New FES-Funded Activity at the SLAC National Accelerator Laboratory

- High Energy Density Science
- At the LCLS X-Ray Free Electron Laser
- Using the Matter in Extreme Conditions (MEC) Instrument

Roger Falcone UC Berkeley and LBNL

FESAC 3/10/08

MEC at LCLS: The Context

LCLS project in commissioning stage with early experiments

6 beamlines have received funding

AMO = atomic and molecular science, under LCLS project

SXR = soft x-ray materials science, international consortium

LUSI MIE

XPP = hard x-ray pump and probe

PCS = photon speckle correlation spectroscopy

CXI = coherent x-ray imaging of nano-scale object

MEC = matter in extreme conditions

x-ray laser works well; early experiments successful

BES indicates possible funding for LCLS II - extends spectral range & capacity

Key properties of LCLS x-ray laser beam for MEC science tunability = spectroscopy and optimal Thomson scattering coherence = diffractive imaging intensity = heating matter ultrafast = imaging of dynamics

FES - ARRA funding of MEC instrument

BES plans funding of MEC operations, as for other 5 LCLS instruments

Interest at SLAC for development of locally led program by leading PI

Need for a national program in HED science summarized by ReNeW (Rosner)

MEC at LCLS: The Context

- Open access general user facility funded by DoE Basic Energy Sciences focused on *Best Science*
- Keys to success
 - Fully instrumented endstation permitting 'single investigator' research. *MEC funded by FES ARRA*
 - Fully funded endstation operations, including staff and consumables to support 'single investigator' research. *Funded by BES*
 - Strong in-house research program to interact with the user community To be funded by FES
 - Funding for proposal driven peer reviewed research.
 To be funded by FES

Layout of the MEC Instrument

Parameters of the MEC instrument

1. LCLS Parameters at MEC: Intense x-ray source, short pulse, coherent, and tunable

Parameter	Value	Units	Notes			
Photon energy range	4.0-20	keV	optics trans	mission limited		
Pulse energy	1.0-1.5	mJ	harmonics a	t reduced energy		
Pulse duration	2-300	fs	ultrafast limi	t to be confirmed		
Spot size	0.5-50	micron	optics limited	b		
Repetition rate	one pulse to 120 Hz		pulse picker			
2. MEC LASER systems:	Short Pulse Laser		Long Pulse Laser			
Parameters	Value	Units	Values	Units		
Wavelength	800	nm	527	nm		
Pulse width	35	fs	2-200	ns		
Repetition rate	10, 30, 120	Hz	1 shot	10 min		
Pulse energy	150	mJ	50	J		
3 Suite of Target Diagnostics: measure the physical properties of matter in extreme conditions						

MEC Instrument: Target Chamber and Diagnostics

Schematic of typical experiment and diagnostics

Now, the science: Interest in HEDS is growing within the scientific community

- Joint Research Needs Workshop on High Energy Density Laboratory Plasmas, November 2009 (Rosner presentation)
- Advancing the Science of High Energy Density Laboratory Plasmas, prepared by FESAC Panel on High Energy Density Laboratory Plasmas (Betti, Chair)
- Facilities are now available that will enable the study of matter under extreme conditions of temperature and pressure

High Energy Density matter is interesting because it occurs widely

Hot Dense Matter (HDM) occurs in:

- Supernova, stellar interiors, accretion disks
- Plasma devices: laser produced plasmas, Z-pinches
- Directly and indirectly driven inertial fusion experiments

• Warm Dense Matter (WDM) occurs in:

- Cores of large planets
- Systems that start solid and end as a plasma
- X-ray driven inertial fusion experiments

A HEDS experimental program at LCLS will cover broad range of applications

Experiment	Description		
Warm Dense Matter Creation	Using the XFEL to uniformly warm solid density samples		
Equation of State	Heat / probe solids with XFEL to obtain material properties		
Absorption Spectroscopy	Heat solids with optical laser or XFEL / use XFEL to probe		
High Pressure Phenomena	Create high pressure with high-energy laser, probe with the XFEL		
Surface Studies	Probe ablation/damage processes		
XFEL / Gas Interaction	Create exotic, long-lived highly perturbed electron distribution functions in dense plasmas		
XFEL / Solid Interaction	XFEL directly creates extreme states of matter		
Plasma Spectroscopy	XFEL pump/probe for atomic state		
Diagnostic Development	Develop Thomson scattering, SAXS, interferometry, and radiography		

Hot Dense Matter

For Hot Dense Matter (HDM) the short-pulse, intense x-ray source creates a unique initial state

- Population kinetics is complex for realistic cases
 - · The model construct requires vast amounts of atomic data
 - Atomic data: Energy levels, oscillator strengths, autoionization rates
 - Collisional cross-sections for excitation (BB) and ionization (BF) processes
 - Due to the vast number of states and the effects of the plasma environment, additional model assumptions are required
 - Ionization potential depression
 - Rydberg states
 - Level details
- Comparisons with benchmark data would be a key to make progress
 - However, there are very, very few cases where the plasma temperature, density, charges state distribution and spectrum have been measured.

LCLS provides an opportunity for HED plasma spectroscopy – synergy with AMO science

• AMO atomic physics case:

 Source for hollow ion experiment prepared as an atomic beam

Photoionization:
 Ne+hv_{>870eV}→Ne^{+*}(K)+e

Auger Decay:

 $Ne+hv_{>870eV} \rightarrow Ne^{+*}(K)+e \rightarrow Ne^{2+*}(LL)+e \rightarrow Ne^{3+*}+e$

Sequential multiphoton ionization: $Ne+hv_{>870eV} \rightarrow Ne^{+*}(K)+e+hv_{>993eV} \rightarrow Ne^{2+*}(KK) +e$ $\rightarrow Ne^{3+}+e \rightarrow Ne^{4+}+e \rightarrow ...$ $Ne+hv_{>870eV} \rightarrow Ne^{+*}(K)+e+hv_{>993eV} \rightarrow Ne^{3+*}(KLL)+e$

• Direct multiphoton ionization: Ne+2hv_{>932eV}→Ne^{2+*}(KK)+2e

• HED 'atomic physics' case:

 Source for hollow ion experiment prepared by high energy laser

- Photoionization of multiple ion species: $K^{x}L^{y}M^{z}+h_{v_{xFEL}} \rightarrow K^{x-1}L^{y}M^{z}+e$ (x=1,2; y=1-8; z=1,2)
- Auger Decay of multiple ion species: $K^{x}L^{y}M^{z}+h_{v_{xFEL}} \rightarrow K^{x-1}L^{y}M^{z}+e \rightarrow K^{x}L^{y-2}M^{z}+e$
- Sequential multiphoton ionization: $K^{x}L^{y}M^{z}+hv_{xFEL} \rightarrow K^{x-1}L^{y}M^{z}+e+hv_{xFEL} \rightarrow K^{0}L^{y}M^{z}+e+hv_{xFEL}$ $\rightarrow K^{0}L^{y-1}M^{z}+e+hv_{xFEL} \rightarrow \dots$ $K^{x}L^{y}M^{z}+hv_{xFEL} \rightarrow K^{x-1}L^{y}M^{z}+e+hv_{xFEL} \rightarrow K^{x-1}L^{y-2}M^{z}+2e$
- Direct multiphoton ionization: $K^{x}L^{y}M^{z}+2h_{x_{FEL}} \rightarrow K^{0}L^{y}M^{z}+2e$

Non-LTE kinetics simulations require *basic* **atomic data, previously inaccessible**

- For example, hollow ion studies generate much needed data
 - Require a setup similar to that planned for the AMO initial experiments
 - Controllable source of moderately charged ion is necessary
- Use of a modern EBIT will provide ideal capability
 - EBIT specifications
 - Extracted beam of ions, e.g., Mg, >10⁸/cm³/pulse
 - In $1 \text{mm}^2 \text{ x } 10 \text{cm}$ can have > $10^7/\text{cm}^3$
 - Size: 1.5 m x 0.5 m x 0.5 m plus stand
 - Tests at GSI on the PHELIX laser coupled to the EBIT have been performed
 - An EBIT exists and could be available for the AMO XFEL experiments
 - Collaboration: Harvard-Smithsonian, NIST, U. of Stockholm, GSI, LLNL

High Peak Brightness of 4th generation x-ray light sources are well matched to HEDS

- For Hot Dense Matter the plasma collision rates and spontaneous decay rates are large
- To effectively move population, pump rate, R_{photo}, must be greater than radiative decay rate, A_{value}

$$\Rightarrow R_{photo} > A_{value}$$

• For I = 10¹⁴ W/cm²

 $R_{photo}/A_{value} \sim 10^{-4} g_{\cup}/g_{L} \lambda^{4}$

• FELs attains needed excitation strength

 $\lambda \sim 10 \text{ Å} \Rightarrow \text{R}_{\text{photo}}/\text{A}_{\text{value}} > 1$

- To obtain brightnesses ~ 10^{31} the effective blackbody radiation temperature at 2.5 Å would be ~ 63 MeV

To provide NLTE benchmarks pumping K-shell emitters provides critical data

• t = 0 laser irradiates Al dot

• t = 100 ps FEL irradiates plasma

Warm Dense Matter

Broadly speaking, there are two paths to producing WDM

- As the issue with WDM is not to just create it
 - Because it occurs widely and is easily realized
- Need to create it so that it can be studied in well defined conditions
- One: Use a great deal of energy to make a large enough volume of WDM so that gradient at the boundaries are a small part of the sample
- Two: Use an intense fast x-ray source to heat the matter uniformly and rapidly. Then make measurement before hydrodynamic expansion

Intense short-pulse x-ray sources can create WDM

- For a 10x10x100 μ m thick sample of Al
 - Ensure sample uniformity by using only 66% of beam energy
 - Equating absorbed energy to total kinetic and ionization energy

$$\frac{E}{V} = \frac{3}{2}n_eT_e + \sum_i n_iI_p^i \text{ where } I_p^i = \text{ ionization potential of stage } i - 1$$

• Find 10 eV at solid density with $n_e = 2x10^{22}$ cm⁻³ and <Z> ~0.3

- State of material on release can be measured with a short pulse laser
- Material, rapidly and uniformly heated, releases isentropically

WDM created by isochoric heating will isontropically expand sampling phase space

 Concept is straightforward

- XFEL can heat matter rapidly and uniformly to create:
 - Isochores (constant ρ)
 - Isentropes (constant entropy)
- Using underdense foams allows more complete sampling
 - Isochores (constant ρ)
 - Isentropes (constant entropy)

An important consequence of intense x-ray illumination: Saturation creates homogeneously heated WDM sample

- Essential to create WDM in a well-defined state (LTE)
 - fast & homogeneous heating imperative to obtain near constant (T,ρ)
- Saturation provides an order-of-magnitude more efficient production of homogeneity

Plasma Physics

Plasma physics of photoionized gases

- Important to understand heating of gases and clusters
- Photoionization (PI) of gas jets provided a mechanism to produce unique engineered plasmas with densities $\sim 10^{19}$
- PI with high energy photons and long collisional relaxation => NLTE
 - Self Thomson scattering as function of angle provides a probe of the velocity distribution.
- Depending on the plasma and the photon energy, both photoelectron Weibel (PEW) and two stream (PETS) instabilities can occur
- Characteristic times scales:
 - $T_{Thermalization} \sim 1ps (10^{19}/n_e)$ • $T_{growth PEW} \sim 2 ps (10^{19}/n_e)^{1/2}$ • $T_{growth PETS} \sim 100 \text{ fs } (10^{19}/n_e)^{1/2}$
- Signatures vary with gas density and observation angle

FEL-solid interaction creates unique photoelectron generated plasmas

- Case study for $\lambda \sim 200 \text{ eV}$ (FLASH)
- Primary innershell photoelectrons produced at 105 eV
- e⁻ thermalize due to *inelastic* electron-ion collisions
- Average e⁻ energy sharply decreases then rises

 At 5 attoseconds: T_e ~65 eV N_e ~10¹⁶ cm⁻³ N_i ~6x10²² cm⁻³

- e⁻-e⁻ elastic v_{ee} : Coulomb ~1.4x10⁹ s⁻¹
- e⁻-ion inelastic v_{ei} : excitation ~5x10¹⁶ s⁻¹ ionization ~2x10¹⁶ s⁻¹

H.-K. Chung

High Pressure States

Two areas of interest for studies of dynamics of materials under high pressure

- For studies of material strength one requires both high pressure and high strain rates.
 - In situ studies of dislocation dynamics can be performed at LCLS
 - Phenomenology and MD simulation predict dislocation densities
 orders of magnitude larger than measured post-shock
 - Creation and destruction of dislocation is dynamic => need short duration high intensity x-ray pulse as an *in situ* probe
- For phase transformations the LCLS HEDS capability will provide information on sub-ps timescales
 - Phase transformations can occur on times scales <100 ps
 - MD simulations indicate, e.g., Fe goes through a ~1ps phase transformation

High pressure studies illustrate a unique feature of the intense short pulse x-rays

- Hydrodynamic times are usually considered slow (> 1ps)
- In cases where phase changes occur two aspects of diffraction require sub-ps pulses
 - First, when one wants to look at a sample the undergoes bulk solidification the smearing of the signal due to locally rapid modification will compromise the data (Ta study by Steitz)
 - Second, there are currently indication that some, i.e., diffusionless or Martensitic, transitions *may* undergo phase changes very rapidly (Fe study by Kadau)

Lasers provide shocks and high divergence probe - LCLS provides low divergence probe

 Schematic of High Energy Laser shock experiment

- Laser creates a shock in a single-crystal sample
- Delayed beams create ns-scale highly divergent x-ray source
- Angular spread of the x-ray source samples many crystal planes
- Technique provides critical data on dynamics at high pressure

 Schematic of LCLS XFEL shock experiment

- Laser creates a shock in a polycrystalline sample
- XFEL creates fs-scale non-divergent monochromatic source
- Grains in the polycrystal diffract the beam
- Low Divergence ⇒ nm-scale fs diffraction of real solids

LCLS enables real-time, *in situ* study of deformation at high pressure and strain rate

the (002) shows *in situ* stacking fault data

XFEL

as a

probe

Current x-ray *phase-contrast imaging* at ~ 5 µm resolution uses laser-plasma sources

Current techniques are limited by spatial coherence & flux of laser-plasma x-ray source [D. G. Hicks 2006]

LCLS will enable coherent diffractive x-ray microscopy at the nanoscale

Dynamic processes on the nanoscale: shock front size (viscosity), phase transition kinetics, nucleation & growth, grain structure deformation

X-ray '*Thomson Scattering*' will provide a unique probe for HED matter

- Scattering from free electrons provides a measure of the T_e, n_e, *f*(v), and plasma damping
 - ⇒ structure alone *not* sufficient for plasma-like matter
- Due to absorption, refraction and reflection neither visible nor laboratory x-ray lasers can probe high density
 - \Rightarrow little to no high density data
- FEL scattering signals will be well above noise for all HED matter

Scattering of the XFEL will provide data on free, tightly-, and weakly-bound electrons

• Weakly-bound and tightly-bound electrons depend on their binding energy relative to the Compton energy shift

- For a 25 eV, 4x10²³ cm⁻³ plasma the XFEL produces10⁴ photons from the free electron scattering
- Can obtain temperatures, densities, mean ionization, velocity distribution from the scattering signal

Thomson Backscattering diagnosis of solid density Be in WDM regime: $T_e \sim 55 \text{ eV}$

Thomson forward scattering provides data from collective regime: plasmons yield information

- Plasmon peak intensity related by detailed balance, i.e., $exp(-2\Delta E/T)$
- Experiments with independent T_e measurement are needed to determine correct approximation for collisions
- Experiments have now been performed with photon numbers consistent with LCLS capability.

Summary of HEDS using x-ray FELs

- For both the hot and warm dense matter regimes the possibilities opened up by x-ray FELs are important
- For WDM x-ray FELs provide
 - Fast uniform heating source to create WDM
 - Diagnostic potential: Thomson Scattering, K_{α} temperature measurement, fast absorption sources, phase contrast imaging, diffraction for high pressure states
- For HDM x-ray FELs provide:
 - Fast deposition creates hot, high pressure matter
 - Plasma spectroscopic probes of kinetic and radiative processes
 - Diagnostic potential: Thomson scattering
- The future looks bright!

Meetings where the MEC instrument at LCLS was planed

•	10/10/99	1st XFEL HEDS Talk	SLAC
•	3/1/01	LCLS Instruments	SLAC
•	3/21/01	TESLA/XFL Colloq.	DESY
•	11/9/01	HEDS for VUV-FEL	DESY
•	4/3/02	WDM Workshop	LLNL
•	6/18/02	WDM Expt planning	SLAC
•	2/15/03	XFEL HEDS Wkshp	DESY
•	9/13/03	VUV/LCLS exp plan	Lisbon
•	8/22/04	VUV-FEL PBC	DESY
•	11/28/05	XFEL HEDS Mtg	Paris
•	12/6/06	NNSA HEDS instr.	LLNL
•	1/24/07	XFEL PBC	DESY
•	5/19/08	UK NLS on HEDS	Oxford
•	10/5/08	PBC	DESY
•	1/26/09	MEC workshop	RAL
•	3/30/09	HEDS for XFEL	Oxford
•	4/13/09	MEC Workshop	SLAC
•	1/25/10	PBC	DESY

1st workshop on next generation applications
Official introduction of HEDS to Europeans
Get LLNL, LANL, and SNL interested 1 st focused planning meeting for MEC
Peak Brightness Collaboration
Generated mission need document

BES Funding of LCLS

CONSTRUCTION

- LCLS Construction Project (includes AMO endstation)
- LUSI MIE (XPP, CXI, XCS endstations)

420M\$ 60M\$

OPERATIONS: including 5000hrs of user time, all 6 endstations >100M\$/yr

- Endstation Staffing
 - 2 scientific staff
 - 2 research associates
 - Engineering support
 - Technical support
- Facility support
 - Laser group
 - Data acquisition and controls group
 - ES&H
- Consumables

Summary

- LCLS is general user facility providing open access with operations fully funded by BES
- FES ARRA funding is constructing the MEC instrument focused on high energy density science
- FES funding is requested for a strong in-house research group and proposal driven peer reviewed single investigator grants
- FES funding is requested for laser systems upgrades

Thank you

MEC HEDS Instrument Team

US: J. Belak, R. Bionta, K. Budil, G. Campbell, H.-K. Chung, G. Collins, P. Celliers, J. Dunn, S. Glenzer, G. Gregori. S. Hau-Riege, D. Hicks, J. Kinney, J. Kuba, R. Lee, O. Landen, R. London, H. Lorenzana, J. McNaney, S. Moon, A. Nelson, J. Nguyen, B. Stuart, K. Widmann, C.-S. Yoo, P. Young, J. Zaug (LLNL); J. Benage, J. Daligault, J. Glownia, M. Murillo, M. Taccetti D. Swift, (LANL); S. Clark, T. Glover, P. Heimann, W. Nellis, H. Padmore; D. Schneider (LBNL); H.J.Lee, B. Nagler, J. Hastings, A. Lindenberg (SLAC) A. O. Tschanuer (UNLV); J. Seely (NRL); P. Alivisatos, A. Correa, R. Falcone, R. Jeanloz (UCB); H. Baldis, V. N. Shlyaptsev (UCD); T. Ditmire (UT) (50) Canada: W. Rozmus, R. Fedosejev (UAlberta); A. Ng, T. Ao (UBC) (4) Czech Republic: L. Juha, M. Bittner, J. Krasna, V. Letal, K. Rohlena (Institute of Physics, Czech Academy of Science) (5) UK: F. Y. Khattak, D. Riley (QUB); D. Chambers (AWE); J. Hawreliak, J. Wark, S. Rose, J. Sheppard (Oxford); N. Woolsey (York) (8) France: P. Audebert, S. Bastiani-Ceccoti, A. Bennuzi-Mounaix, C. Chenais-Popovics. M. Koenig, S. Tzortzakis, (LULI); J.-C. Gauthier, F. Dorchies (Celia); F. Rosmej, S. Ferri (U. de Provence); H. Merdji (CEA); P. Zeitouin (LIXAM); A. Rousse (LOA) (13) Portugal: M. Fajardo N. Lopes, J. M Dias, G. Figueira, L. Silva, R. Fonseca, F. Peano, J. T. Mendonça (GOLP) (8) Poland: A. Andrejczuk, J.B. Pelka, J. Krzywinski (Polish Academy of Sciences); H. Fiedorowicz, A. Bartnik (Military University of Technology); R. Sobierajski (Warsaw University of Technology) (6) Sweden: J. Larsson, P. Sondhauss (Lund); C. Caleman, M. Bergh, D. van der Spoel (Uppsala); R. Schuch, (Stockholm University), R. Neutze (Chalmers) (7) Germany: E. Förster, (Jena); K Eidmann (MPQ Garching); T. Möller (TU Berlin); R. Redmer (Rostock); K. Sokolowski-Tinten (Essen); T. Tschentscher (HASYLAB) (6) Switzerland: S. Johnson (PSI/SLS) (1) Russia: V. Bychenkov (Lebedev) (1)