Towards a Long-Range, Dedicated, Integrated US Diagnostic Development Program - A US Initiative

Presented by R.L. Boivin

Presented at FESAC Meeting Washington, DC

November 7<sup>th</sup> 2008

**USBPO White Paper July 2007** 



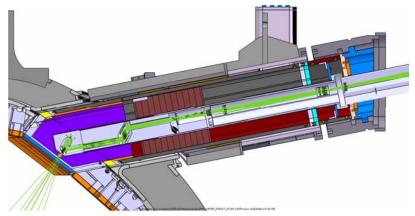
## A Strong Diagnostic Development Program is Required to Fulfill Mission

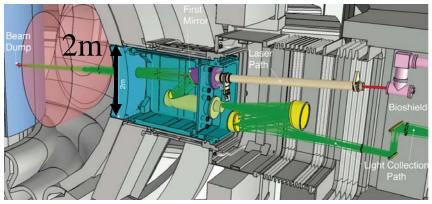
- A strong fusion program requires the development and utilization of innovative physics measurements
  - Key element in validation of theory and models -> science goal
  - Key element in advanced control -> energy goal
- Goals:
  - Aggressively pursue the development of new diagnostic capability in support of scientific and energy missions
    - New diagnostics in support of fusion science
    - New diagnostics in support of ITER (science and diagnostics)
    - Develop new techniques to support DEMO and other BPX

"The required progress in [...] key areas will not be possible without a significant expansion of our plasma diagnostic capabilities. Quite simply, we cannot understand what we cannot measure." NRC, Plasma 2010 panel report

# The US Program has lost its Competitive Edge in the Development of State-of-the-Art Diagnostics

- Historically, significant progress in key areas followed the development and fielding of new, relevant diagnostics
  - MSE (current profile) is a typical example
- Presently, participation from smaller and/or new groups limited
  - Traditionally strong university role
  - Excellent entry point, student involvement, training, etc
- Cycle time (3 years) limits innovation
  - Wait 3 years before you can re-apply, even when proposal receives high marks!!!
- Existing program(s) do not favor transformational breakthroughs with higher risk ideas
  - Favors conservative approach, protects existing programs
- Technology program rarely supported diagnostic development in the past
  - Will be needed for material, radiation testing


### ITER and BPX Are Not Business as Usual for Diagnostics


- The future experiments bring new constraints, rarely encountered in existing projects
  - Very demanding environment
    - Radiation, particle flux, access, pulse length, blankets, etc
  - Diagnostics called to be part of the control scheme very early
  - Reliability and availability must be extremely high
    - Repeat shots no longer acceptable practice
  - Retaining calibration, alignment present big challenges
- The Greenwald Panel (2007) has identified many significant gaps in our capability to develop the needed diagnostics

### **ITER Environment Leaves Little Room for Error**

- Many issues rarely encountered in presentday experiment
  - Physical (e.g. relativistic effects, alphas, etc) and technological (radiation, pulse length, heating, blankets, etc)
- Number of iterations (e.g. fixes) very small
- Redundancy very limited

#### Upper Plug with Visible/IR Endoscope



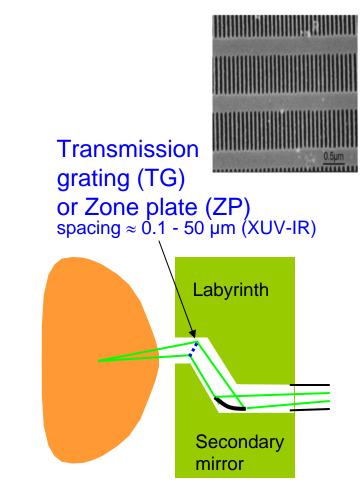


Equatorial Plug with LIDAR Front End

# In spite of Many Years of R&D, Many ITER Diagnostics are Expected to Perform Marginally

- Many ITER systems are too close to margins in expected performance or reliability
  - Very little testing done right now
  - Programs delayed in the US to the extreme
  - Alternatives NOT being developed or even considered
  - Large impact on control capability
- Also, there will be very large pressure to delay diagnostic installation on ITER
  - Very large impact on physics program
  - Could lead to bottle necks if key system not available or compatible with environment
  - Stronger test will come with radiation field, need to be fully prepared

### Many ITER Key Measurements are Presently at Risk


 These are great examples where US program can make huge contributions to ITER success

| Measurement                                           | Required R&D                                     | Priority     |
|-------------------------------------------------------|--------------------------------------------------|--------------|
| Confined alpha particles                              | New or very greatly evolved techniques           | High         |
| Lost alpha particles                                  | New or very greatly evolved techniques           | High         |
| Magnetics                                             | Radiation effects                                | High         |
| Optical diagnostics                                   | Erosion/redeposition, cleaning/restoring mirrors | High         |
| Dust                                                  | New techniques                                   | High         |
| Tritium inventory and                                 | New techniques                                   | High         |
| retention                                             |                                                  |              |
| Optical diagnostics                                   | New self-calibration techniques                  | Intermediate |
| Instability features (core<br>and edge plasma regions | Soft X-ray                                       | Intermediate |
| Fuel composition                                      | Fast wave reflectometry                          | Intermediate |
| Tile erosion                                          | New techniques                                   | Intermediate |
| Impurities                                            | New techniques                                   | Intermediate |
| Core fluctuations                                     | New techniques                                   | Longer term  |

 There is presently no program in the US to try to address those issues

# Development of Alternate Techniques is not Sufficiently Supported - An Example

- First Mirrors are a weak point for all optical diagnostics
- Very few efforts are supported to find alternatives
- In general, higher risk, high payback ideas not supported
- Example: JHU's efforts to develop *free-standing diffractive optical elements*



D. Stutman, et al, JHU

# Longer Term Success is Jeopardized by a Serious Lack of R&D

- Imagine a CTF, FDF, NHTX and/or DEMO without (for example) :
  - CER/CXRS system
  - Thomson scattering
  - Reliable magnetics or reliable bolometers
  - What would you use? Where would test or develop?
- Imagine having to make all necessary measurements within a total footprint of less than ~1.5 m<sup>2</sup> at the first wall!
  - Maximum surface area needed for breeding
  - ARIES studies do not include diagnostic needs, impacts and required R&D
- Imagine trying to develop solutions when existing development programs specifically prohibit them!!

### Very Few Facilities are Dedicating Resources to Develop and Test New techniques

- ITER will not be a conceptual diagnostic test facility
  - However, it should be part of the final stage for proof of performance for later mission (route to DEMO)
  - Can we reduce the necessary set?
- New diagnostic technique can take 10+ years in development before it becomes "accepted"
  - Starts in small labs, and moves to larger facilities
- The development of BPX relevant diagnostics will require a strong technology support
  - New materials, radiation testing and hardening, new detectors, optical elements, etc

# ITPA- Diagnostics (ITER) High Priority Tasks (5) are Largely Ignored by US Program

- Development of requirements for measurements of dust, and assessment of proposed techniques
- Assessment of the various options for the Vertical Neutron Camera to measure the 2D/alpha source profile (including asymmetries) and assessment of the calibration strategy including required calibration source strength
- Development of methods of measuring the energy and density distribution of confined and escaping alpha particles
- Determination of life-time of plasma facing mirrors used in optical systems and assessment of mitigation techniques
- Assessment of the integrated measurement capability of the diagnostic systems relative to the specified measurement requirements (*closed June 2008*)
- US participation (including meetings) has been very weak

### In its 2007 White Paper the BPO is Proposing 3 Main Thrusts for the Diagnostic Development Program

- Expansion of the present OFES diagnostic development program so as to provide support for short- and long-term development and implementation of new diagnostics needed for burning plasma research.
- Integration of the capabilities of burning plasma diagnostics into existing analysis and simulation codes and, ultimately, into control systems
- Provision of some modest funding with short time scales for the execution of specific tasks, such as modeling plasma/diagnostic interactions, reviewing designs of ITER diagnostic systems credited to other Parties, evaluating environmental issues for diagnostics, and coordinating this diagnostic initiative with the USBPO and the USIPO.

### 1. Diagnostic development for burning plasmas

- A diagnostic program to provide support for short- and long-term development and implementation of new diagnostics needed for burning plasma research.
  - Develop new techniques where serious gaps in the measurement capability exist.
  - Develop instrumentation for un-credited ITER systems to a level where they could pass a Proof-of-Principle/Performance test.
  - Seek alternate techniques to improve scientific output and productivity of a burning plasma experiment such as ITER and DEMO.
  - Stimulate needed diagnostic specific development and understanding in technological areas such as:
    - mirrors/relaying optics
    - detectors
    - sources and lasers
    - radiation effects

# 2. Prediction and verification of burning plasma diagnostic performance

- Integration of the capabilities of burning plasma diagnostics into existing analysis and simulation codes and, ultimately, into control systems.
  - Develop synthetic diagnostics.
  - Develop new post-processors and other relevant hardware.
  - Predict and verify expected performance of systems for ITER.
  - Identify deficiencies in diagnostic coverage or operation.
  - Prepare for full integration into a control system.

# 3. Diagnostic program integration

- Execution of smaller, targeted tasks, such as:
  - Modeling plasma/diagnostic interactions.
  - Provide opportunities through formal collaborations for US experts to participate in the design and construction of non-US ITER diagnostics assigned to other Parties.
  - Reviewing designs of ITER diagnostic systems credited to other Parties or the ITER organization.
  - Evaluating and addressing environmental issues for diagnostics.
  - Initiate coordinated efforts in developing diagnostics for DEMO with international partners.
  - Coordinating this diagnostic initiative with the USBPO and the US ITER Project Office.

# Diagnostic Development Represents a Large Gap in Our Program

- The US is losing its competitive edge in diagnostic development
- The success of ITER requires an integrated effort from the US program on diagnostic issues
- No effort is presently undertaken for DEMO diagnostics
- The ReNeW process and workshops should include a serious and global discussion of where the US diagnostic program should be heading