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Present tokamaks require that
plasma-facing materials simultaneously
Mir meet several requirements

* Mechanical strength

» Large JxB and eddy current forces during
disruptions

e Forgiving of temperature transients.
» Heat flux > GW / m?

* [Erosion/radiation characteristics favorable
for a wide variety of exploratory fusion
core plasma scenarios.

e To-date low-Z materials, in particular
graphite/CFC, have met these challenges.
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Present tokamaks require that
plasma-facing materials simultaneously

Mir meet several requirements
Mechanical strength (g
» Large JxB and eddy current forces during 7 ITER
disruptions / \
Forgiving of temperature transients. \
» Heat flux > GW / m? \
FIRST WALL '
Erosion/radiation characteristics favorable o

s
re

for a wide variety of exploratory fusion
core plasma scenarios.

Beryllium

To-date low-Z materials, in particular
graphite/CFC, have met these challenges.

Q~1 and fusion power > 10 MW
achieved with Carbon walls + low-Z

coatings, paving the way for our
confidence in ITER.
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So what’s the problem?
Lack basic understanding and diagnosis of PSI
l1liT” processes in fusion devices — Uncertain extrapolation

e Intermediate steps uncertain between

sputtering and core plasma.

>

>

Intense power flux density

» Materials placed near thermal limits.

Surface layers of plasma facing materials
are rapidly and continually being
reconstituted by plasma erosion and
redeposition.

= Peak ion flux ~ 100 kKA /m?

Plasma transport ensures large gradients in
plasma conditions across magnetic flux

surfaces.
Turbulent plasma transport

While plasma is axisymmetric, real armor

geometry leads to 3-D effects.
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Overview
ir

e Highlight five prominent PSI issues as one steps from

present devices to ITER to Demo.
» Each issue is quantitatively and qualitatively “worse” in ITER, then Demo.
» Every issue pushes our PSI knowledge up-to and past our limits.

» Despite its severe challenges, ITER will not address most Demo PSI issues.

 Way forward: PSI diagnosis critical to advancing PSI science.

e Limitations
» Cannot include all research topics
» Discussion mostly restricted to “conventional” solid plasma-facing materials.

» Personal opinion : PSI & fusion materials, particularly in ITER, remain contentious

1ssues and the views stated are not consensus.
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Controlling PSI becoming increasingly important
and difficult as we move from present tokamaks —

Mir ITER - demonstration fusion power plants
Issue / Parameter Present ITER | DEMO Consequences
Tokamaks
Energy exhaust (production) - active cooling
~ 10 3,000 60,000

GJ / day

FESAC Whyte Nov. 08
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Heat exhaust is primary design point for edge
materials, since this is directly related
ir to fusion power density

1
g P fusion ~ M W

divertor m

qtarget =

Distorted surface “proud” to the
field line receives q,, ~ 500 MW/m?
and 1s immediately melted/ablated.
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Even ITER falls short of Demo power density
P/S ~1 MW/m? and energy throughput

ITER ARIES-AT ARIES-RS ARIES-ST

Duration (s) 400 3x107 3x107 3x10’

Ambient T (C) ~200 1000 850 > 700
R (m) 6.2 5.2 5.52 3.2
A=R/a 3.1 4.0 4.0 1.6
P, (MW) 150 390 515 624
P/S (MW/m?) 0.21 0.85 1.1 0.99

P/A g, (MW/m?) 24 10 12
(B

Ag,/S ~ 5-10%

FESAC Whyte Nov. 08




Thermal efficiency dictates high ambient T —
Fundamentally different Physical Chemistry regime
[ljif7 for wall that is completely unexplored in fusion devices

1.E-03
1.E-04

e Rate equations follow 1':'32
Arrhenius relationship 1.E-07

reaction rate « exp(-E_/kT) 1.E-08

> Activation energies i-::‘l’z
E,~05-1¢€V. 1:E-11

-

Arrenhius reaction rate for
0.5 eV activiation (au)

Reaction rate

1 :: 1: A coefficient
e Precludes water cooling 1.E-14 tdeal Thermal I
technology in reactor 1.E-15 efficiency
1.E-16
1.E-17 . .
200 700 1200

Limit for

Femperature (K)

Water-cooling
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+ 0.9
+ 0.8
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Helium gas (or molten metal) cooling/heating

required for hot walls (T > 700 C)

e Actively controlled temperature

of all plasma-facing components.

 US Engineering demo peak heat
removal ~ 10 MW/m?

» He and PFC joining sets the
limit for peak heat removal in
divertor.

e The heat removal challenge:
P../ Ay ~10 MW / m? right at
the technology limit!!

» Radiation / geometry effects must
be invoked to find solutions.
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Table 2
Test results

Flow rate Heat flux Peak surface

Pumping power

(kgs ") (MW m~™?)  temperature (W (% of

("0) power removed))
0.022 10 380 157 (0.8)
0.011 6 422 21 (0.2)

0.0064 3 424

3.4 (0.06)

|
HEAT FLUX
vevyyyvyvyvy b

UUUUOUOUUTE ..

- [+ 5r

Fig. 1. GA divertor module.

C.B. Baxi | Fusion Engineering and Design 25 (1994) 263271
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Energy sustainment chasm to
i Component Test Facility (CTF) & DEMO

e CTF (Q < 3) cares about energy fluence, period.
» Power density x At: BOTH MATTER!

» Must also have a closed Tritium fuel cycle!

e DEMO: Burn Q>25 + Power/m? x At.
> P, /S ~ 1/4P /S~ 1 MW/m? x 3x107 s ~ 1 full-power year

exh

» Ambient temperature > 700 C for thermal efficiency

* Therefore CTF must also have high T walls to test components.

e Present track of devices, including ITER, do not address energy
sustainment issues required for CTF or DEMO
» P/S and pulse duration too small.
» Water-cooled, low-T walls.
» Open fuel cycle.

FESAC Whyte Nov. 08
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Controlling PSI becoming increasingly important
and difficult as we move from present tokamaks —

Ui ITER - demonstration fusion power plants
Present
Issue / Parameter ITER | DEMO Consequences
Tokamaks
Quiescent energy exhaust - active cooling
GJ / day ~ 10 3,000 60,000 | _ max. tile thickness ~ 10 mm
Transient energy exhaust from - require high T i/.p1ate
plasma instabilities -9 15 60 _ limit? ~ 40 for C and W

AT~MJ /A, (m?) /(1 ms)?

FESAC Whyte Nov. 08
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Rapid dissipation of plasma thermal energy
poses major challenges in any Demo

i
%4

surface ,max = 7—;tmbiem‘ + C A - 1/2
wall T

, T o Limit

Material
(K) MJ m2 112

Be 1550 8
C 4000 42
Mo 2900 28
W 3680 45

Transient thermal limits
(T ~ 1200 K)

ambient
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Thermal energy dissipation timescale T ~ ms.
Set by both atomic physics & MHD

i
Global energy balance model
of ITER disruption mitigation
By neon injection
1000
100 Prad (GW) »
10 Wiph (MJ) Te (eV) .
1 1
20— T(UMBCON T (30 microns) T met -

_________________________________

1000E

T (80 microns) E

oL 3

100 =

Total neon density 1019 m™ E

" ] E /E_crit for Runaways 3
1 0.000 0.001 0.002 0.003

time after impurity penetration (s)
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Thermal energy dissipation timescale ~ ms.
T Can be easily triggered by PSI “failure”

C-Mod Molybdenum (T,,,,=2900 K)
limiter melted during disruptions

1000

e Prad (GW) ]
100 Wip (MJ) \__Te (eV) 1
o -

2000 T (surface), VT (.30.mibr()lnsj - Tv mreltv I

T (80 microns) =

Total neon density 1019 m3

E /E_crit for Runaways

o_(;oo 0.001 0.002 0.003
time after impurity penetration (s)

30 mm &

e Dilute MFE plasma (n~10%° m-3)
extinguished by small particulate
» 2 mm “drop” of W == Ne 1tER
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Plasma thermal energy intimately linked to fusion
power efficiency. Near “perfect” dissipation will

ir still be major challenge in any Demo
W - pV _ pl2 o pl2
° . e q e . . 1 2 1 2 o
Only flexibility is in <. A T / A(R/c) / Jusion
» Will large-scale tokamaks &
stellarators have T > ms? 60
> Caq we trick the pla§ma into ‘E 50 [ ARIES-AT ¢ & RIES-ST
having T > ms, opacity? 5 .
O S .. | swessssssssnsnsnnnnnnnnnnnnguunnnnnnnnnnnnnnnnnns
. 9 o 40 L
» Liquid walls? § £ ARIES-RS
[ T T
2
T Limit § & 20 oo
Material | " E ¢
T K | MIm2s12 g 0l ITER
Be 1550 8 = o
C 4000 42 1000 2000 3000 4000
Mo 2900 28 Fusion power (MW)
W 3680 45

FESAC Whyte Nov.08 1 ransient thermal limits
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Similar arguments apply to even ‘“minor” transient heating
in reactor-class devices. E..g. Material heating limits lead
Nir to very restrictive ELM size in ITER

- Tungsten -

Before
exposure

After
5 “large”
ELMs
(~2 MJ / m?)

Klimov PSIOS
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The consequences of large particulate removal on
both plasma survival & safety are unknown

FESAC Whyte Nov. 08

5 Tungsten flat target
Energy distribution i ' Target holder

‘ &

Plasma

flow
Plasma

flow

e

abs
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)
\‘x

Klimov PSIOS
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Controlling PSI becoming increasingly important
and difficult as we move from present tokamaks —

U ITER - demonstration fusion power plants
Present
Issue / Parameter ITER | DEMO Consequences
Tokamaks

Quiescent energy exhaust - active cooling
GJ / day ~ 10 3,000 60,000 | _ max. tile thickness ~ 10 mm
Transient energy exhaust from - require high T /010t
plasma instabilzities p -9 15 60 - limit? ~ 60 for C and W
AT~ MT /A,y m=) (1 ms) - surface distortion
Yearly neutron damage in - evolving material properties:
plasma-facing materials ~0 ~0.5 20 thermal conductivity, swelling,
displacements per atom traps for tritium

FESAC Whyte Nov. 08
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14 MeV neutron-induced damage set
lifetime limits for graphitic fusion materials

Neutron induced shrink/swell in N3M graphite

0 ¢

O \

=

= End of
Q [ ] [ ]
@ lifetime

=

@
o v—

w

=

O
k=

A
§ -

) @ 875 °C Axial
3 & 600 °C Axial
T. Burchell, J. Nucl. Mater. A 875°C Radi.m
1 179-181 (1991) 205. O 600 °C Radial
"

0 20 0 40
Displacements per atom
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An emerging area of study:
Neutron damage producing Tritium trap sites

in refractory metals like tungsten

* Neutron-induced displacements

produce damage “trap” sites for
D/T fuel in bulk of material

» Lab studies ~0.1 - 0.3 trap / dpa
that saturate 1% traps / atom.

FESAC Whyte Nov. 08

Source Metal T (K)
10— ¢ Fukomoto w 473
| [ Takagi Mo 493 ~10% ITER
| @ Wampler w 470 D-T shots
/A Wright Mo 400
— o  Wright Mo 500
§ V'  Wright/Whyte Mo P
R e ——— s S o
s 11 X
H L
m L
©
L
v
= total end of
™ . .
) R4 lifetime
R S— Nl PO —
c 3
- ’
- INTriNsic <
[ D/metal R4 \fit to enhanced
, D/metal atom
e from displacements
0.01 A — .
0.01 0.1 1 10

displacements per atom (dpa)
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Controlling PSI becoming increasingly important
and difficult as we move from present tokamaks —

(mm / operational-year)

FESAC Whyte Nov. 08

U ITER - demonstration fusion power plants
Present
Issue / Parameter ITER | DEMO Consequences
Tokamaks

Quiescent energy exhaust - active cooling
GJ / day ~ 10 3,000 60,000 | _ max. tile thickness ~ 10 mm
Transient energy exhaust from - require high T /010t
plasma instabilzities p -9 15 60 - limit? ~ 60 for C and W
AT~ MT /A,y m=) (1 ms) - surface distortion
Yearly neutron damage in - evolving material properties:
plasma-facing materials ~0 ~0.5 20 thermal conductivity &
displacements per atom swelling
Max. gross material removal - must redeposit locally
rate with 1% erosion yield <1 300 3000 | - limits lifetime

- produces films
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Tokamak edge plasmas feature extreme spatial
gradients and fluctuations levels, making

erosion prediction and control very ditficult

Extreme range (100 eV — 1 eV) is
possible for plasma temperatures
» Highly ionizing — recombining.
» Physical sputtering — chemical
removal.

Develops large-scale sonic flows to
surfaces.

> Particle flux density ~ 10° A / m?

Key result: PFC species have
ionization distances << linear size of
divertor targets

» Every atom removed from surface
has already been removed and

replaced by plasma many times over.

» Plasma and surfaces are strongly
coupled to each other

FESAC Whyte Nov. 08
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‘“Archeological” deposition measurements:
Tokamak plasmas effectively net *“‘transfer”

B s [
Illiif carbon from one location of the wall to another
# DIII-D’ % JET MKIIGB? ITER 13
Projection CH4
_ : AUGl W JET MkfRP3 (~8 g-C/shot) S njection
w 101 AUG % JT-60U S G
59 - @ JETMK' @ JT-60U* 14 - - | Molseuns
o ] - | bréakap=
s 2 @ JET MKIIA? :t _ | 7
vV - ™ Whyte et al. Nucl. Fusion 39 (1999) 1025. - -
2 | o _-*
: E Gotoh, etal. J.Nud.Mater. 357 (2006) 138. * _ - - .
T - - »
2 2 N - <
0 2 " Al - -~ “ 7;‘-_ g
1 = — — N
100 1000 7 >
Plasma surface area (m?) Nt 2
Highly conce ntrated
deposition in divertor
e Controlling mechanisms of erosion sources, long-range transport and
deposition balance are not understood.
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A new generation of innovative in-situ PSI
diagnostics are being developed on C-Mod
Mir Example: RFQ accelerator

* High-current cw RFQ accelerator attached
to the tokamak

* Innovation: Exploit intrinsic magnetic fields
to steer beam to any poloidal (toroidal)
location.

* Shielded neutron + gamma detection from
MeV D beam nuclear reactions with PFCs

* Shot-to-shot “maps” of erosion,
redeposition and tritium retention, depth
resolved to penetration distance of beam (~10
microns).
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Controlling PSI becoming increasingly important
and difficult as we move from present tokamaks —

(g /day)

FESAC Whyte Nov. 08

U ITER — demonstration fusion power plants
Present
Issue / Parameter ITER | DEMO Consequences
Tokamaks
Quiescent energy exhaust - active cooling
GJ / day ~ 10 3,000 60,000 | _ max. tile thickness ~ 10 mm
Transient energy exhaust from - require high T .j/ablate
plasma instabilzities p -9 15 60 - limit? ~ 60 for C and W
AT~ MT /A,y m=) (1 ms) - surface distortion
Yearly neutron damage in - evolving material properties:
plasma-facing materials ~0 ~0.5 20 thermal conductivity &
displacements per atom swelling
Max. gross material removal - must redeposit locally
rate with 1% erosion yield <1 300 3000 | - limits lifetime
(mm / operational-year) - produces films
Tritium consumption - Tritium retention in materials
<0.02 20 1000 and recovery
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Tritium retention in Demo must satisfy fuel cycle
and regulatory limits:

ir Orders of magnitude improvement required.
Tritium throughput per day Tritium
(5 GWth plant) Retained in
materials
1000 . al
— g ueto ,{:Ef-_:rﬂmu e
o : 2 recycling \ o
= 100 < 1 in 100,000 “‘[’ira?lﬂ? ;
— of incident lans -
g 10 due toburn ér?T mﬂ.:ifeﬁﬁﬁ Cumulative
[ ¥ - fraction — retention
E 1 e S AUl = > safety limit
= g with ne
E - Cycled as evacuation
v 0.1! ions plan
~ through , ?
0.01 §::;T::i’ 3’;:;':;" B;:aﬂ:i::f Reactor Requirement:
g < 0.05 kg /day
- Burned _ Refuelled | materials : Surplus for continuous

1 month operation
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An emerging area of concern:
Neutron damage producing Tritium trap sites

ir In refract tal
i in refractory metals
Source Metal T (K)
. . | © Fukomoto w 473
* Neutron-induced displacements O O s me e o
. a,m er -T shots
produce damage “trap” sites for _ A e e {
D/T fuel in bulk of material R s x=
=]
. - A
» Lab studies ~ 0.1 - 0.3 trap / dpa = 7 o
that saturate 1% traps / atom. £ total ,6"' " et
3 0.1 . lifetime
8- //’,
o ngh temperature MUST heal ,'\f'Dt/t;eegTz?gid
these traps since in a D-T reactor 001 oo fomdwbcemens
.. . 0.01 0.1 1 10
~ 20 kg Trltlum can be StOI‘Gd 1n displacements per atom (dpa)
(Traps / atom) ~ 10-2 Cvs
E+05 Divertor
> Surpassed in a few hours in ~ : —— Main-wall ITER
Demo due to high permeability E’ === “Lim
of the D/T in tungsten at high g1E+04
ambient temperature. 5
» Entire world supply of tritium. g cros -
5 2
=
=
1.E+02 T T T T
0 2000 4000 6000 8000 10000
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It is hard to overstate the importance of ambient

v temperature for fuel control & T retention
T
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30+ years of experience in confinement devices tells
us we should be worried/excited about all this, and
i in particular the effects of having “hot walls™

 Every major (and minor) modification to the wall surfaces had profound effects
on core performance.

» E.g. lithium layers (TFTR, NSTX), He discharge cleaning (TFTR, DIII-D, etc),
boronizations (DIII-D, C-Mod, etc.), ad infinitum

e (Can we be so naive that ~10 orders of magnitude modifications to
boundary condition of wall will not have profound effects on the core?

e Must assess effects experimentally but can make educated guesses
» Fuelling balance: surface strongly desorbed of H, --> no retention?
» Recycling: depleted walls?
» Safety: flakes/dust fully T depleted, reactivity?
» Impurity control: ~ZERO vacuum impurities (H,0, C,0)
» High-7Z materials: fuel permeated through wall, no sputtering?
» Erosion control: Hydrogen activity with materials fundamentally modified.
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Conclusion: The PSI chasms to ITER, then Demo, are

i so large we must start to address them now
T

e Every PSI issue pushes us to our science and technology limits
» Power density (P/S ~ 1 MW/m?) x duration (30,000,000 s)
» Transient energy dissipation: all materials at / past thermal limits.
» Erosion and fuel control
» Evolving quasi-equilibrium due to neutron damage.

*  Where do we start?
» We must assess materials in the proper physical chemistry range (T, )

» Establishing quasi-equilibrium between PFC materials and plasma will be a
key scientific advancement.

» A new generation of innovative in-situ PSI diagnostics are essential.

e The fusion community must realize this 1s not “just” a technology issue,
but rather a grand “fusion science” challenge since it deals with nearly
every aspect of plasma and material science.
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