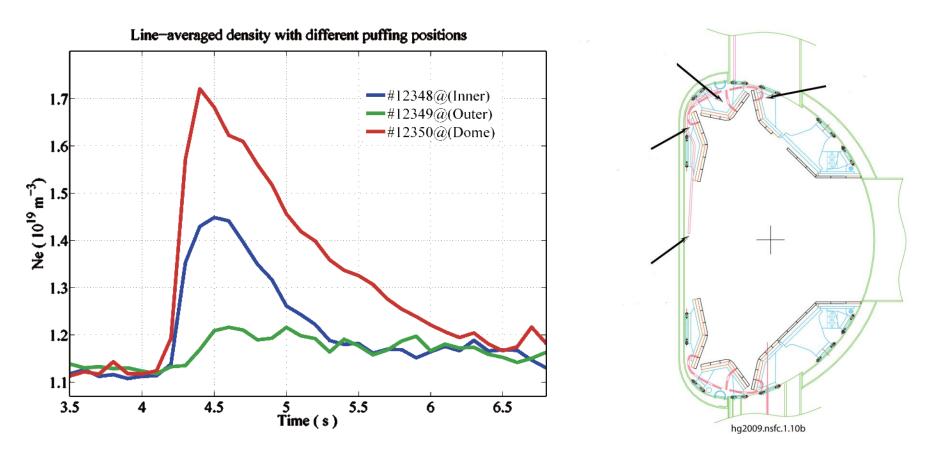
Bt=1.0T, He

Recovery from 10Pa leakage


Li Wall Conditioning EAST



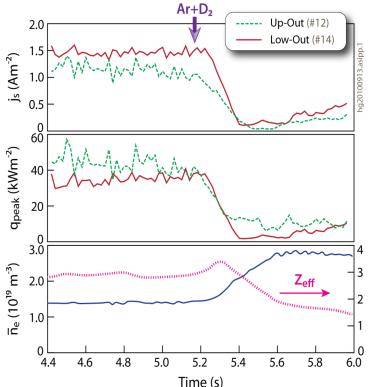
D.Mensfield PPPL


- Li Oven: RF coating (10-60g) Evaporating
- Li power dropper
- •Main Results:
- •Very good and quick technique
- •Z ~ 1.5-2.5
- •More broad Te and radiation profile
- •Low recycling

小探针在真空室内截面安装位置

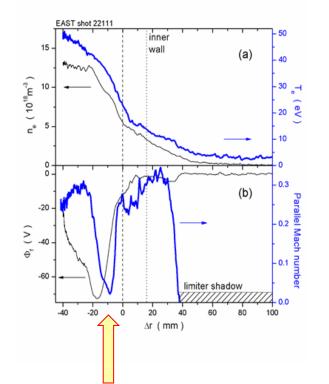
Fueling Effect of Gas Puff Locations

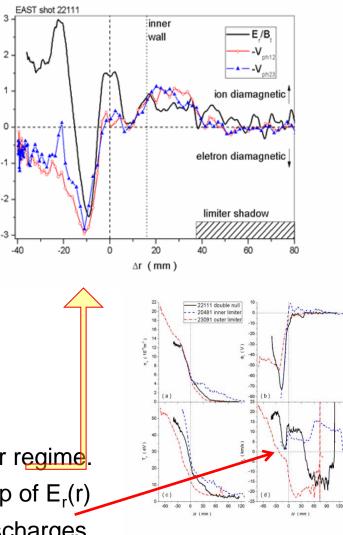
DOME D₂ puffing has highest fuelling efficiency, less from inner target plate, lowest from outer target plate. Compared to SN configuration, DN is more sensitive to gas puffing location.


Effect of Ar:D2 mixture gas injection into upper and lower outer divertors

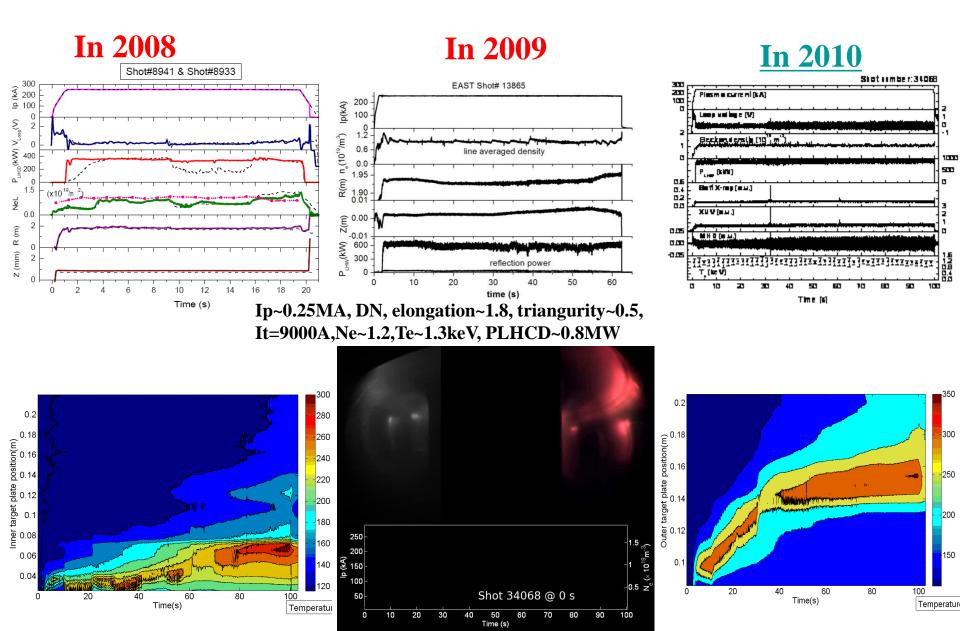
EAST adopted ITER-like vertical target configuration, which promotes detachment near strike point. However, this scenario by density ramping is not fully compatible with LHCD and high confinement scenario, radiative divertor is required.

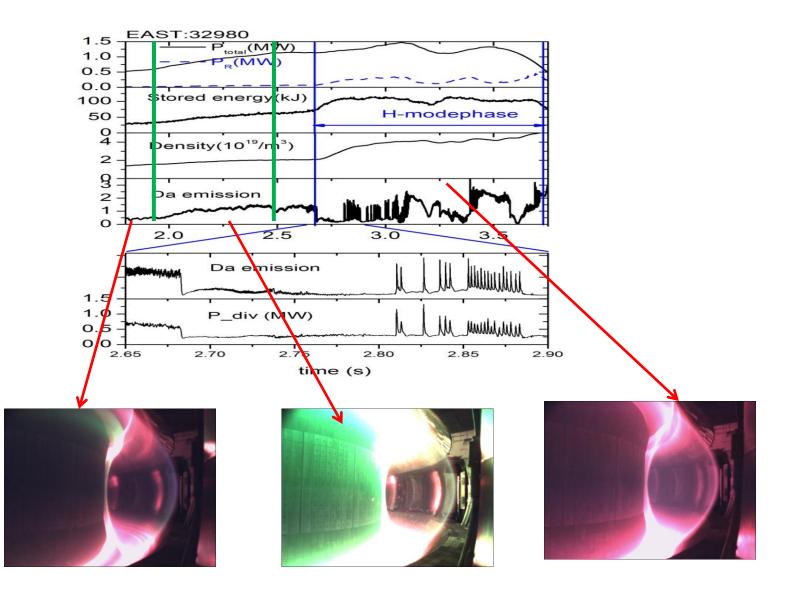
- D2+5.7% Ar mixture puffing was initiated at 5s led to detachment at both upper and lower outer divertor targets
- significantly reducing the peak heat fluxes, q_{peak}, near outer strike points



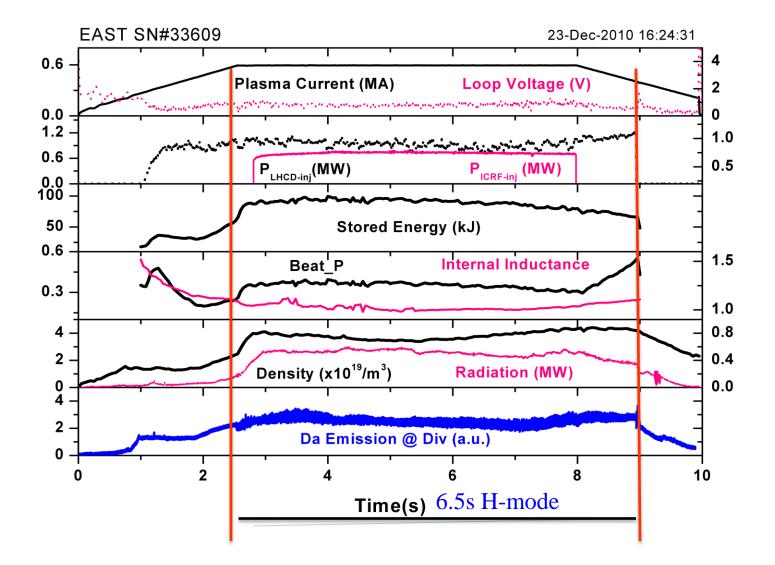

Ar puffing in divertors promote partial detachment and reduce peak heat flux

Toroidal flow at edge

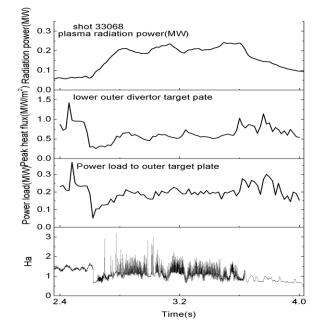

(km/s)

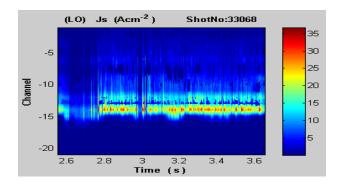

- A minimum (dip) V_{ϕ} at ~1 cm inside the separatrix.
- Collisionality > 4, in the Pfirsch-Schlüter regime.
- It is situated at the same location of a dip of $E_r(r)$
- But a dip of $V_{\phi}(r)$ not observed in the discharges that the plasma edge touches the outer limiter

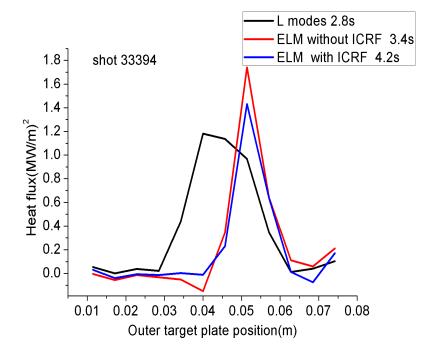
Long Pulse Discharges (With GA)

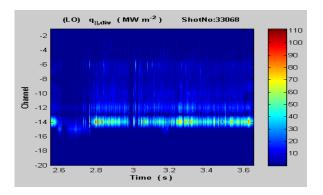


First H mode by Li coating EAST either by oven or by lithium powder injection

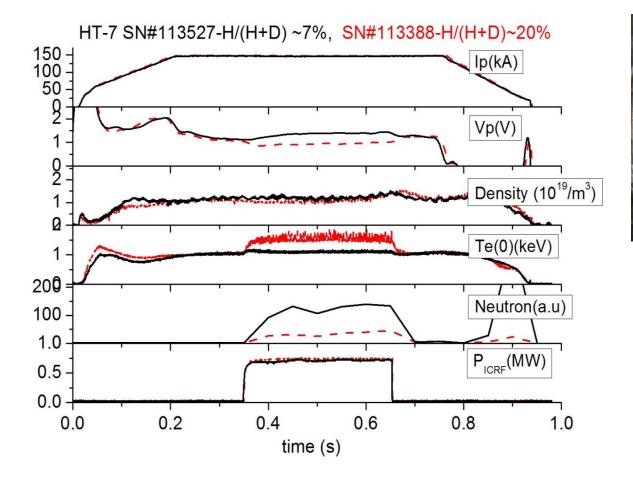

6.5s H-mode by RF+LH




H-mode during ramp-up, flat-top and ramp-down phases, very important for ITER



Heat load for DN Type III ELM



Lithized wall on HT-7

Experiments to support EAST

Recent HT-7 experiments demonstrated the feasibility of Lithized fullmetal wall for recycling/impurity control and effective ICRF heating

EAST 2012 capabilities

PF power supply upgrade SMBI, SS Pellet injector 1/2 C tiles change to Mo tiles PFC modification for 250°C and longer pulse with different puffing (place and gases)

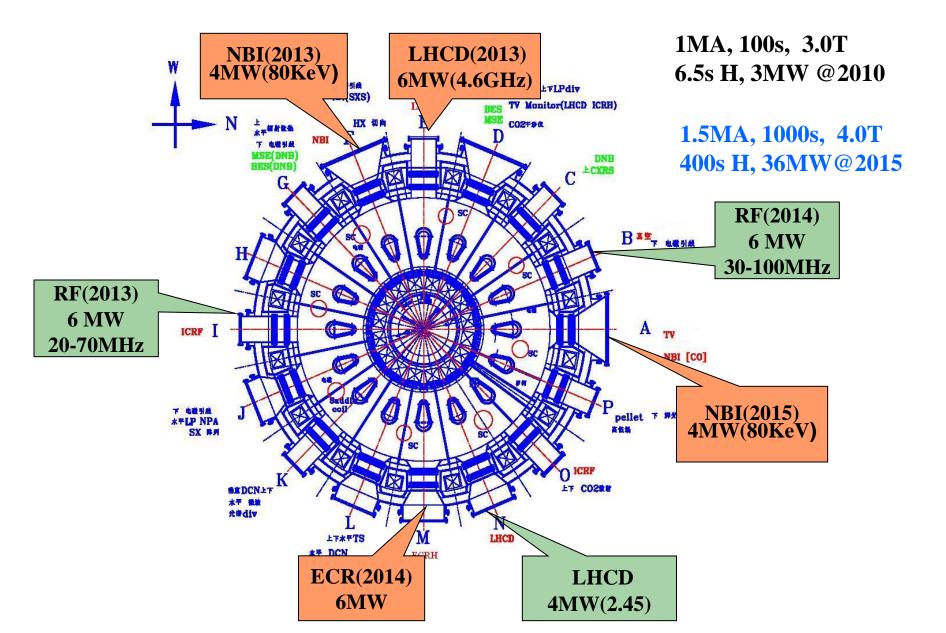
- 4 MW LHCD @ 2.45GHz $\sqrt{}$
- 1.5MW ICRF @ 30-110MHz $\sqrt{}$
- 4.5MW ICRF @ 25-75MHz $\sim \sqrt{}$

•Diagnostics (61) → all key profiles and some of specific measurements for physics understanding **0.6-1MA operation**

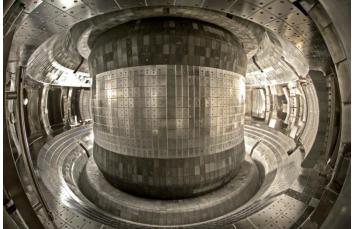
H-mode operation

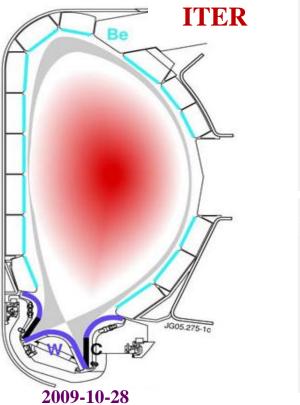
For ITER Safe start-up &termination VDI PWI Fueling Wall conditioning ELM control

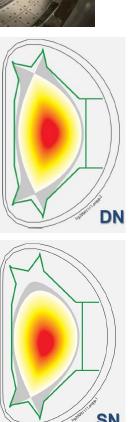
30s H-mode 200-400s DN


EAST 5 year Plan

EAST


	2011	2012	2013	2014	2015
Ip(MA)	1.0	1.0	1.0	1.5	1.5
LHCD(MW,	CW)				
2.45GHz	4.0	4.0	6.0	6.0	6.0
4.6GHz			<u>6.0</u>	6.0	6.0
ICRF(MW,C	W)				
20-75MHz	4.5	4.5	4.5	<u>6</u>	6
30-100MHz	1.5	4.5	4.5	<u>6</u>	6
NBI(80keV)			4.0	<u>8.0</u>	8.0
ECRH(140G	Hz,cw)	1.0	2.0	<u>4</u>	4
Diagnostics	40	45	50	60	60
Duration(s)	100	200	300	400	1000
t-Hmode(s)	10	20	30	100	400


With over 20MW CW power and 50 diagnostics, EAST could play a key role for long pulse advanced high performance plasma for ITER within next 5 years


Efforts Made- EAST ATSSO

PFC Strategy for ATSSO

- <u>Initial phase</u> (2006-2007)
 - PFM ⇒ SS plates bolted directly to the support without active cooling
 - First phase (2008-2012)
 PFM ⇒ SiC-coated doped C tiles bolted to Cu heat sink ~2MW/m²
- <u>Second phase</u> (2013-2016)
 - Full W, Actively-cooled ITER W/Cu divertor , 10MW/m^{2.}
 - Last phase (2017---)
 - High Tw operation (>400C) by hot He Gas 15MW/m^{2.}

Edge Simulation under H-mode With LLNL, ENEA, TS, ITER-IO

HL-2A Tokamak

- **EAST Tokamak**
- > Physical engineering capability
- > Main experimental results
- **Research Plan in next 2-5 years**

ITER-CN Activities

Future Plan of CN-MCF program

Summary

Wire testing:ASIPP

Central tube: Tai Steel,

Wire: NICNC, Oxford

Cabling: Basheng Ltd,

316LN Tube:

Coating:Shenghai Ltd

Integration:ASIPP

Shielding Blanket-Ready for sign PA

I. Current Scope of CN procurement

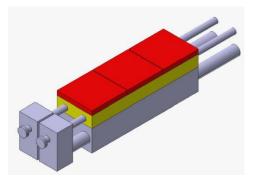
- Current: 10%FW and 40%SB.
- New proposal: 12.6% FW and 50.2% SB.

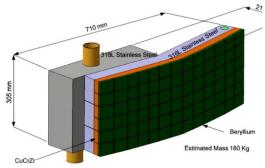
II. First wall (FW) qualification

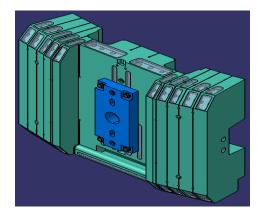
Two phases towards manufacturing.

(1) Qualification of Be/Cu/SS joining technology by fabricati

& testing qualification mock-ups;

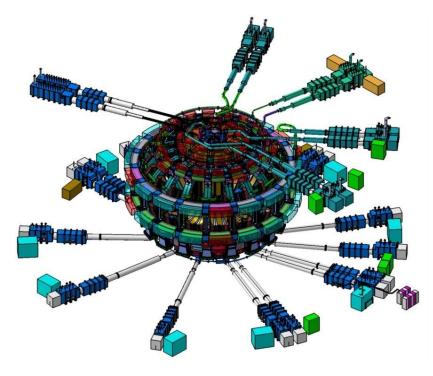

(2) Semi-prototype qualification.

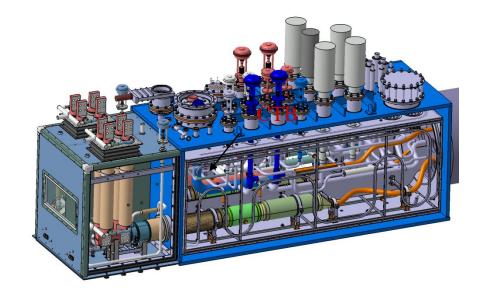

III. Shielding block (SB) analysis and technology

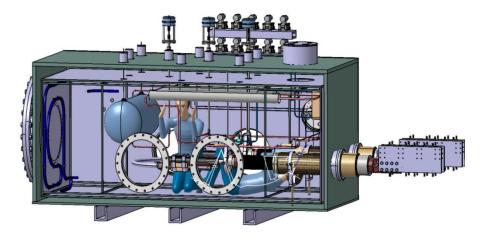

- Modeling, hydraulic, thermal stress, EM analysis;
- 316L(N), deep EB welding and hole drilling.

IV. Materials research and qualification

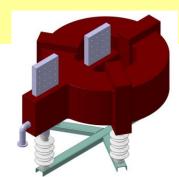
- Qualification of Chinese VHP-Be for ITER FW;
- Post-fabrication property of CuCrZr alloy.





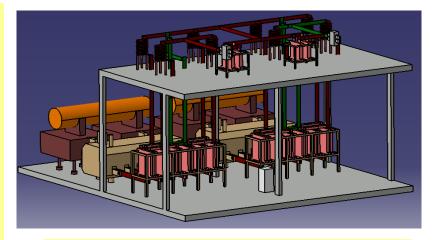

Feeder Team

Feeders: Start Construction

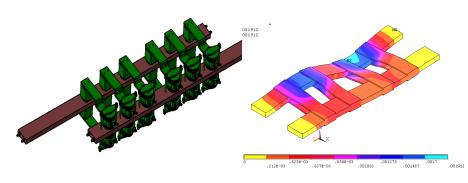


ITER power supply Package in CN
★ AC/DC converter (share with KO)
Tested on EAST

- ★ Reactive power compensation
- ★ HV substation



Local control R&D



DC inductor R&D

AC/DC Converter structure R&D

Converter arm displacement in EM force

HL-2A Tokamak

- **EAST Tokamak**
- > Physical engineering capability
- > Main experimental results
- **Research Plan in next 2-5 years**

ITER-CN Activities

Future Plan of CN-MCF program

Summary

CN-MCF Near Term Plan (2020)

ITER construction

- ASIPP: Feeders (100%), Correction Coils (100%), TF Conductors (7%), PF Conductors (69%), Transfer Cask System(50%), HV Substation Materials (100%), AC-DC Converter (62%)
 - SWIP: Blanket FW (10%) &Shield (40%), Gas Injection Valve Boxes+ GDC Conditioning System (88%), Magnetic Supports (100%),

Diagnostics (3.3%)

Enhance Domestic MCF Upgrade EAST, HL-2M ITER technology TBM(**Two options**) **T-Plant University program DEMO design (Wan) DEMO** Material **Education program(2000)**

Can start construct CN pilot power plant before 2020

Planning for Next Step

CN-Design team (18)
Y.Wan, J.Li, Y.Liu, X.Wang
Phy. Design, 13 sub-groups
2 options within 3 years (ECD1)
Eng. Design (4-6 Y)
Key R&D (3-10 Y)
Diagnostic

Blanket (TBM, FFHM)

Magnet

T-plant

RH

Education (10 years)

2016-2025 Construction **Rank No.1 in 2016-5Y** plan **Operation: 5-years, H2, He (D2) 6-8 Y DT-1 operation 6-8 Y DT-2 operation** ITER **2019:** 1st Plasma 2027: DT-1, Q=10, 400s 2037: DT-2, Q=5, 3000s

Efforts Made-Education

Present state:

- ASIPP: HT-7/EAST (150 students), ITER (80 students)
- SWIP (60)
- School of Physics (USTC, 25)
- School of Nuclear Science (USTC-ASIPP, >50)
- CN-MOE-MCF center (10 top universities) 50

Total about 450 students, 150/y, 20-30% remain in fusion

Targets and efforts

- ≻2000 fusion talents in 2020
- ≻MOST, MOE, CAS, CNNC
- have lunched a national fusion
- training program for next 10

years.

Basic training in 10 top univ.

Join EAST/HL-2A experiments

Small facilities in Univ.

Foreign Labs& Univ.

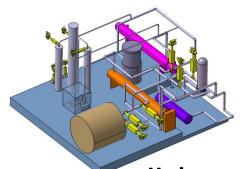
Annual summer school, workshop

Efforts Made- R&D (MOST)

Present state

- 5 year-MCF plan
- 10-year MCF plan

2009


- Solid TBM concept design DCLL TBM concept design PWI
- ITER design
- **ITER-ICRF**
- MCF-talent (8, exp.)

2010 Hybrid concept design **TBM-T** system design **DEMO-FW(W) MCF-basic simulation** MCF-talent (9, ITPA) 2011 **CN-MCF Reactor design ITER-W-diverter** High But (NbAl3,YBCO) magnet **T-plant design** RFP **MCF-talent (5, simulation) MCF-talent** (11, material)

R&D Plans for CN HCSB TBMs

• Fabrication Technology

- Mockup of U-shape first wall (2010)
- Mockup of sub-module (2012)
- Small-size (1:3) Mockup of HCSB TBM (2013)
- Helium Cooling System
 - Design of Test facility for FW
 - Test facility of mockup (2013)
 - Prototype HCS for ITER TBM (2016)
- Breeder Materials
 - Li_4SiO_4 pebble (in-pile 2014-2016)
 - Be pebble in lab. level (2013)
 - Be-irradiation test (2017)
- Structure Materials
 - Fabrication (2011)→ Database for CLF-1under irradiation of 1 dpa (2015)
 - RAFM join by laser solid forming and by diffusion bonding(2010);
 - RAFM HIP join (ongoing);
 - Tritium pemeation barrier (2015).

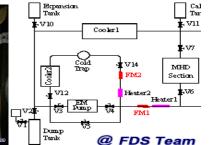
LSF-III

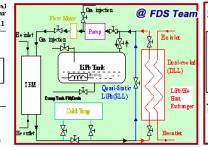
HFETR

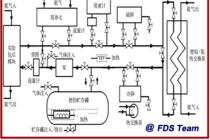
Ceramic Breeder

Be Pebble

500kg CLF Ingot


Development of DRAGON Series LiPb Loops


Loop name	Туре	Function	Temperature	Time		
DRAGON-I	TC*	Material Compatibility	420-480°C	2001-2005		
DRAGON-II	тс	Compatibility	550~700°C	2004-2006		
DRAGON-III	тс	Compatibility	800~1000°C	2007-2009		
DRAGON-S ^T	Static	Compatibility	250~1000°C	2008-2009		
DRAGON-R ^T	Flowing	Compatibility	450~600°C	2009		
DRAGON-IV	FC [#]	Material Compatibility, Thermal- hydraulics, MHD, Purification of LiPb, etc.	480~800°C	2007-2009		
DRAGON-V	FC	Dual-coolant test for TBM, MHD test for the complex ducts	300~700°C	2010-2012		
DRAGON-VI	FC	Auxiliary system for EAST-TBM	-	2012-2015		
DRAGON-VII	FC	Auxiliary system for ITER-TBM	-	2015-2018		
DRAGON-VIII	FC	Auxiliary system for DEMO blanket	-	-		



Next-step device design: Option 1:

Choice 1: Smaller machine

R=5m; a=1.5m; k=1.75; T=4.5K, BT=5T; Ip=8MA; ne=1-4x10²⁰m⁻³; Step 1:Beta N : 2.5 Pth: 150MW-300MW Step 2: AT H-mode, Beta N : 3- 4 Pth: 1-1.5GW

Q=2-5, t> 8 hour, SSO

Material & Component testing,

T breading (TBR>1),

T fuel recycling, RH validation

RAMI validation

FFH blanket testing (SFB, TM)

Choice 2: ITER-like machine

R=6.5m; a=2.5m; k=1.75; T=4.5K, BT=5T; Ip=8MA; $ne=1-4x10^{20}m^{-3};$ Step 1:Beta N : 2.5 Pth: 300MW-500MW Step 2: AT H-mode, DEMO-like Pth: 2-3GW T>8 hour, SSO Material & Component testing T breading (TBR>1), **Pure fusion TBM configuration RH** validation, **RAMI** validation **Close fuel cycle FFH blanket testing (SFB, TM)**

Possible Plan and Schedule

															_	_	_
	2012			2015		2017			2025		2030		2038		20	<mark>45</mark>	_
Conc.Des.			2¥													_	_
Phy.Des		-			2-3¥											-	_
R&D																	
Diag.																	
Magnet																	
RH																	
T-plant																	
Blanket																	
FTB																	
FFHB																	
Eng. Des								5-7¥									
Construction						_			lst Plasma	1							
Comm.H-phase										2 Y							
D2 Phase												3 Y					
D-T 1										D-T1			6-8 Y				
D-T 2												D-T 2			8-10	Y	
												-					
							2019			2027				FFH DEI	MO		
ITER							<mark>1st Pla.</mark>			D-T Q=10			D-T SSO		▲		
														2045	MFE I	EM	J
					1					1		1					

International cooperation

- France, CEA, CADERACHE •
- UK, UKAEA, CULHAM
- EU, JET, EFDA
- Germany: IPP, Garching KFA, Julich
- Italy, Frascati: ENEA
- USA: UT/IFS, GA, PPPL, U Illinois PSFC/MIT, SNL ORNL, LLNL UCLA, UCSD ITER-IO、6—DAs

Japan: NIFS, JAEA, JSPS, Tokyo (20M\$/y) > 30 univ. in each side.

- India, IPR, Bhat
- Korea, KFRI,KBSI
- Russia:Kurchchatov institute St. Petersburg, AFIPT Troisk: Triniti

Swiss: DRCP

Holland: FOM

Cooperation with US

More than 20 years cooperation Mutual benefits Ken obtained 04 state reward

Cooperation with DIII-D

- Wide cooperation for experiments, theory, technology
- good internet connections
- Exchange of Hardware for 5-6M\$
- Exchange of personnel 20m/y
- From DIII-D&EAST to ITER

2009 State international cooperation reward

Cooperation with PPPL

- Experiments(>15 Scientists from PPPL)
- Technology (hardware exchange)
- Theory(joint research plan)
- Joint ITER activities

Very Strong Support from Top Leaders

and Public (10,000 visitors to EAST)

Opportunities and mechanisms for collaboration

• **Opportunities:**

EAST :400-100s, full metal, 30MW, hot wall, 3rd shift by US Joint task forces, detail planning

ITER: sharing resources from both country, joint teams.

Next device: joint teams, 2nd Option, joint facilities

Education

2011DPP/APS, 64chinese/12from Mainland

• Mechanisms

Standard operation found

1-2% of MCF budget from each side

5 years plan

Review, assessment, workshop

Based on present frame

Administration, physics, engineering

"US and China should joint more closely for fusion research which is beneficial for whole human being. I would like to see your successes."

Summary

- EAST Starts important experiments with helps from international cooperators, especially from US. EAST is fully open and your participating is welcomed.
- By joining ITER project, China will work more closely with other 6 parties for a successful operation of ITER.
- China would do its best to try catching up . Your helps and suggestion are valuable.
- More close cooperation between US-CN will beneficial to us. I am sure we will have more productive outcome in future.

Thanks

Welcome to visit ASIPP

