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Present tokamaks require that
plasma-facing materials simultaneously

 meet several requirements
• Mechanical strength

 Large JxB and eddy current forces during
disruptions

• Forgiving of temperature transients.
 Heat flux > GW / m2

• Erosion/radiation characteristics favorable
for a wide variety of exploratory fusion
core plasma scenarios.

• To-date low-Z materials, in particular
graphite/CFC, have met these challenges.

DIII-D

TFTR
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Present tokamaks require that
plasma-facing materials simultaneously

 meet several requirements
• Mechanical strength

 Large JxB and eddy current forces during
disruptions

• Forgiving of temperature transients.
 Heat flux > GW / m2

• Erosion/radiation characteristics favorable
for a wide variety of exploratory fusion
core plasma scenarios.

• To-date low-Z materials, in particular
graphite/CFC, have met these challenges.

• Q~1 and fusion power > 10 MW
achieved with Carbon walls + low-Z
coatings, paving the way for our
confidence in ITER.

TFTR

ITER
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So what’s the problem?
Lack basic understanding and diagnosis of PSI

processes in fusion devices → Uncertain extrapolation

• Intermediate steps uncertain between
sputtering and core plasma.
 Intense power flux density

 Materials placed near thermal limits.

 Surface layers of plasma facing materials
are rapidly and continually being
reconstituted by plasma erosion and
redeposition.
 Peak ion flux ~ 100 kA /m2

 Plasma transport ensures large gradients in
plasma conditions across magnetic flux
surfaces.

 Turbulent plasma transport

 While plasma is axisymmetric, real armor
geometry leads to 3-D effects. 0.0001
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Overview

• Highlight five prominent PSI issues as one steps from
present devices to ITER to Demo.
 Each issue is quantitatively and qualitatively “worse” in ITER, then Demo.

 Every issue pushes our PSI knowledge up-to and past our limits.

 Despite its severe challenges, ITER will not address most Demo PSI issues.

• Way forward: PSI diagnosis critical to advancing PSI science.

• Limitations
 Cannot include all research topics

 Discussion mostly restricted to “conventional” solid plasma-facing materials.

 Personal opinion : PSI & fusion materials, particularly in ITER, remain contentious
issues and the views stated are not consensus.
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Controlling PSI becoming increasingly important
and difficult as we move from present tokamaks →

ITER → demonstration fusion power plants

- must redeposit locally
- limits lifetime
- produces films

3000300< 1
Max. gross material removal
rate with 1% erosion yield
(mm / operational-year)

- evolving material properties:
thermal conductivity &
swelling

20~ 0.5~ 0
Yearly neutron damage in
plasma-facing materials
displacements per atom

- require high Tmelt/ablate

- limit? ~ 60 for C and W
- surface distortion

6015~ 2

Transient energy exhaust from
plasma instabilities
ΔT~ MJ / Awall(m2) / (1 ms)1/2

1000

60,000

DEMO

- must breed tritium
- H isotope retention20< 0.02

Tritium consumption
(g / day)

- active cooling
- max. tile thickness ~ 10 mm3,000~ 10

Energy exhaust (production)
GJ / day

ConsequencesITERPresent
TokamaksIssue / Parameter
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Conforming divertor surface

Heat exhaust is primary design point for edge
materials, since this is directly related

to fusion power density
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qtarget =
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Grazing Field lines

Distorted surface “proud” to the
field line receives q// ~ 500 MW/m2

and is immediately melted/ablated.
Distorted divertor surface

Field lines! 
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Even ITER falls short of Demo power density
P/S ~ 1 MW/m2 and energy throughput

> 7008501000~ 200Ambient T (C)

3x1073x1073x107400Duration (s)

624515390150Pexh (MW)

0.991.10.850.21P/S (MW/m2)

2012102.4P/Adiv (MW/m2)

1.64.04.03.1A ≡ R/a

3.25.525.26.2R (m)

ARIES-STARIES-RSARIES-ATITER

Adiv / S  ~  5-10%
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Thermal efficiency dictates high ambient T →
Fundamentally different Physical Chemistry regime

for wall that is completely unexplored in fusion devices

• Rate equations follow
Arrhenius relationship
reaction rate ∝ exp(-Eo/kT)
 Activation energies

Eo ~ 0.5 -1 eV.

• Precludes water cooling
technology in reactor

Limit for
Water-cooling
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Helium gas (or molten metal) cooling/heating
required for hot walls (T > 700 C)

• Actively controlled temperature
of all plasma-facing components.

• US Engineering demo peak heat
removal ~ 10 MW/m2

 He and PFC joining sets the
limit for peak heat removal in
divertor.

• The heat removal challenge:
Pexh / Adiv ~ 10 MW / m2  right at
the technology limit!!
 Radiation / geometry effects must

be invoked to find solutions.
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Energy sustainment chasm to
Component Test Facility (CTF) & DEMO

• CTF (Q < 3) cares about energy fluence, period.
 Power density x Δt: BOTH MATTER!
 Must also have a closed Tritium fuel cycle!

• DEMO: Burn Q > 25   +   Power/m2 x Δt.
 Pexh/S  ~  1/4 Pn/S ~  1 MW/m2  x  3x107 s ~ 1 full-power year
 Ambient temperature > 700 C for thermal efficiency

 Therefore CTF must also have high T walls to test components.

• Present track of devices, including ITER, do not address energy
sustainment issues required for CTF or DEMO
 P/S and pulse duration too small.
 Water-cooled, low-T walls.
 Open fuel cycle.



12FESAC Whyte Nov. 08

Controlling PSI becoming increasingly important
and difficult as we move from present tokamaks →

ITER → demonstration fusion power plants

- must redeposit locally
- limits lifetime
- produces films

3000300< 1
Max. gross material removal
rate with 1% erosion yield
(mm / operational-year)

- evolving material properties:
thermal conductivity &
swelling

20~ 0.5~ 0
Yearly neutron damage in
plasma-facing materials
displacements per atom

- require high Tmelt/ablate

- limit? ~ 40 for C and W
- surface distortion

6015~ 2

Transient energy exhaust from
plasma instabilities
ΔT~ MJ / Awall(m2) / (1 ms)1/2

1000

60,000

DEMO

- must breed tritium
- H isotope retention20< 0.02

Tritium consumption
(g / day)

- active cooling
- max. tile thickness ~ 10 mm3,000~ 10

Quiescent energy exhaust
GJ / day

ConsequencesITERPresent
TokamaksIssue / Parameter
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Rapid dissipation of plasma thermal energy
poses major challenges in any Demo

30 mm

! 

Tsurface,max = Tambient + C
Wth

Awall "
1/ 2

424000C

282900Mo

81550Be

453680W

Limit
MJ m-2 s-1/2

Tmax

(K)
Material

Transient thermal limits
(Tambient ~ 1200 K)
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Thermal energy dissipation timescale τ ~ ms.
 Set by both atomic physics & MHD

30 mm

Global energy balance model
of ITER disruption mitigation

By neon injection
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Thermal energy dissipation timescale ~ ms.
 Can be easily triggered by PSI “failure”

C-Mod Molybdenum (Tmelt=2900 K)
 limiter melted during disruptions

• Dilute MFE plasma (n~1020 m-3)
extinguished by small particulate
 2 mm “drop” of W  ==  Ne,ITER

30 mm
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Plasma thermal energy intimately linked to fusion
power efficiency. Near “perfect” dissipation will

still be major challenge in any Demo

30 mm

! 

Wth
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1/ 2
~

pV

A(R /cs)
1/ 2
~ Pfusion

1/ 2 #R1/ 2

424000C
282900Mo

81550Be

453680W

Limit
MJ m-2 s-1/2

Tmax

(K)
Material

Transient thermal limits

ITER

ARIES-RS

ARIES-AT
ARIES-ST

Limit

• Only flexibility is in τ.
 Will large-scale tokamaks &

stellarators have τ > ms?
 Can we trick the plasma into

having τ > ms, opacity?
 Liquid walls?
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Similar arguments apply to even “minor” transient heating
in reactor-class devices. E..g. Material heating limits lead

to very restrictive ELM size in ITER

Plasma
stream
directio

n

Before
exposure

After
5 “large”

ELMs
(~2 MJ / m2)

Tungsten

Klimov PSI08
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Similar arguments apply to even “minor” transient heating
in reactor-class devices. E..g. Material heating limits lead

to very restrictive ELM size in ITER

Carbon

Klimov PSI08
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The consequences of large particulate removal on
both plasma survival & safety are unknown

Carbon

Klimov PSI08

Plasma
flow

Energy distribution

Tungsten flat target

Target holder

a

b

6 
cm

Plasma
flow

Tungsten flat target

a

b

W, Qabs = 1.2 MJ/m2 , p = 1.8 atm W, Qabs = 1.4 MJ/m2 , p = 2.5 atm
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Controlling PSI becoming increasingly important
and difficult as we move from present tokamaks →

ITER → demonstration fusion power plants

- must redeposit locally
- limits lifetime
- produces films

3000300< 1
Max. gross material removal
rate with 1% erosion yield
(mm / operational-year)

- evolving material properties:
thermal conductivity, swelling,
traps for tritium

20~ 0.5~ 0
Yearly neutron damage in
plasma-facing materials
displacements per atom

- require high Tmelt/ablate

- limit? ~ 60 for C and W
- surface distortion

6015~ 2

Transient energy exhaust from
plasma instabilities
ΔT~ MJ / Awall(m2) / (1 ms)1/2

1000

60,000

DEMO

- must breed tritium
- H isotope retention20< 0.02

Tritium consumption
(g / day)

- active cooling
- max. tile thickness ~ 10 mm3,000~ 10

Quiescent energy exhaust
GJ / day

ConsequencesITERPresent
TokamaksIssue / Parameter
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14 MeV neutron-induced damage set
lifetime limits for graphitic fusion materials

T. Burchell, J. Nucl. Mater. 
179-181 (1991) 205. 
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An emerging area of study:
 Neutron damage producing Tritium trap sites

in refractory metals like tungsten

• Neutron-induced displacements
produce damage “trap” sites for
D/T fuel in bulk of material
 Lab studies ~ 0.1 - 0.3 trap / dpa

that saturate 1% traps / atom.
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Controlling PSI becoming increasingly important
and difficult as we move from present tokamaks →

ITER → demonstration fusion power plants

- must redeposit locally
- limits lifetime
- produces films

3000300< 1
Max. gross material removal
rate with 1% erosion yield
(mm / operational-year)

- evolving material properties:
thermal conductivity &
swelling

20~ 0.5~ 0
Yearly neutron damage in
plasma-facing materials
displacements per atom

- require high Tmelt/ablate

- limit? ~ 60 for C and W
- surface distortion

6015~ 2

Transient energy exhaust from
plasma instabilities
ΔT~ MJ / Awall(m2) / (1 ms)1/2

1000

60,000

DEMO

- must breed tritium
- H isotope retention20< 0.02

Tritium consumption
(g / day)

- active cooling
- max. tile thickness ~ 10 mm3,000~ 10

Quiescent energy exhaust
GJ / day

ConsequencesITERPresent
TokamaksIssue / Parameter
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Tokamak edge plasmas feature extreme spatial
gradients and fluctuations levels, making

erosion prediction and control very difficult
• Extreme range (100 eV → 1 eV) is

possible for plasma temperatures
 Highly ionizing → recombining.
 Physical sputtering → chemical

removal.

• Develops large-scale sonic flows to
surfaces.
 Particle flux density ~ 105 A / m2

• Key result: PFC species have
ionization distances << linear size of
divertor targets
 Every atom removed from surface

has already been removed and
replaced by plasma many times over.

 Plasma and surfaces are strongly
coupled to each other

Whyte et al. Nucl. Fusion 41 (2001) 1243  

Vertical distance from
 divertor surface (m)
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“Archeological” deposition measurements:
Tokamak plasmas effectively net “transfer”

carbon from one location of the wall to another

• Controlling mechanisms of erosion sources, long-range transport and
deposition balance are not understood.

13CH4

M
cLean et al APS 04
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A new generation of innovative in-situ PSI
diagnostics are being developed on C-Mod

Example: RFQ accelerator
• High-current cw RFQ accelerator attached
to the tokamak

• Innovation: Exploit intrinsic magnetic fields
to steer beam to any poloidal (toroidal)
location.

• Shielded neutron + gamma detection from
MeV D beam nuclear reactions with PFCs

• Shot-to-shot “maps” of erosion,
redeposition and tritium retention, depth
resolved to penetration distance of beam (~10
microns).
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Controlling PSI becoming increasingly important
and difficult as we move from present tokamaks →

ITER → demonstration fusion power plants

- must redeposit locally
- limits lifetime
- produces films

3000300< 1
Max. gross material removal
rate with 1% erosion yield
(mm / operational-year)

- evolving material properties:
thermal conductivity &
swelling

20~ 0.5~ 0
Yearly neutron damage in
plasma-facing materials
displacements per atom

- require high Tmelt/ablate

- limit? ~ 60 for C and W
- surface distortion

6015~ 2

Transient energy exhaust from
plasma instabilities
ΔT~ MJ / Awall(m2) / (1 ms)1/2

1000

60,000

DEMO

- Tritium retention in materials
and recovery20< 0.02

Tritium consumption
(g / day)

- active cooling
- max. tile thickness ~ 10 mm3,000~ 10

Quiescent energy exhaust
GJ / day

ConsequencesITERPresent
TokamaksIssue / Parameter
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Tritium retention in Demo must satisfy fuel cycle
and regulatory limits:

Orders of magnitude improvement required.
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An emerging area of concern:
 Neutron damage producing Tritium trap sites

in refractory metals

• Neutron-induced displacements
produce damage “trap” sites for
D/T fuel in bulk of material
 Lab studies ~ 0.1 - 0.3 trap / dpa

that saturate 1% traps / atom.

• High temperature MUST heal
these traps since in a D-T reactor
~ 20 kg Tritium can be stored in
(Traps / atom) ~ 10-2

 Surpassed in a few hours in
Demo due to high permeability
of the D/T in tungsten at high
ambient temperature.

 Entire world supply of tritium.

ITER 
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It is hard to overstate the importance of ambient
temperature for fuel control & T retention

 

Wampler et al. J. Nucl. Mater.
 176 & 177 (1990) 987
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30+ years of experience in confinement devices tells
us we should be worried/excited about all this, and

in particular the effects of having “hot walls”
• Every major (and minor) modification to the wall surfaces had profound effects

on core performance.
 E.g. lithium layers (TFTR, NSTX), He discharge cleaning (TFTR, DIII-D, etc),

boronizations (DIII-D, C-Mod, etc.), ad infinitum

• Can we be so naïve that ~10 orders of magnitude modifications to
boundary condition of wall will not have profound effects on the core?

• Must assess effects experimentally but can make educated guesses
 Fuelling balance: surface strongly desorbed of H2 --> no retention?
 Recycling: depleted walls?
 Safety: flakes/dust fully T depleted, reactivity?
 Impurity control: ~ ZERO vacuum impurities (H20, C2O)
 High-Z materials: fuel permeated through wall, no sputtering?
 Erosion control: Hydrogen activity with materials fundamentally modified.
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Conclusion: The PSI chasms to ITER, then Demo, are
so large we must start to address them now

• Every PSI issue pushes us to our science and technology limits
 Power density (P/S ~ 1 MW/m2) x duration (30,000,000 s)
 Transient energy dissipation: all materials at / past thermal limits.
 Erosion and fuel control
 Evolving quasi-equilibrium due to neutron damage.

• Where do we start?
 We must assess materials in the proper physical chemistry range (Twall)
 Establishing quasi-equilibrium between PFC materials and plasma will be a

key scientific advancement.
 A new generation of innovative in-situ PSI diagnostics are essential.

• The fusion community must realize this is not “just” a technology issue,
but rather a grand “fusion science” challenge since it deals with nearly
every aspect of plasma and material science.


