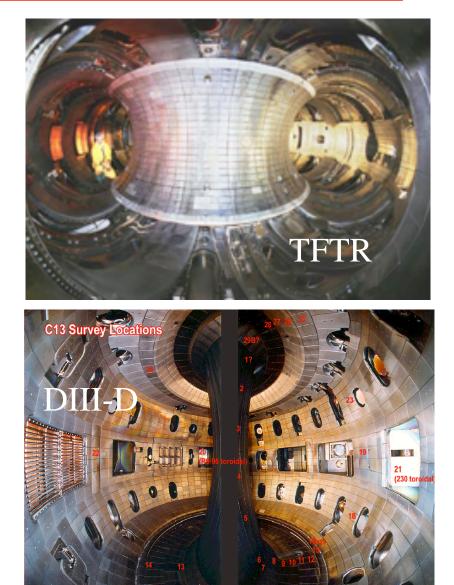


The Challenges of Plasma-Surface Interactions for ITER & Beyond

Dennis Whyte

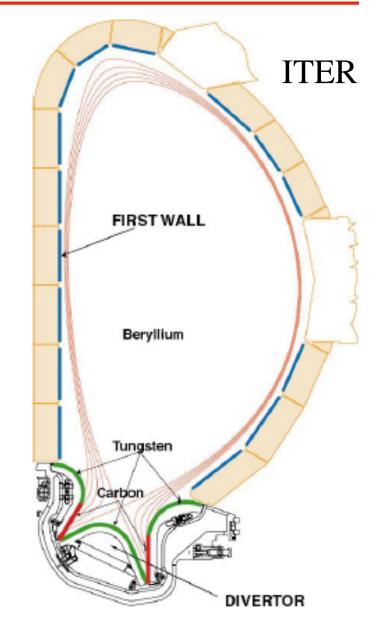
Plasma Science & Fusion Center, MIT, Cambridge USA


FESAC, November 2008

Many thanks to all my PSI colleagues

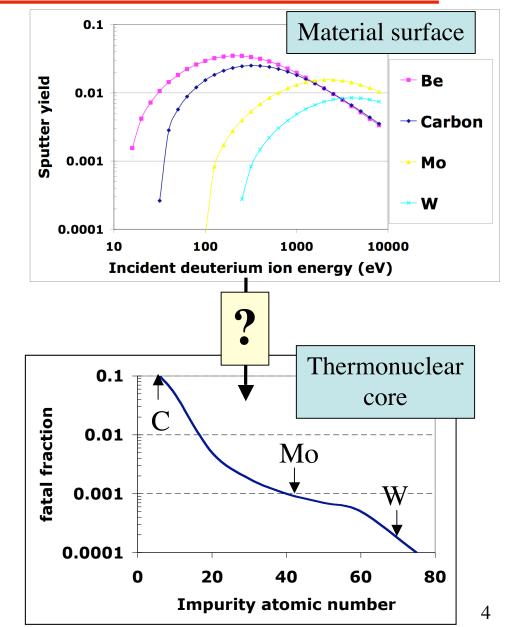
Present tokamaks require that plasma-facing materials *simultaneously* meet several requirements

• Mechanical strength


- Large JxB and eddy current forces during disruptions
- Forgiving of temperature transients.
 - → Heat flux > GW / m^2
- Erosion/radiation characteristics favorable for a wide variety of exploratory fusion core plasma scenarios.
- To-date low-Z materials, in particular graphite/CFC, have met these challenges.

Present tokamaks require that plasma-facing materials *simultaneously* meet several requirements

• Mechanical strength


- Large JxB and eddy current forces during disruptions
- Forgiving of temperature transients.
 Heat flux > GW / m²
- Erosion/radiation characteristics favorable for a wide variety of exploratory fusion core plasma scenarios.
- To-date low-Z materials, in particular graphite/CFC, have met these challenges.
- Q~1 and fusion power > 10 MW achieved with Carbon walls + low-Z coatings, paving the way for our confidence in ITER.

So what's the problem?

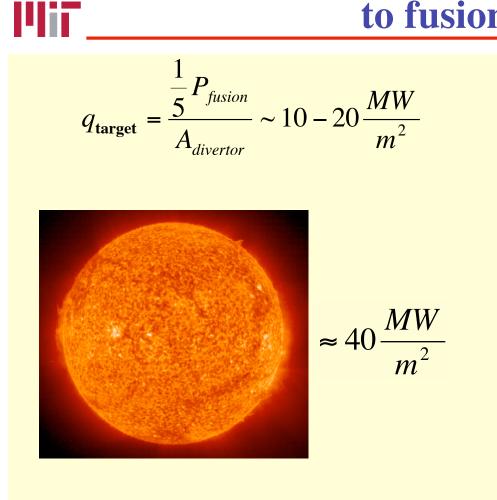
Lack basic understanding and diagnosis of PSI processes in fusion devices → Uncertain extrapolation

- Intermediate steps uncertain between sputtering and core plasma.
 - Intense power flux density
 - Materials placed near thermal limits.
 - Surface layers of plasma facing materials are rapidly and continually being reconstituted by plasma erosion and redeposition.
 - Peak ion flux $\sim 100 \text{ kA} / \text{m}^2$
 - Plasma transport ensures large gradients in plasma conditions across magnetic flux surfaces.
 - Turbulent plasma transport
 - While plasma is axisymmetric, real armor geometry leads to 3-D effects.

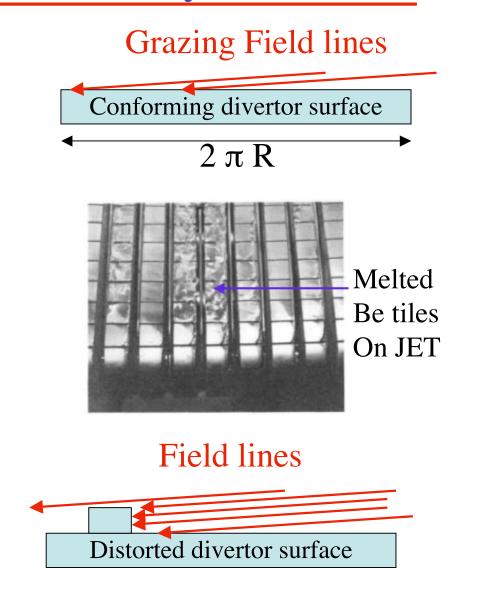
Overview

Шт

- Highlight five prominent PSI issues as one steps from present devices to ITER to Demo.
 - Each issue is quantitatively and qualitatively "worse" in ITER, then Demo.
 - Every issue pushes our PSI knowledge up-to and past our limits.
 - > Despite its severe challenges, ITER will not address most Demo PSI issues.
- Way forward: PSI diagnosis critical to advancing PSI science.


• Limitations

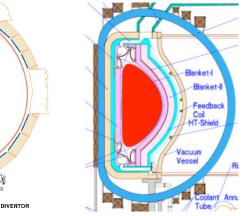
- Cannot include all research topics
- > Discussion mostly restricted to "conventional" solid plasma-facing materials.
- Personal opinion : PSI & fusion materials, particularly in ITER, remain contentious issues and the views stated are not consensus.


Controlling PSI becoming increasingly important and difficult as we move from present tokamaks → ITER → demonstration fusion power plants

Issue / Parameter	Present Tokamaks	ITER	DEMO	Consequences
Energy exhaust (production) GJ / day	~ 10	3,000	60,000	 active cooling max. tile thickness ~ 10 mm

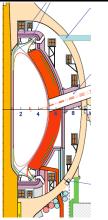
Heat exhaust is primary design point for edge materials, since this is directly related to fusion power density

Distorted surface "proud" to the field line receives $q_{//} \sim 500 \text{ MW/m}^2$ and is immediately melted/ablated.

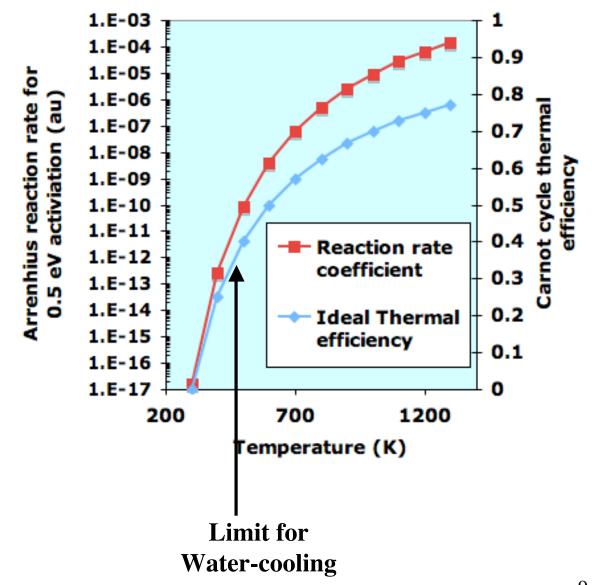


Even ITER falls short of Demo power density P/S ~ 1 MW/m² and energy throughput

		distants.
<u>.</u>	1555	A CONTRACTOR
	1000	1000
	1995	
	600	100


	ITER	ARIES-AT	ARIES-RS	ARIES-ST
Duration (s)	400	3x10 ⁷	3x10 ⁷	3x10 ⁷
Ambient T (C)	~ 200	1000	850	> 700
R (m)	6.2	5.2	5.52	3.2
A = R/a	3.1	4.0	4.0	1.6
P _{exh} (MW)	150	390	515	624
P/S (MW/m ²)	0.21	0.85	1.1	0.99
P/A _{div} (MW/m ²)	2.4	10	12	20

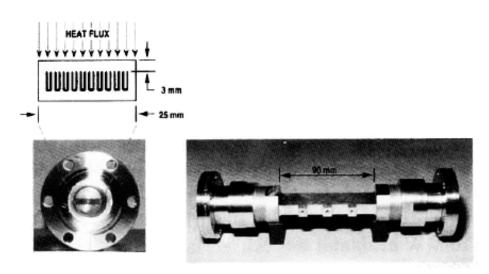
$$A_{div} / S \sim 5-10\%$$

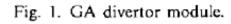

FIRST WALL

Bervilliu

Thermal efficiency dictates high ambient $T \rightarrow$ Fundamentally different Physical Chemistry regime for wall that is completely unexplored in fusion devices

- Rate equations follow Arrhenius relationship reaction rate $\propto \exp(-E_o/kT)$
 - Activation energies $E_o \sim 0.5 - 1 \text{ eV}.$
- Precludes water cooling technology in reactor


ШТ


Helium gas (or molten metal) cooling/heating required for hot walls (T > 700 C)

- Plit
- Actively controlled temperature of all plasma-facing components.
- US Engineering demo peak heat removal ~ 10 MW/m²
 - He and PFC joining sets the limit for peak heat removal in divertor.
- The heat removal challenge: P_{exh} / A_{div} ~ 10 MW / m² right at the technology limit!!
 - Radiation / geometry effects must be invoked to find solutions.

Table	e 2
Test	results

Flow rate (kg s ⁻¹)	Heat flux (MW m ⁻²)	Peak surface temperature (°C)	Pumping power (W (% of power removed))
0.022	10	380	157 (0.8)
0.011	6	422	21 (0.2)
0.0064	3	424	3.4 (0.06)

C.B. Baxi | Fusion Engineering and Design 25 (1994) 263-271

Energy sustainment chasm to

Component Test Facility (CTF) & DEMO

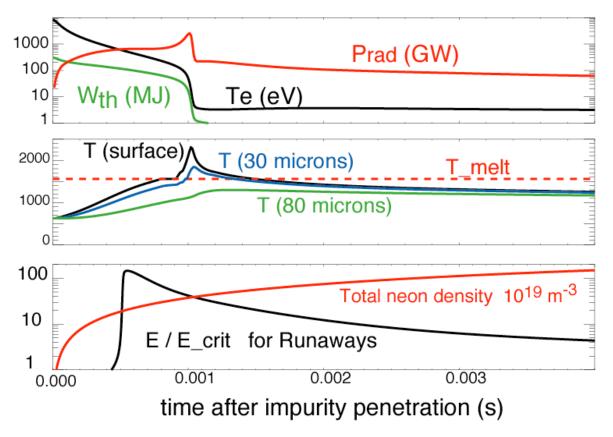
- **CTF** (Q < 3) cares about energy fluence, period.
 - > Power density x Δt : BOTH MATTER!
 - Must also have a closed Tritium fuel cycle!
- **DEMO**: Burn $Q > 25 + Power/m^2 x \Delta t$.
 - $P_{exh}/S \sim 1/4 P_n/S \sim 1 MW/m^2 x 3x10^7 s \sim 1$ full-power year
 - Ambient temperature > 700 C for thermal efficiency
 - Therefore CTF must also have high T walls to test components.
- Present track of devices, including ITER, do *not* address energy sustainment issues required for CTF or DEMO
 - \succ P/S and pulse duration too small.
 - ➤ Water-cooled, low-T walls.
 - > Open fuel cycle.

Controlling PSI becoming increasingly important and difficult as we move from present tokamaks → ITER → demonstration fusion power plants

Issue / Parameter	Present Tokamaks	ITER	DEMO	Consequences
Quiescent energy exhaust GJ / day	~ 10	3,000	60,000	 active cooling max. tile thickness ~ 10 mm
Transient energy exhaust from plasma instabilities $\Delta T \sim MJ / A_{wall} (m^2) / (1 ms)^{1/2}$	~ 2	15	60	 require high T_{melt/ablate} limit? ~ 40 for C and W surface distortion

Rapid dissipation of plasma thermal energy poses major challenges in any Demo

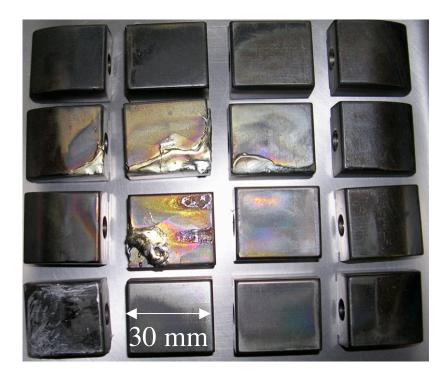
$$T_{surface, \max} = T_{ambient} + C \frac{W_{th}}{A_{wall} \tau^{1/2}}$$


Material	T _{max} (K)	Limit MJ m ⁻² s ^{-1/2}
Be	1550	8
С	4000	42
Мо	2900	28
W	3680	45

Transient thermal limits (T_{ambient} ~ 1200 K)


Шт

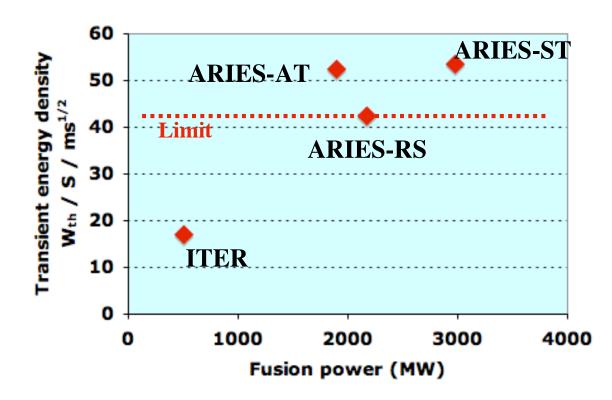
Thermal energy dissipation timescale τ ~ ms. Set by both atomic physics & MHD


Global energy balance model of ITER disruption mitigation By neon injection

Thermal energy dissipation timescale ~ ms. Can be easily triggered by PSI "failure"

C-Mod Molybdenum (T_{melt} =2900 K) limiter melted during disruptions

 Dilute MFE plasma (n~10²⁰ m⁻³) extinguished by small particulate
 > 2 mm "drop" of W == N_{e,ITER}


Plasma thermal energy intimately linked to fusion power efficiency. Near "perfect" dissipation will still be major challenge in any Demo

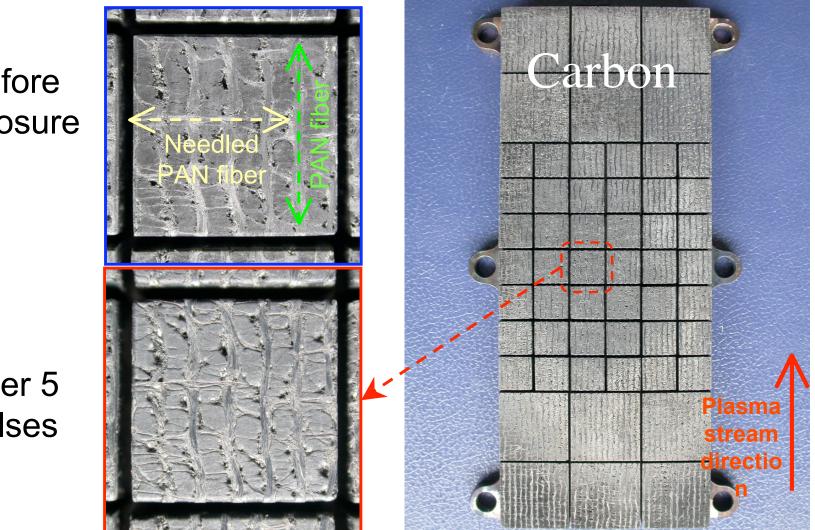
• Only flexibility is in τ .

- Will large-scale tokamaks & stellarators have τ > ms?
- Can we trick the plasma into having τ > ms, opacity?
- Liquid walls?

Material	T _{max} (K)	Limit MJ m ⁻² s ^{-1/2}
Be	1550	8
С	4000	42
Мо	2900	28
W	3680	45

$$\frac{W_{th}}{A_{wall} \tau^{1/2}} \sim \frac{pV}{A(R/c_s)^{1/2}} \sim P_{fusion}^{1/2} \varepsilon R^{1/2}$$

Similar arguments apply to even "minor" transient heating in reactor-class devices. E..g. Material heating limits lead to very restrictive ELM size in ITER


Tungsten

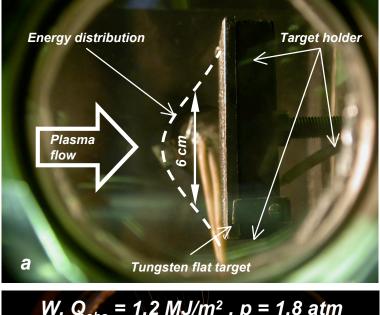
Klimov PSI08

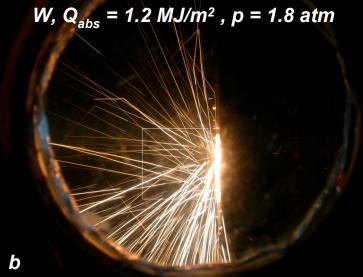
Шï

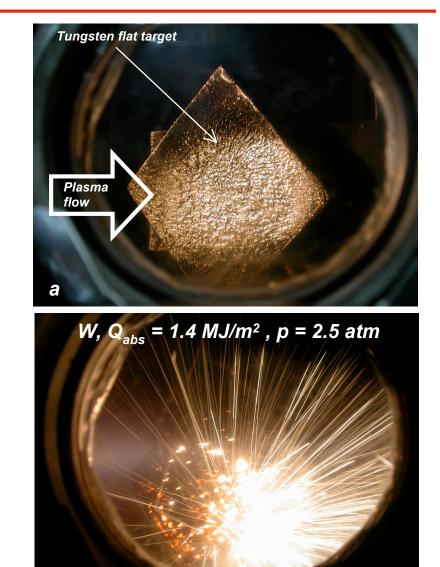
Similar arguments apply to even "minor" transient heating in reactor-class devices. E..g. Material heating limits lead to very restrictive ELM size in ITER

Klimov PSI08

Before exposure


> After 5 pulses


Шī


The consequences of large particulate removal on both plasma survival & safety are unknown

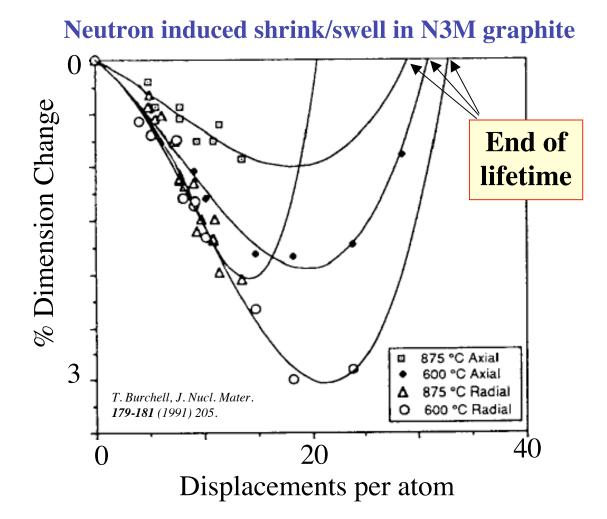
b

FESAC Whyte Nov. 08

Controlling PSI becoming increasingly important and difficult as we move from present tokamaks →

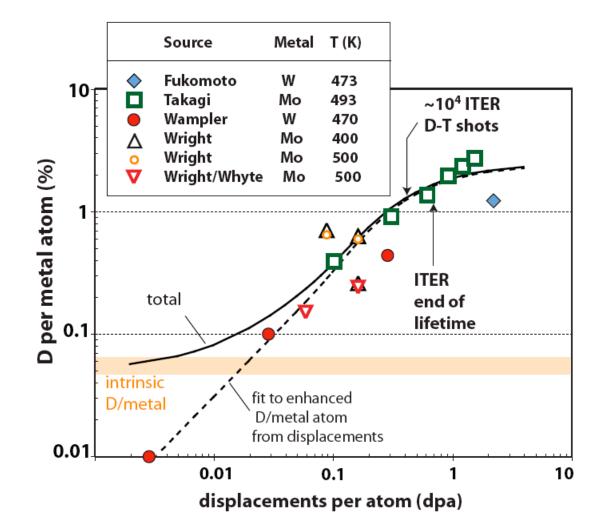
ITER → **demonstration fusion power plants**

т


1

Т

I.


Issue / Parameter	Present Tokamaks	ITER	DEMO	Consequences
Quiescent energy exhaust GJ / day	~ 10	3,000	60,000	 active cooling max. tile thickness ~ 10 mm
Transient energy exhaust from plasma instabilities $\Delta T \sim MJ / A_{wall}(m^2) / (1 \text{ ms})^{1/2}$	~ 2	15	60	 require high T_{melt/ablate} limit? ~ 60 for C and W surface distortion
Yearly neutron damage in plasma-facing materials <i>displacements per atom</i>	~ 0	~ 0.5	20	- evolving material properties: thermal conductivity, swelling, traps for tritium

14 MeV neutron-induced damage set lifetime limits for graphitic fusion materials

An emerging area of study: Neutron damage producing Tritium trap sites in refractory metals like tungsten

- Neutron-induced displacements produce damage "trap" sites for D/T fuel in bulk of material
 - Lab studies ~ 0.1 0.3 trap / dpa that saturate 1% traps / atom.

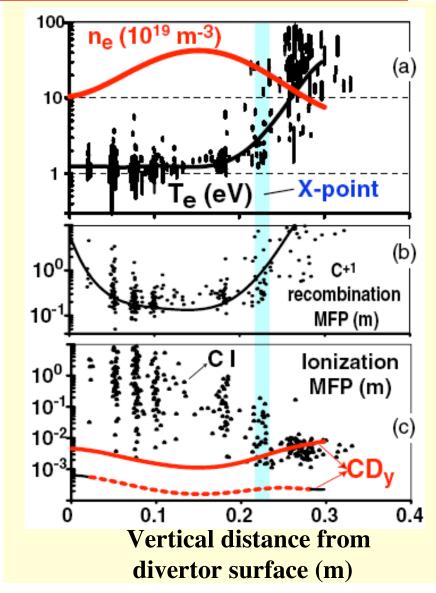
Шт

Controlling PSI becoming increasingly important and difficult as we move from present tokamaks →

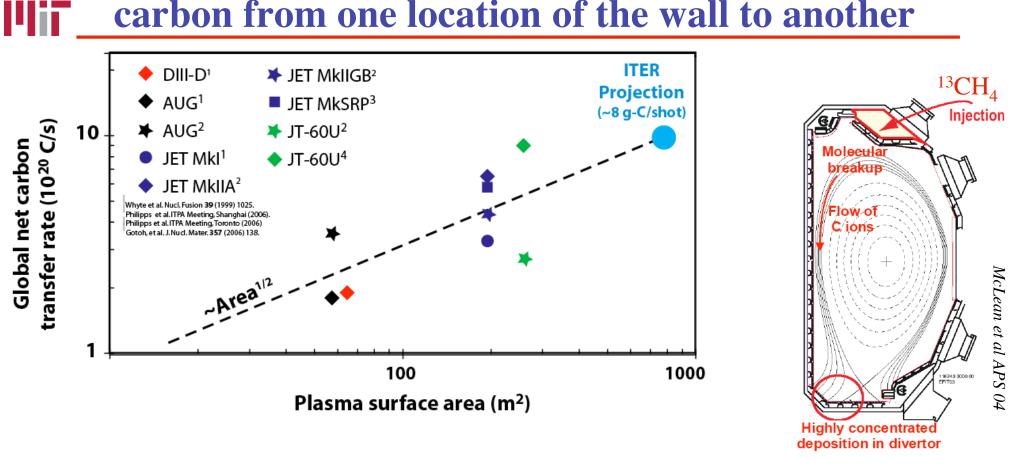
ITER → **demonstration fusion power plants**

Т

1

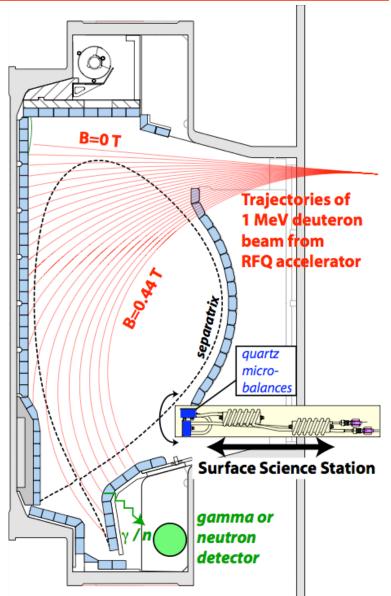

Т

I.


Issue / Parameter	Present Tokamaks	ITER	DEMO	Consequences
Quiescent energy exhaust GJ / day	~ 10	3,000	60,000	 active cooling max. tile thickness ~ 10 mm
Transient energy exhaust from plasma instabilities $\Delta T \sim MJ / A_{wall}(m^2) / (1 \text{ ms})^{1/2}$	~ 2	15	60	 require high T_{melt/ablate} limit? ~ 60 for C and W surface distortion
Yearly neutron damage in plasma-facing materials <i>displacements per atom</i>	~ 0	~ 0.5	20	- evolving material properties: thermal conductivity & swelling
Max. gross material removal rate with 1% erosion yield (<i>mm / operational-year</i>)	< 1	300	3000	 must redeposit locally limits lifetime produces films

Tokamak edge plasmas feature extreme spatial gradients and fluctuations levels, making erosion prediction and control very difficult

- Extreme range $(100 \text{ eV} \rightarrow 1 \text{ eV})$ is possible for plasma temperatures
 - → Highly ionizing \rightarrow recombining.
 - ➢ Physical sputtering → chemical removal.
- Develops large-scale sonic flows to surfaces.
 - > Particle flux density ~ 10^5 A / m²
- Key result: PFC species have ionization distances << linear size of divertor targets
 - Every atom removed from surface has already been removed and replaced by plasma many times over.
 - Plasma and surfaces are strongly coupled to each other


"Archeological" deposition measurements: Tokamak plasmas effectively net "transfer" carbon from one location of the wall to another

• Controlling mechanisms of erosion sources, long-range transport and deposition balance are not understood.

A new generation of innovative in-situ PSI diagnostics are being developed on C-Mod Example: RFQ accelerator

- High-current cw RFQ accelerator attached to the tokamak
- Innovation: Exploit intrinsic magnetic fields to steer beam to any poloidal (toroidal) location.
- Shielded neutron + gamma detection from MeV D beam nuclear reactions with PFCs
- Shot-to-shot "maps" of erosion, redeposition and tritium retention, depth resolved to penetration distance of beam (~10 microns).

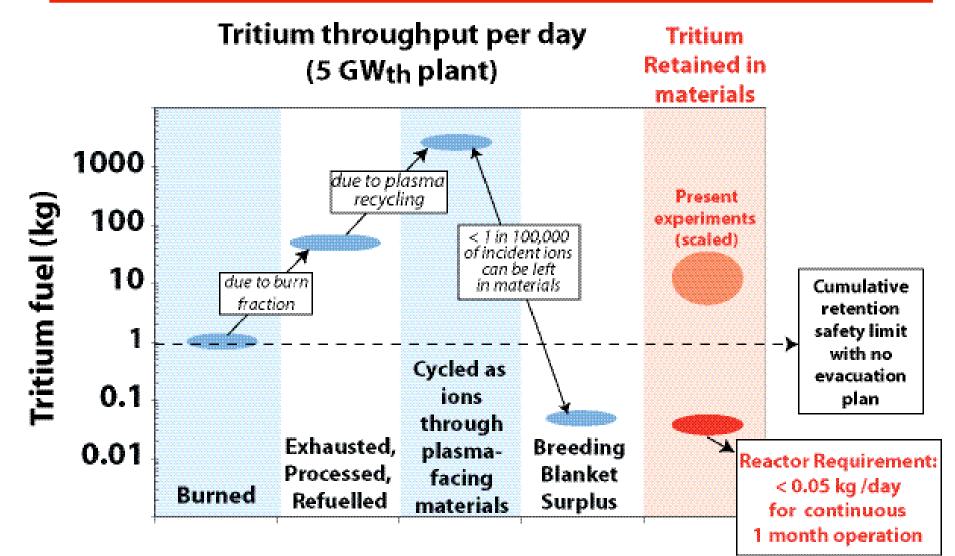
Controlling PSI becoming increasingly important and difficult as we move from present tokamaks →

ITER → **demonstration** fusion power plants

т

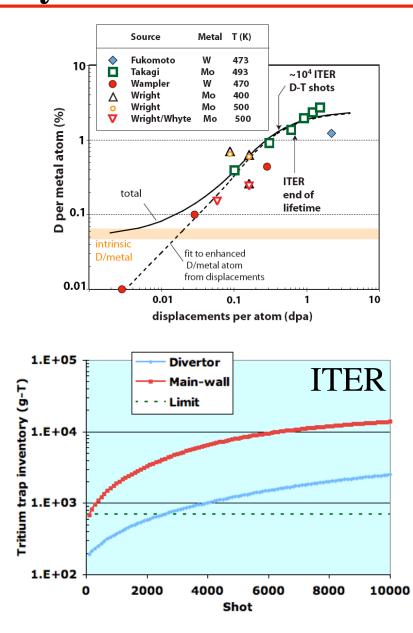
1

I.

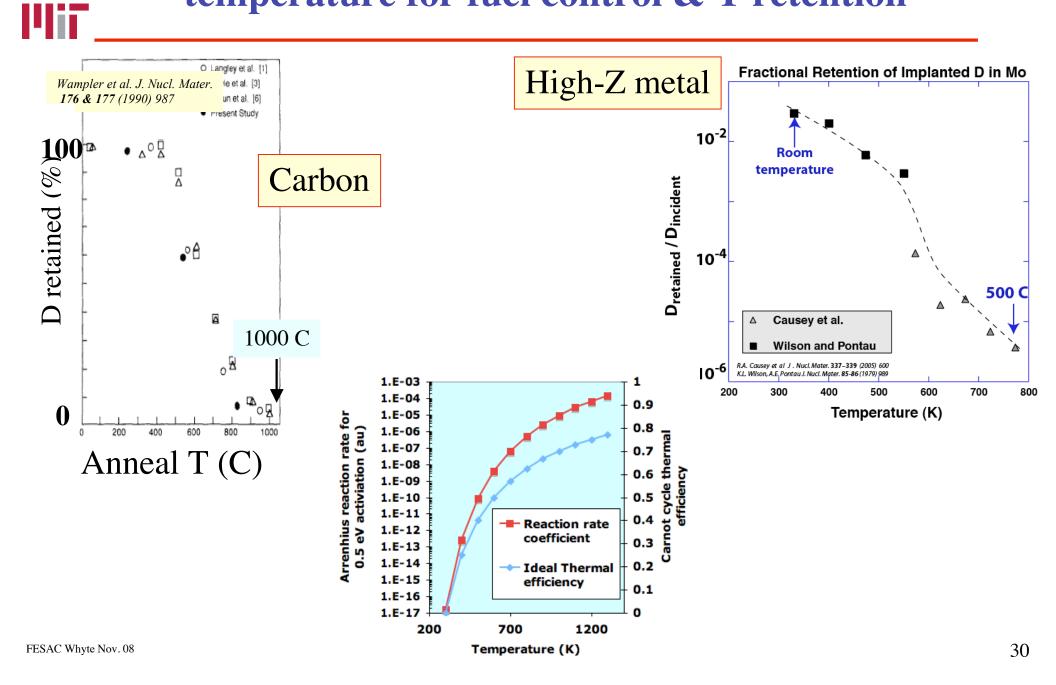

I.

Issue / Parameter	Present Tokamaks	ITER	DEMO	Consequences
Quiescent energy exhaust GJ / day	~ 10	3,000	60,000	 active cooling max. tile thickness ~ 10 mm
Transient energy exhaust from plasma instabilities $\Delta T \sim MJ / A_{wall}(m^2) / (1 \text{ ms})^{1/2}$	~ 2	15	60	 require high T_{melt/ablate} limit? ~ 60 for C and W surface distortion
Yearly neutron damage in plasma-facing materials <i>displacements per atom</i>	~ 0	~ 0.5	20	- evolving material properties: thermal conductivity & swelling
Max. gross material removal rate with 1% erosion yield (<i>mm / operational-year</i>)	< 1	300	3000	must redeposit locallylimits lifetimeproduces films
Tritium consumption (g / day)	< 0.02	20	1000	- Tritium retention in materials and recovery

Шт


Tritium retention in Demo must satisfy fuel cycle and regulatory limits:

Orders of magnitude improvement required.



An emerging area of concern: Neutron damage producing Tritium trap sites in refractory metals

- Neutron-induced displacements produce damage "trap" sites for D/T fuel in bulk of material
 - Lab studies ~ 0.1 0.3 trap / dpa that saturate 1% traps / atom.
- High temperature MUST heal these traps since in a D-T reactor ~ 20 kg Tritium can be stored in (Traps / atom) ~ 10⁻²
 - Surpassed in a few hours in Demo due to high permeability of the D/T in tungsten at high ambient temperature.
 - Entire world supply of tritium.

It is hard to overstate the importance of ambient temperature for fuel control & T retention

30+ years of experience in confinement devices tells us we should be worried/excited about all this, and in particular the effects of having "hot walls"

- Every major (and minor) modification to the wall surfaces had profound effects on core performance.
 - E.g. lithium layers (TFTR, NSTX), He discharge cleaning (TFTR, DIII-D, etc), boronizations (DIII-D, C-Mod, etc.), ad infinitum
- Can we be so naïve that ~10 orders of magnitude modifications to boundary condition of wall will not have profound effects on the core?
- Must assess effects experimentally but can make educated guesses
 - **Fuelling balance:** surface strongly desorbed of H₂ --> no retention?
 - Recycling: depleted walls?
 - Safety: flakes/dust fully T depleted, reactivity?
 - ➢ Impurity control: ~ ZERO vacuum impurities (H₂0, C₂O)
 - High-Z materials: fuel permeated through wall, no sputtering?
 - **Erosion control:** Hydrogen activity with materials fundamentally modified.

ШТ

Conclusion: The PSI chasms to ITER, then Demo, are so large we must start to address them now

- Every PSI issue pushes us to our science and technology limits
 - > Power density (P/S ~ 1 MW/m²) x duration (30,000,000 s)
 - > Transient energy dissipation: all materials at / past thermal limits.
 - Erosion and fuel control
 - > Evolving quasi-equilibrium due to neutron damage.
- Where do we start?
 - \blacktriangleright We must assess materials in the proper physical chemistry range (T_{wall})
 - Establishing quasi-equilibrium between PFC materials and plasma will be a key scientific advancement.
 - > A new generation of innovative in-situ PSI diagnostics are essential.
- The fusion community must realize this is not "just" a technology issue, but rather a grand "fusion science" challenge since it deals with nearly every aspect of plasma and material science.