FUSION, Future Vision of Green Energy

Fusion Energy Research and Development in "ITER Era"

- A Korean Perspective

Gyung-Su LEE National Fusion Research Institute

part

Past and Present : KSTAR

Opening Ceremony of National Fusion Research Center in January 1996

KSTAR Project Mission and Parameters

KSTAR Mission

- To achieve the superconducting tokamak construction and operation experiences
- To develop high performance steady-state operation physics and technologies that are essential for ITER and fusion reactor development

PARAMETERS	Designed	2010 Op
Major radius, R_0	1.8 m	1.8 m
Minor radius, a	0.5 m	0.5 m
Elongation, κ	2.0	2.0
Triangularity, δ	0.8	0.8
Plasma volume	17.8 m ³	17.8 m ³
Bootstrap Current, f _{bs}	> 0.7	-
PFC Materials	C, CFC (W)	С
Plasma shape	DN, SN	DN, SN
Plasma current, I _P	2.0 MA	0.5 MA
Toroidal field, <i>B</i> ₀	3.5 T	3.5 T
Pulse length	300 s	5 s
β _N	5.0	1.0
Plasma fuel	H, D	D
Superconductor	Nb₃Sn, NbTi	Nb₃Sn, NbTi
Auxiliary heating /CD	~ 28 MW	2.0 MW

V National Fusion Research Institute Success of KSTAR is based on dedication and Technological Advancements of Korean Industries!

Panoramic View of KSTAR Experimental Hall

Ancillary Systems of KSTAR in 2010 & Upgrade

9

KSTAR In-Vessel System Upgrade

Whole in-vessel components were installed in 2010, including Divertors, In-vessel Coils, In-vessel Cryopumps, Passive Stabilizers, and In-board & Poloidal Limiters.

KSTAR In-Vessel System Design

NFR 국가핵융합연구소 National Fusion Research institute

1

KSTAR In-Vessel System Installation

KSTAR In-Vessel Systems in 2010 Campaign

1

KSTAR D-shape Diverted Plasma

KSTAR #3754

- Shaping Capability : Plasma Shaping with vertical instability control
 Heating 1.1.2 MW NBL 0.4 MW 110CHz ECH
- Heating : 1.2 MW NBI, 0.4 MW 110GHz ECH
- Wall Conditioning with full carbon PFC : Baking @ 200 C ,
 Intensive He Glow Discharge Cleaning, Boronization with Carborane

Shot #4333 kappa~1.7 delta~0.4 Rgap~3cm

- Slightly shifted to the lower divertor
- Ion ∇B is at lower divertor

Typical H-mode Discharge in KSTAR

Discharge #4333

 I_p ~0.6 MA, N_e~2e19 m⁻³ Double null, κ~1.8 B_T=2 T, R~1.8 m, a~0.5 m Boronization with carborane

P_{NBI}~1 MW (80 keV, co-NBI) P_{ECW}~0.25 MW (cntr - Ip) P_{OH}~0.2 MW

P_{thres} ~1.1 MW (*ITER Physics Basis, 1999*)

Type-I ELMs sharp increase of edge ECE 80% increase of βp

Phased Operational and Experimental Plans for KSTAR

Year	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
		Opera	tion P	hase 1		Operation Phase 2						Operation Phase 3					Research for Commercialization		
Main Goal	0	peratic for Sup ר	onal Te percon lokama	chnolo ductin ak	gy g	Technology for Long Pulse Operation						ligh-p peratio	erform onal Te	Demo Advanced Technology Test					
Research Subjects	Op (D ty	Ach eratior pe, H-r	ieve Ta nal Per node, D	irget forma)-D Pla	nce sma)	Role of Pilot prior to Completion of ITER						Role of a ITER Satellite and Leading AT Operational Technology					Optimization of AT-mode Operation		
Operation Duration	0.1 sec. (world-class) 300 sec. Over 3											300 sec	00 sec.						
Magnetic Field	1.5 T (world-class)									Over 3.5 T									
Current	0.1 MA (world-class) 2 Mi									MA Over 2 MA									
Heating Capacity	0.5 M			NBI-I 9 M	LHCD W level (world-class) Over 2					20 MW Over					30 MW			

part

2

Present and Future : ITER

1

ITER Facility Design and Construction Site

21

Overview of Construction Schedule

			First Plasma											
ITER Construction														
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
	TF Coils (EU)													
	Case Wine	 ling Mock	ups Comple	ete		▲ TF10		F15						
Central Solenoid (US)														
		CS	Final Desig	n Approve	d		3L	CS3U	CS R	eadv for M	achine Ass	emblv		
Vacuum Vessel (EU)														
	VV Fabri	cation Cor	itract Awar	d	VV	05		VV07						
Puildings & Site														
			A											
	Construct	ion Contra	ct Award	Tokamak l	Bldg 11 RF	E								
To	okamak A	ssembly												
				Start Ma	achine Asseml	oly V	+ +	Т	okamak Ba	sic Machin	e Assembly			
						·		Star	t Instal	Start Cryosta	t Closure			
								1		Ex	Vessel Ass	embly		
						Ir	i Vessel As	sembly						
									Assem	bly Phase 2	1			
												Assem	bly Phase 3	
TTER Operations														
						Pump	Down & I	ntegrated C	ommission	ing			Plasma Oj	perations
										Integrat	ed Commis	sioning		

Participation of KSTAR Industrial Partners in ITER Procurement

NFRI 국가핵융합연구소 National Fusion Research institute

Challenges and Risk Management thru KSTAR

- In-cryostat welding of He lines > 8,500+ points
- In-situ joints of SC Magnets
- Composite material based Insulation Breakers to maintain
- He System Operation
 in AC System
- SC Installation Accuracy for reducing Magnetic Field Error
- CS Pre-load Assembly for anti-parallel Current Operation
- Thermal Shield Assembly for maximal Maintainability
 >> Not by TEST, but by Quality Assurance! Engineering!

In-Vessel Control Coil System (IVCC)

* IVCC : Vertical & Radial Position Control, ELM & RWM Control

KSTAR ECE Imaging (ECEI) System

- Visualization of physics via 2-D real time imaging
 - Simultaneous imaging of the Edge and Core T_e fluctuations in KSTAR
 - Flexible zooming capability for high resolution and global image

System Capability

POSTECH (PDS²0

- Time resolution ~2 ms
- Spatial resolution ~ cm x 1 cm
- Signal resolution ~ dT/<T> ~2%
- Pixels ~ 400 channels

KSTAR ELM Study by ECE Imaging

Filamentary nature of the ELM

Nonlinear crash process of the ELM

KSTAR 5 GHz Klystron for LHCD (ITER Test-bed)

- Toshiba prototype Klystron (E3762 RD0)
- Output RF power (Toshiba factory test results
 > 510 kW, 0.5 s

> 460 kW, 10 s
> 300 kW, 10 min.

- Single beam 68 kV, 15 A
- Modulated anode (triode gun)
- Total 6 cavities: 3 input & 3 output cavities 48 dB gain
- 250 kW double windows (BeO) output on VSWR<1.4 any phase
- Collector dissipation: 800 kW
- Body loss < 5 kW</p>
- Window loss < 3.2 kW

Test at KSTAR: 20 s @460 kW, 800 s @300 kW
Utilization for test-bed for ITER waveguide components development

ITER Operation Prep through KSTAR Collaboration

KO-US Collaboration in KSTAR

- ► High Performance SS Plasma Operation
- Advanced Scenario for ITER and beyond
- Remote Collaboration Prep for ITER

Enhance Operational Readiness for ITER by Joint Operation

Savings on Substantial Capital Investment for DEMO R&D

ITER TBM Collaboration

- Solid TBM R&D
- DCLL/DFLL TBM

Synergetic DEMO Consortium

Open Innovation for DEMO R&D

New ITER Korea Advanced Research Building

Plasma Application Research Facility

Fusion Energy Development Promotion Law (FEDPL)

- To establish a long-term and sustainable legal framework for fusion energy development phases.
- To promote industries and institutes which participating the fusion energy development by supports and benefit.
- The first country in the world prepared a legal foundation in fusion energy development.
 - History of the FEDPL
 - 1995. 12 : National Fusion R&D Master Plan
 - 2005. 12 : National Fusion Energy Development Master Plan
 - 2007. 3 : Fusion Energy Development Promotion Law
 - 2007. 4 : Ratification of ITER Implementation Agreement
 - 2007. 8 : Framework Plan of Fusion Energy Development (The First 5-Year Plan)

Strategy for Mid to Long-term R&D for Commercialization of Fusion Power

Development Duration: 2012-2026 (Construction in three Phases)

Planned Site: International Science Business Belt

Planned Site and Budget

- ▶ Site : 330,000m² (with total floor area of 86,800m²)
- Project Budget : about 489 Billion KRW
 - HQ Building, Test Facility Building, Basic Research Building, **Development Research Building, Mega Science Infrastructures, etc.**

Campus Plan for Headquarters

Phased Development Program for K-DEMO

Strategic Plan of the Program

Program Definition / Gap Study
 Environmental Analysis for Licensing
 SWOT Analysis for Open Innovation
 Key Strategies & Strategic Initiatives
 Portfolio Management/Cross-Cutting Ideas

Korean Demonstration Fusion Rector (K-DEMO) aimed for another Success following KSTAR and ITER

Perfect Location for DEMO

Heavy water reactor producing a large supply of tritium

Low to intermediate-level radioactive waste repository site nearby

Equipped with large-capacity power transmission facilities for test

Conceptual Layout Study of K-DEMO Plant

40

1

R&D Plan toward DEMO (Proposal)

41

Epilogue

part

Start of Korean Nuclear Power Program

Dr. Syngman Rhee, the founding president of Korea, at the groundbreaking ceremony of the first nuclear research reactor in 1959. (TRIGA)

Exportation of Korean Nuclear Power Plant

KEPCO UAE Task Force Team is rejoicing for wining Nuclear Power Plant contract on constructing 4 APR-1400 units in Abu Dhabi, UAE (December 2009)

