Boundary Plasma Interfaces

Working Group Summary, Section 6:
Interim Report of the Panel
on Program Priorities
for the
Fusion Energy Sciences Advisory Committee

Boundary Plasma Interfaces Working Group:
Chair: S.L. Allen (LLNL)
Vice-Chair: M. Ulrickson (SNL)

July, 2004
Plasma Boundary Interfaces has one key topic: T9

T9: How do we interface a
100 million degree burning plasma
to its room temperature surroundings?

(A "Layered" Approach)

Divertor

Plasma-Wall Interactions in divertor and on main wall

Plasma facing materials and components
The BPI working group depended strongly on community input

- M. Ulrickson presented a poster at the International Plasma Surface Interactions meeting in May (Portland, Maine)
 - Stimulated many informal discussions
 - (Held every 2 years, a good opportunity)
- A web-based discussion forum was used to gather input from the community:
 http://lists.psfc.mit.edu/mailman/listinfo/plasma_boundary
 - Very active after the PSI meeting
 - Thrusts picked and discussion leaders "volunteered"
- Several calls for input from Priority Panel members:
 - D. Hill, LLNL; A. Hubbard, MIT; M. Ulrickson, SNL
Research approach: Four thrusts corresponding to plasma regions

T9: How do we interface a 100 million degree burning plasma to its room temperature surroundings?

- T9-A. Physics of the formation, structure and stability of the edge transport barrier
- T9-B. Plasma and impurity transport in the scrape-off layer (open field lines)
- T9-C. Tritium retention and plasma material interactions
- T9-D. Plasma facing materials and components
T9-A: Physics of the formation, structure, and stability of the edge transport barrier (*robust core coexist with SOL*)

- The boundary condition for the core plasma requires high temperature, could mean large ELMs
- The edge transport barrier has strong gradients in temperature and density
- Physics of this region uncertain, represents largest uncertainty in predicting performance of burning plasmas (progress in sheared flow suppression of turbulent transport
- Periodic bursts of heat and particles due to pressure-driven MHD: Edge Localized Modes (ELMs)
- Requires development of integrated models and 2-D measurements
 - High spatial resolution because of strong gradients
 - High temporal resolution required for ELMs
T9-B: Plasma and impurity transport in the scrape-off-layer

- Open field line region outside the plasma core, connected to the material walls
- In a tokamak, open field lines end on a specially-armored area called the "divertor"
- Major accomplishment of experiments and modeling is "detached divertor"
 - Plasma energy is radiated in a low temperature recombining divertor plasma
- Periodic bursts of heat & particles due to Edge Localized Modes (ELMs) are transported to divertor, "Bursty" transport or "Blobs" discovered, models started
- Impurity transport in SOL (and shielding) important - part of "radiative divertor"
- Comparison of new measurements with computational models allows understanding the self-consistent relationship between turbulence and transport
- New diagnostics needed to measure ion temperature, plasma flows, and neutral densities - flow patterns need to be compared with codes
T9-C: Tritium retention and plasma material interactions

- Plasma materials interactions include:
 - Collisions of ions with the wall (sputtering) causing erosion
 - Chemical processes (chemical sputtering) causing erosion
 - Deposition of impurities and particles in the wall
 - Erosion takes place at divertor and main chamber wall, impurities enters SOL and can influence core plasma performance

- Tritium can be retained in the walls, particularly with carbon
 - Important for in-vessel inventory, a safety and operations issue

- Understand & control large plasma heat and particle loads -- divertor and main walls
 - Steady-state loads
 - Pulsed loads from ELMs - difficult to predict in burning plasma experiment

- New diagnostics needed for flows, heat, and particle flux profiles, and impurity generation - also need experiments and modeling of tritium (carbon) transport

- Improved theory and modeling to integrate PMI and SOL modeling
T9-C: Plasma facing materials and components

- Low-Z solid wall materials (C, Be)
 - Low radiation if leak into core
 - Large database developed on tokamaks and other devices - high particle and heat loads have been handled
 - Database developed of fundamental properties
 - Reliable engineering solutions have been found for steady-state high heat flux (absence of neutrons)
 - Tritium retention (in re-deposited material) problem must be addressed

- Medium and High-Z solid wall materials (Molybdenum, Tungsten)
 - Used successfully on several machines
 - Database developed of fundamental properties
 - Some concern on off-normal events (ELMs and disruptions)
 - Reliable engineering solutions have been found for steady-state high heat flux (absence of neutrons)

- Liquid walls
 - Developing database, earlier stage of development

- Both laboratory studies and machine studies required.
Plasma Boundary Interfaces are important for overarching themes

• O2: Burning plasma research
 Plasma experiments, modeling and theory have shown:
 — Plasma near edge sets boundary conditions which strongly influence transport in the hot core
 — Greatest uncertainty in predicting performance of a burning plasma experiment
 — Edge Localized Modes (ELMs) important part of power and particle control

• O3: Making fusion power practical
 — Plasma boundary important in overall performance: greatest uncertainty in predictions (now)
 — Combination of SOL plasma and materials must handle heat and particle loads, including pulsed and off-normal events
 — Material choices can have safety, operations, and performance consequences

• O1: Scientific Understanding
 — Complex interaction of turbulence, MHD limits, plasma-surface effects
 — Detailed data required to develop adequate physics models of this region