## The RFP: Its Confinement Status and Future

S.C. Prager University of Wisconsin February, 2002

## <u>Outline</u>

- Status of RFP confinement
- MST opportunities
  - For general science requiring a PoP facility
  - As a PoP fusion facility

## Key confinement result

# RFP confinement is comparable to tokamak confinement

(although RFP confinement improvement is transient)

## The RFP Confinement Problem



# The Solution

- Control the j(r) profile to reduce magnetic fluctuations
- First implementation: program Ohmic electric field (transient, crude)

## Core magnetic fluctuations reduced

Measured by Faraday rotation (UCLA)



## Core density fluctuations reduced



FIR interferometry

#### relate to tokamak database





#### relate to current spherical tokamaks,





#### MST electron thermal diffusivity similar to ST



not best case (by 2x)

From Wilson, ICC conference, likely not best case

## Electrons confined to 100 keV



Fokker-Planck modeling (CQL3D) implies

- Runaway electron density ~ 2%
- Electron travel distance  $\sim 100 \text{ km}$
- Diffusion coefficient ~  $5 \text{ m}^2/\text{s}$
- Magnetic surfaces are likely well-formed

## MST beta values are increasing

$$\beta = \frac{\langle p \rangle_{V}}{|\text{imit}\langle B|^{2} / 2\mu_{o} \rangle_{S}} \sim 15\% \text{ in MST} \quad \text{(probably transport)}$$

The "engineering beta"

$$\frac{\langle p \rangle_V}{\langle B^2/2\mu_o \rangle_{coil}}$$
 is higher than 15%

#### MST Confinement Summary (at I = 200 kA)

| standard                            |         |   | <u>PPCD</u>      |  |  |  |
|-------------------------------------|---------|---|------------------|--|--|--|
| T <sub>e</sub>                      | 200 eV  | > | 600 eV           |  |  |  |
|                                     |         | ( | 1.3 keV @ 500kA) |  |  |  |
| Beta                                | 9%      | > | 15%              |  |  |  |
|                                     |         |   |                  |  |  |  |
| Ohmic power                         | 2 MW    | > | 1 MW             |  |  |  |
|                                     |         |   |                  |  |  |  |
| $	au_{E}$                           | 1 ms    | > | 10 ms            |  |  |  |
| χ <sub>e</sub>                      | 50 m²/s | > | 5 m²/s           |  |  |  |
|                                     |         |   |                  |  |  |  |
| magnetic field no longer stochastic |         |   |                  |  |  |  |

## But,

- The ultimate limit to transport in the RFP is not yet understood
- Confinement improvement is not sustained

(although the projected PoP parameters are already nearly obtained transiently)

- MST is presently *intermediate* between a CE and PoP experiment
- We must sustain and thereby validate the improved confinement
- We must discover the ultimate RFP confinement
- This requires the PoP program approved by FESAC

For refined, sustained plasma control:

- RF (LH, EBW)
- Oscillating field current drive
- Neutral beam injection
- Pellet injection (ORNL)

for current drive and heating; all are being initiated in stages

## MST as a PoP program in plasma physics

#### Proposal to NSF for

<u>A Center for Magnetic Self-Organization in</u> <u>Laboratory and Astrophysical Plasmas</u>

- To study high temperature plasma physics issues common to lab and cosmos
- Links lab and astrophysical scientists
- Links experiment, theory, computation
- Links four experiments (MST, MRX, SSPX, SSX)
- 24 participants from 7 institutions

## topics

- Dynamo
- Reconnection
- Magnetic helicity conservation and transport
- Angular momentum transport
- Ion heating
- Magnetic chaos and transport

|               | LABORATORY                                         | ASTROPHYSICS                                       |
|---------------|----------------------------------------------------|----------------------------------------------------|
| DYNAMO        | RFP field sustainment,                             | Solar magnetic field cycles, Earth magnetic field, |
|               | Spheromak field sustainment,                       | Stellar magnetic field cycles,                     |
|               | RFP sawtooth crash/relaxation                      | Accretion disk flux conversion                     |
| RECONNECTION  | Merging plasmas,                                   | Earth magnetosphere, Solar flares,                 |
|               | Spontaneous reconnection in RFP and spheromak,     | Star formation, Protostellar disks,                |
|               | Sawtooth oscillation,                              | Particle acceleration to ultra-relativistic energy |
|               | Forced reconnection during helicity injection      |                                                    |
| HELICITY      | Relaxation/dynamo in RFP,                          | Disruptions in coronal loops,                      |
| CONSERVATION  | Relaxation/dynamo in spheromak,                    | Solar flares,                                      |
| AND TRANSPORT | Merging reconnection,                              | Helicity in solar wind,                            |
|               | Helicity injection experiments                     | Fast dynamo                                        |
| ANGULAR       | Momentum redistribution in the RFP,                | Accretion disks of white dwarfs,                   |
| MOMENTUM      | Momentum generation in tokamaks                    | Accretion disks of black holes,                    |
| TRANSPORT     |                                                    | Accretion disks of AGN,                            |
|               |                                                    | Differential rotation in the Sun,                  |
|               |                                                    | Disks of non-accreting stars                       |
| ION HEATING   | RFP in steady-state, RFP during relaxation events, | Solar corona and wind,                             |
|               | Merging reconnection expts,                        | Earth magnetosphere,                               |
|               | Spherical tokamak with neutral beam injection      | Accretion flow onto black holes                    |
| MAGNETIC      | Transport in RFP,                                  | Alfven waves in solar corona,                      |
| CHAOS AND     | Transport in spheromak,                            | Heating in solar corona,                           |
| TRANSPORT     | Transport during forced reconnection,              | Cosmic ray transport in galactic magnetic field    |
|               | Kinetic dynamo in RFP, spheromak                   |                                                    |

# Participants

| Institution             | Participant   | Department                       | Expertise             |  |  |  |
|-------------------------|---------------|----------------------------------|-----------------------|--|--|--|
| University of Chicago   | F. Cattaneo   | Mathematics                      | Astro, comp           |  |  |  |
|                         | T. Linde      | Astronomy & Astrophysics         | Astro, comp           |  |  |  |
|                         | L. Malyshkin  | Astronomy & Astrophysics         | Astro, theory         |  |  |  |
|                         | R. Rosner     | Astronomy & Astrophysics         | Astro, theory, comp   |  |  |  |
| Princeton University    | J. Goodman    | Astrophysical Sciences           | Astro, theory         |  |  |  |
|                         | H. Ji         | Plasma Physics Lab               | Lab, expt             |  |  |  |
|                         | R. Kulsrud    | Astrophysical Sciences           | Lab & astro, theory   |  |  |  |
|                         | M. Yamada     | Plasma Physics Lab               | Lab, expt             |  |  |  |
| University of Wisconsin | J. Cassinelli | Astronomy                        | Astro, theory, observ |  |  |  |
| (The lead institution)  | D.Craig       | Physics                          | Lab, expt             |  |  |  |
|                         | D. Den Hartog | Physics                          | Lab, expt             |  |  |  |
|                         | G. Fiksel     | Physics                          | Lab, expt             |  |  |  |
|                         | C. Hegna      | Engineering Physics              | Lab, theory           |  |  |  |
|                         | A. Lazarian   | Astronomy                        | Astro, theory         |  |  |  |
|                         | S. Prager     | Physics                          | Lab, expt             |  |  |  |
|                         | J. Sarff      | Physics                          | Lab, expt             |  |  |  |
|                         | C. Sovinec    | Engineering Physics              | Lab, comp             |  |  |  |
|                         | C. Sprott     | Physics                          | Education, outreach   |  |  |  |
|                         | P. Terry      | Physics                          | Physics               |  |  |  |
| Individual Participants |               |                                  |                       |  |  |  |
| Swarthmore College      | M. Brown      | Physics                          | Lab, expt             |  |  |  |
| Lawrence Livermore      | D. Hill       |                                  | Lab, expt             |  |  |  |
| Science Applic Int Corp | Z.Mikic       |                                  | Astro, comp           |  |  |  |
| Science Applic Int Corp | D. Schnack    |                                  | Astro and lab, comp   |  |  |  |
| U. Colorado             | E. Zweibel    | JILA/ astrophys.& Planetary Sci. | Astro, theory         |  |  |  |

## Management Structure



#### status

- Selected (from pre-proposal) to submit full proposal (12 out of 44 pre-proposals)
- Chance of NSF funding: about 25%?
- Validates idea that fusion research contributes to general science
- A PoP facility is needed for general plasma science (comphensive diagnostics and physics)
- An opportunity to exploit

The RFP PoP program is easy to convey to policy makers

- An appealing scientific idea: control magnetic chaos
- Relevance to fusion: low field, high pressure
- Strong connection to broader science/astrophysics
- World leadership
- Extreme cost effectiveness (\$8M/yr)
- University participation at the PoP level
- Approved by rigorous review process

#### **MST Collaborators**

- RPI Heavy ion beam probe
- UCLA FIR interferometry/polarimetry
- Novosibirsk neutral beam diagnostics and heating
- ORNL/GA lower hybrid/ EBW injection (help in planning expts)
- ORNL pellet injection
- University of Saskatchewan SXR, NBI expts
- Aries group- system studies
- **RFX**, **Italy** Laser impurity injection, SXR, data analys
- TPE-RX, Japan -PPCD expts
- Pegasus, HSX Thom scat, HXR detection, dnb

## The MST Funding Problem



## Summary

We are scientifically well-positioned to implement the 1999 FESAC recommendation to move forward with an RFP proof-of-principle program.

## **MST Physics Group**

Wisconsin: A. Almagri, J. Anderson, B. Chapman, P. Chattopadhyay, D. Craig, D. den Hartog, G. Fiksel, C. Forest, J. Goetz, K. McCollam, R. O'Connell, S. Prager, J.Reardon, J. Sarff, (students: T. Biewer, A. Blair, S. Castillo, M. Cengher, S. Choi, D. Ennis, M. Wyman)

UCLA: D. Brower, W. Ding, S. Terry

**RPI:** K. Connor, D. Demers, P. Schock

Novosibirsk:V. Davidenko, A. Ivanov