Burning Plasma
Bringing a Star to Earth

Final Report of the
Burning Plasma Assessment Committee

John F. Ahearne
Sigma Xi, Duke University

Raymond Fonck
University of Wisconsin
The take-home message

- A burning plasma experiment is critically needed to advance fusion science
 - Join ITER
 - If ITER doesn’t go forward, reassess to move ahead

- An effective burning plasma experiment cannot be done on a flat budget
 - Augmentation of the U.S. program is required

- Priorities must be set for a balanced program
 - Community should focus on realistic opportunities, and identify and prioritize the critical questions
Scope of the committee’s work

• Assess plans for a burning plasma experiment (BPX) program
 – Assess value of and need for BPX
 – Assess scientific and technical readiness
 – Identify plan for optimized results

• Issues outside of scope
 – Inertial confinement fusion
 – How to (best) develop fusion power
 – Fusion-reactor-specific technology
Committee membership

<table>
<thead>
<tr>
<th>"Outside" Experts</th>
<th>"Fusion/BPX" Experts</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Ahearn, Duke/Sigma Xi, co-chair</td>
<td>Raymond Fonck, U Wisconsin, co-chair</td>
</tr>
<tr>
<td>John Bahcall, IAS</td>
<td>Stephen Cowley, Imperial College</td>
</tr>
<tr>
<td>Gordon Baym, U Illinois</td>
<td>William Nevins, LLNL</td>
</tr>
<tr>
<td>Ira Bernstein, Yale</td>
<td>Ron Parker, MIT</td>
</tr>
<tr>
<td>Edward Frieman, SIO</td>
<td>Tony Taylor, GA</td>
</tr>
<tr>
<td>Joseph Hezir, EOP Group, Inc.</td>
<td>Michael Ulrickson, Sandia</td>
</tr>
<tr>
<td>Ellen Zweibel, U Wisconsin</td>
<td>Michael Zarnstorff, Princeton</td>
</tr>
<tr>
<td>Burton Richter, Stanford</td>
<td></td>
</tr>
<tr>
<td>Walter Gekelman, UCLA</td>
<td></td>
</tr>
<tr>
<td>Claudio Pellegrini, UCLA</td>
<td></td>
</tr>
<tr>
<td>Cliff Surko, UCSD</td>
<td></td>
</tr>
</tbody>
</table>
Need for a BPX

• Burning plasma experiment is a necessary scientific milestone on the road to the development of fusion power

• BPX is a critical missing element of the current program
Scientific value of a BPX

• Development of fusion energy science
 – Plasma turbulence, transport at large scales
 – Alpha-particle effects on confinement and stability
 – Stability limits in presence of self-heating
 – Behavior and control of self-sustained (burning) plasma

• Basic plasma physics & general scientific interest
 – Laboratory astrophysics, extreme conditions
 – Self-organizing complex systems
Technological value of a BPX

- Will enable
 - Initial study of materials behavior and integrity
 - Tritium processing and inventory control
 - High-heat-flux components
 - Partial study of (breeding) blanket design/testing
 - Remote handling
Readiness for a BPX

- U.S. fusion science program is scientifically and technically ready to undertake a BPX
 - Have confidence in understanding projections and operational boundaries
 - Necessary components can be manufactured and adequate drive technologies exist
Strategically balanced program

- BPX is a necessary but not sufficient step toward fusion energy

- Developing science base for fusion requires both a BPX and concept development and optimization
 - Address the range of primary issues of fusion science

- In context of ITER participation, balance is essential
 - To optimize the scientific output
 - To best understand and exploit the outcomes for the fusion program as a whole
Elements of a balanced program

- Robust program of theory and simulation, coupled with experimental verification

- Direct support of ITER activities
 - Optimize and accelerate ITER benefits

- Concept Optimization Research
 - Portfolio of investigations across related magnetic configurations

- Recruitment, training, and retention of scientific and technical staff
Recommendations: ITER (1)

- The United States should participate in a burning plasma experiment

- The best option is ITER

- If ITER develops, fulfilling the U.S. commitment should be the top priority in a balanced program
Recommendations: ITER (2)

- Level of involvement in ITER should guarantee:
 - Access to all data from ITER
 - Right to propose and carry out experiments
 - Role in producing the high technology components

- If ITER negotiations fail
 - United States should reassess options, but continue to pursue goal of a BPX with international partners
Recommendations: Program Balance

- A strategically balanced fusion program should be developed, including:
 - Participation in ITER
 - Strong domestic fusion science and technology portfolio
 - Integrated theory and simulation program
 - Support for plasma science
Recommendations: Setting Priorities

- Scope, content, and level of U.S. activity in fusion should be defined through prioritized balancing procedure

- OFES and the community will have to make serious priority judgments
 - BPX/ITER and other program elements all have merit, *but* must account for realistic budgetary situations

- Led by OFES, fusion science community should
 - Identify and prioritize critical scientific questions
 - Accept and manage limitations on levels of activity
Budget implications

- Funding trajectory should be developed that
 - Captures the long-term benefits of joining ITER
 - Retains a strong scientific focus on the long-range goal of the program
- Flat budget for OFES with a BPX will degrade the scientific research support in the fusion program
- At the minimum, augmentation of the U.S. program covering all the U.S. ITER construction and operating costs would be required
Conclusion

• A burning plasma experiment is critically needed to advance fusion science
 – Join ITER
 – If ITER doesn’t go forward, reassess to move ahead

• A burning plasma experiment cannot be done on a flat budget
 – Augmentation of the U.S. program is required

• Priorities must be set for a balanced program
 – Community should focus on realistic opportunities, and identify and prioritize the critical questions