

U.S. Fusion Energy Sciences Program

Presented to

Fusion Energy Sciences Advisory Committee

Gaithersburg, Maryland

By

Dr. Anne Davies

Associate Director for Fusion Energy Sciences Office of Science Department of Energy

February 27, 2002

www.fusion.doe.gov

Excellent Science in Support of Attractive Energy

Secretary Abraham—DOE Priorities

From Priorities and Missions-Oct 24, 2001

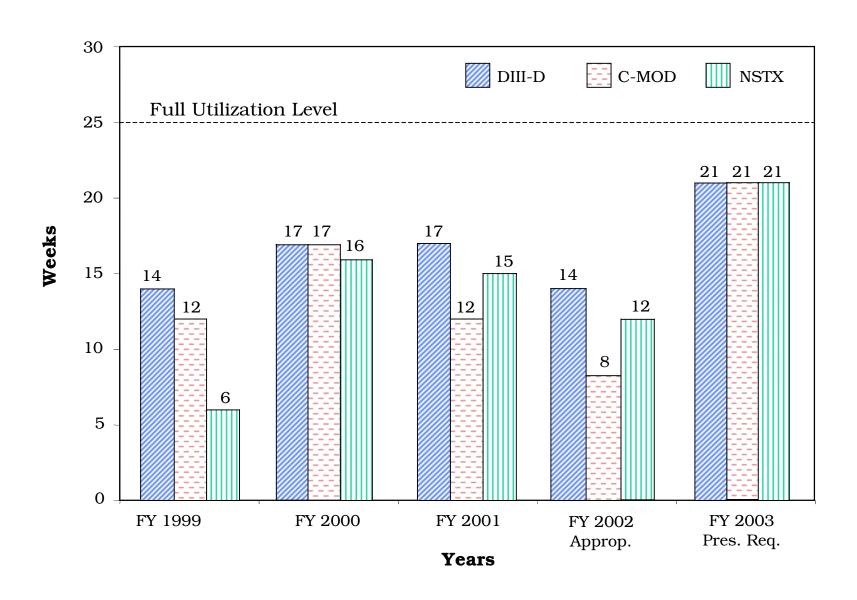
- o Two priorities deserve special mention.
- The first involves the unique technological contribution we can make to our energy and national security by finding new sources of energy. Whether it is fusion or a hydrogen economy, or ideas that we have not yet explored, I believe we need to leapfrog the status quo and prepare for a future that, under any scenario, requires a revolution in how we find, produce and deliver energy.
- o Success in this mission could well be one of the greatest contributions to our energy and national security for generations to come.
- o I intend, therefore, that this department take a leadership role in exploring how we can identify and use potentially abundant new sources of energy with dramatic environmental benefits.

Secretary Abraham on Science

From FY03 Budget Rollout

- o "We will focus science on meeting the threat of weapons of mass destruction...We also want to use the talents nurtured by our science program to leapfrog today's energy security problems by finding new sources of energy. And lastly, as the irreplaceable foundation for tomorrow's security demands we need a strong physical science program—a program that is the seed for energy sources as yet undiscovered and for the technologies of national defense that will keep us secure."
- o "Our science program will benefit from the kinds of policy and management reviews that have been successfully completed in other programs. This review, which will take place once our Director has been confirmed, will no doubt present new opportunities for this critical program, and reveal ways for our efforts in science to yield even greater benefits in the future."

FY 2003 Fusion Energy Sciences Congressional Budget


	FY 2001	FY 2002	FY 2003
Science	131.4	137.7	142.5
Facility Operations	77.0	74.1	78.7
Enabling R&D	<u>33.6</u>	<u>35.7</u>	<u>36.1</u>
OFES Total	<i>242.0</i> *	247.5	257.3
DIII-D	51.9	50.9	55.6
C-Mod	18.0	17.6	22.3
NSTX	27.5	26.8	33.1
NCSX	4.3	4.0	11.8

^{*}Without SBIR

FY 2003 FES Congressional Budget Highlights

- o Budget increase of \$9.8 million + TFTR D&D completion in FY 2002
- o Maintain research elements as close as possible to FY 2002 level
- o Increase operations at major facilities
 - Near doubling compared to FY 2002
 - Run each facility 21 weeks, 85% of full single shift operations
- o Initiate National Compact Stellarator Experiment project (\$11.8 million)
- o Pay housekeeping expenses
 - Complete TSTA clean up (\$3.0 million)
 - ORNL Fusion Energy Division move to X-10 (\$1.0 million in FY03) (Total Cost \$11M; OFES share \$4M over 3 years))

Major Fusion Facilities Operating Times

A New Initiative in Innovative Confinement Concepts National Compact Stellarator Experiment (NCSX)

Fusion Science opportunity: flexibility in...

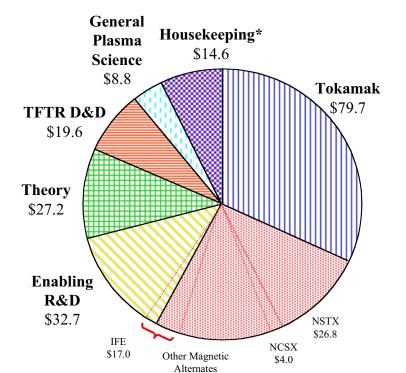
- o 3D plasma shape
- o Rotational transform and flow shear
- o Helical ripple
- ⇒ advances toroidal physics understanding

Fusion Energy vision: steady state with...

- o No need for current drive or feedback control of instabilities
- o Tokamak-like power density
- o No disruptions

Project plan...

- o Conceptual design review: May, 2002
- o Fabrication: FY 2003-2007
- o Preliminary cost estimate: approx. \$69M (as-spent)

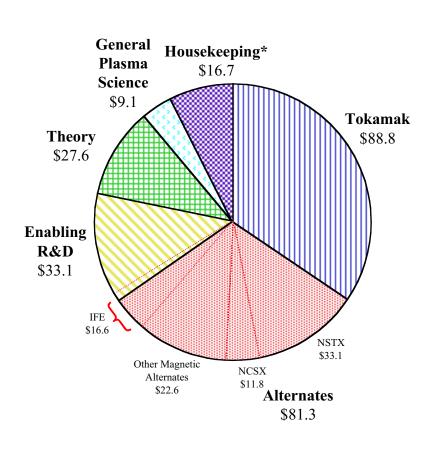


Fusion Energy Sciences Budget

FY 2002

December Financial Plan

\$247.5 M

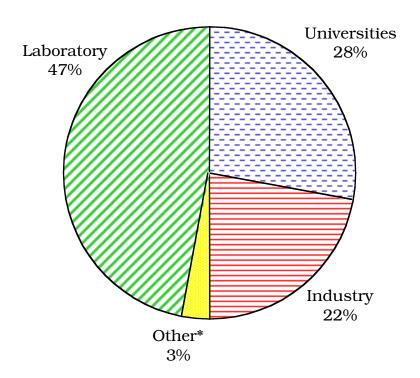


\$20.6

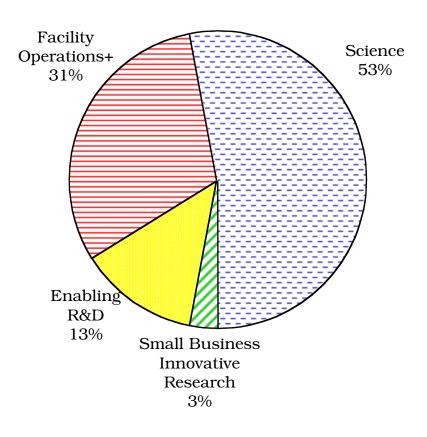
Alternates

\$64.9

FY 2003
Congressional
\$257.3 M

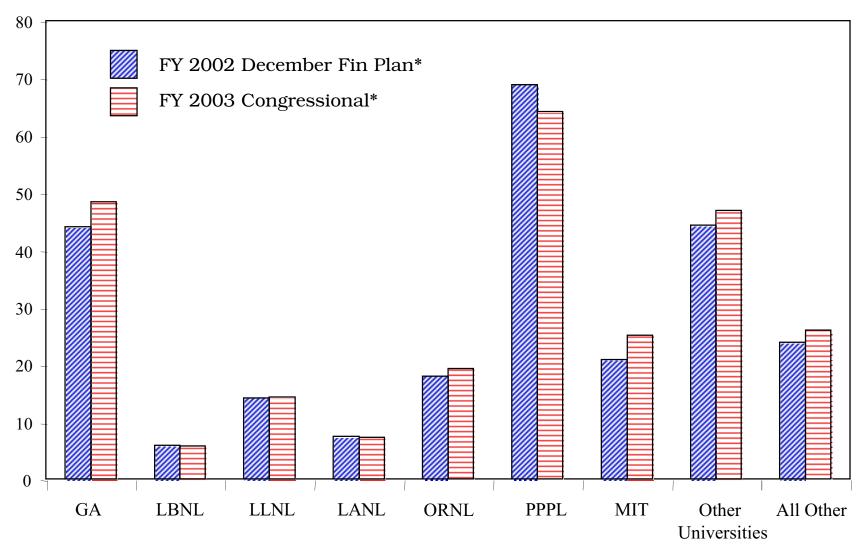


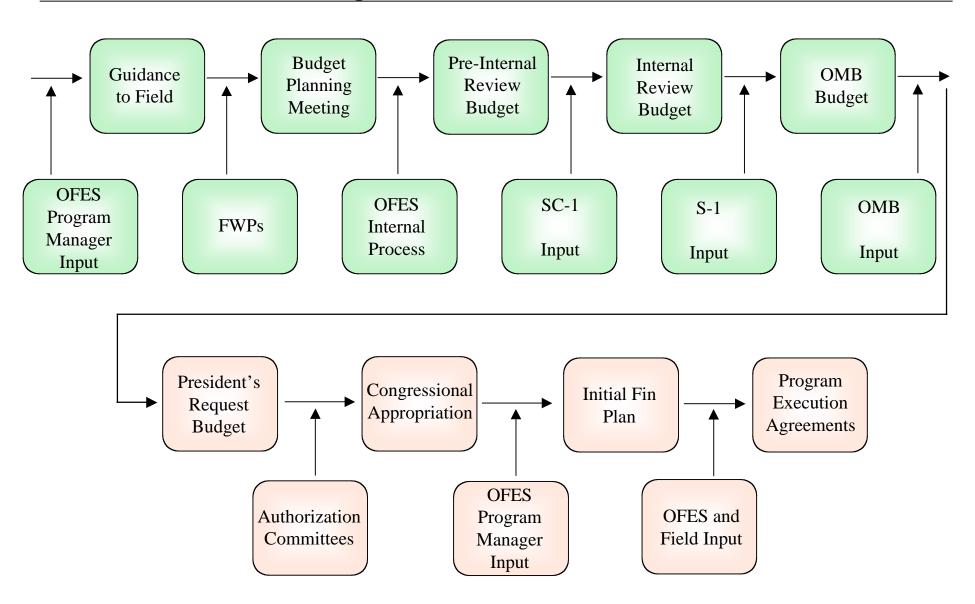
^{*} Housekeeping includes SBIR/STTR, GPE/GPP, TSTA cleanup, D-Site caretaking at PPPL, HBCU, Education Outreach, ORNL Move and Reserves


Fusion Energy Sciences Funding Distribution

FY 2003 President's Request \$257.3M

Institution Types

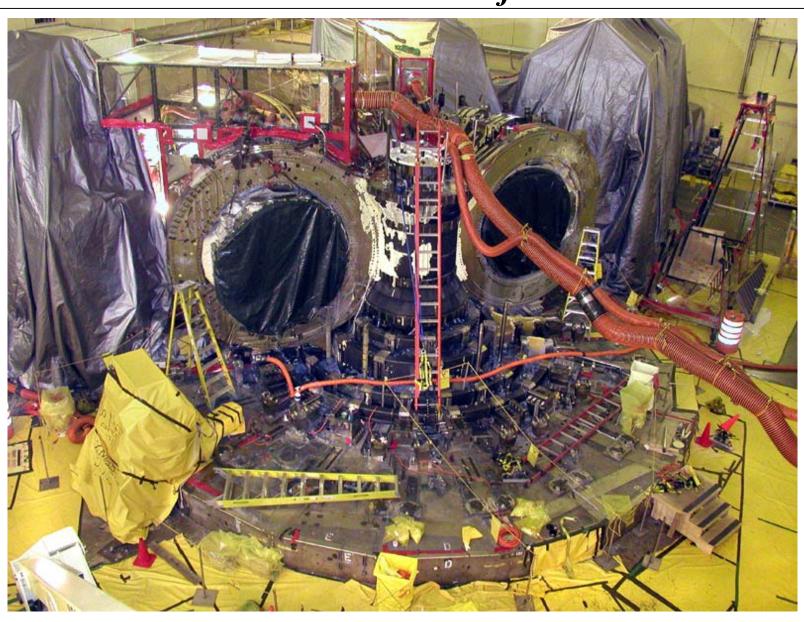

Functions


*NSF/NIST/NAS/AF Undesignated

Fusion Energy Sciences Funding by Institution

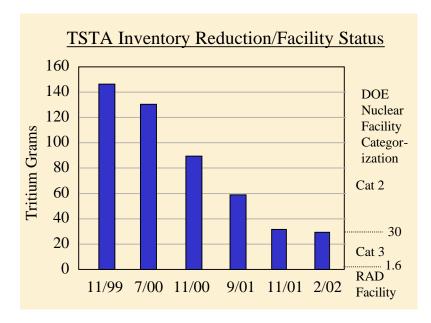
(\$ in Millions)

Budget Formulation Process


Why Program Execution Agreements (PEA)

- o Administration focusing on "grading" performance
- o PEAs close the budget planning cycle
- o We will work with the community to improve the process

Status of TFTR D&D Project


- o On schedule for completion by end of FY 2002
- o Within planned cost
- o Nearing end of most challenging phase--cutting and removal of vacuum vessel segments and shipping to waste depository
 - All cuts completed
 - 6 of 10 segments have been shipped
 - This phase is scheduled for completion by March 31
- o Several major activities remain to be completed

TFTR D&D Project

Status of Tritium Systems Test Assembly (TSTA) Stabilization Project

- o In November 1999, DOE determined that TSTA had completed its mission and LANL should begin the process of preparing TSTA for transfer to the Office of Environmental Management (EM).
- o DOE-JAERI Collaborative Program at TSTA completed in June 2001

- o EM requires that TSTA be stabilized (i.e. all tritium/hazardous materials are removed, only surface contamination remains) and that funding be provided to cover surveillance and maintenance until D&D can be completed
- o SC plans to transfer TSTA to EM in mid-FY03
- o Recent (2/14/02) review indicated that LANL is making excellent progress, but many difficult and hazardous activities still remain

Tritium Systems Test Assembly (TSTA)

Safety is Key Element in Fusion

- o Doing work safely is essential for the FES program
- o PPPL, GA, ORNL have devoted much energy to assuring safety in research and operations
- o Universities are encouraged to seek help in assessing their own lab safety
 - GA worked successfully with UCLA in 2001 on assuring lab safety
 - The assessment help will be provided at no cost to the universities
 - UFA will publicize this in upcoming Newsletter

Results of Diagnostics Competition

- o Thanks to proposers, reviewers, panel members
- o Proposals submitted
 - 32 from universities and industry (1 non-U.S.)
 - 7 from labs
- o Resulted in funding at the historical ratio
 - 11 grants (85%)
 - 4 lab programs (15%)
- o FY 2002 funding is being provided for orderly closeout of programs not being renewed
- o Results will be posted on the web

Results of Diagnostics Competition

- o Process resulted in institutional impacts
 - Lost 4 universities
 - Lost 2 labs (1 did not submit)
 - Gained 1 new lab
- o Distribution of diagnostic efforts
 - 9 programs on large tokamaks
 - 4 programs on innovative confinement concepts
 - 4 programs on tokamaks in Europe

A Possible Outline for a Workshop on Energy Security

Fossil Energy

Petroleum

Reserves

Production

Issues

Basic research needs

Natural Gas

Reserves

Production

Issues

Basic research needs

Coal

Reserves

Production

Issues

Basic research needs

Other (oil shale, tar sands, gas hydrates, etc.)

Reserves

Production

Issues

Basic research needs

Nuclear Energy

Reserves

Production

Issues

Basic research needs

Renewable Energy

Solar electric; solar

photochemical, and solar thermal

Production

Future potential

Issues

Basic research needs

Wind

Production

Future potential

Issues

Basic research needs

Geothermal

Production

Future potential

Issues

Basic research needs

Biomass, biofuel, biofeedstock

Production

Future potential

Issues

Basic research needs

Hydroelectric

Production

Future potential

Issues

Basic research needs

Other (tides, ocean thermal, etc.)

Future potential

Issues

Basic research needs

Hydrogen

Sources

Production

Future potential

Issues

Basic research needs

Fusion Energy

Issues

Basic research needs

Electrical Energy

Production

Energy sources

Generation, transmission,

and storage

Current technologies

Future technologies

Basic research needs

Consumption

Transportation

On board energy sources

Current

Future

Primary fuel efficiency

Current Future

Basic research needs

Residential

Energy sources

Current

Future

Efficiency

Current Future

Basic research needs

Commercial

Energy sources

Current

Future Efficiency

Current

Future

Basic research needs

Industry

Energy sources

Current

Future

Efficiency Current

Future

Basic research needs

Office of Fusion Energy Sciences

N. Anne Davies Associate Director of Science for Fusion Energy Sciences Al Opdenaker Shahida Afzal‡ Suellen Velthuis‡ International Activities Michael Roberts,** Director Debra Frame

Research Division

John Willis, Director Marty Carlin‡

T. J. Moore[‡] John Sauter[‡]

Ron McKnight ◆ Chuck Finfgeld
Curt Bolton Arnold Kritz*

Michael Crisp Darlene Markevich

Rostom Dagazian Erol Oktay

William Dove (retiring 3/01/02) Don Priester Steve Eckstrand 2 vacancies Facilities & Enabling Technologies Division

Michael Roberts,** Director

Sandy Newton,**‡

Warren Marton ◆ Gene Nardella

Esther Ku T.V. George

Sam Berk 1 vacancy

Ray Schwartz, On Call from SC-80

Three New Charges for FESAC

- o Build on Snowmass results to recommend a strategy for proceeding with a burning plasma experiment
- o Recommend roadmap for joint initiative between OFES and OASCR on integrated computational simulation and modeling
- o Consider whether to broaden program scope and activities to include non-electric applications of intermediate term fusion devices

Burning Plasma Physics

- o Establish a high-level panel to use Snowmass results to recommend a strategy for pursuing burning plasma physics experiments
 - Show how ITER could fit into U.S. program if we decide to participate
 - Show how FIRE or IGNITOR would fit into U.S. program if we do not join ITER
- o Panel
 - All interested FESAC members
 - Program leaders from major institutions
 - Selected others
- o Report by September 2002
- o NRC will review FESAC Recommendations by end of 2002

Integrated Simulation and Modeling

- o Provide a roadmap for a joint initiative with OASCR
 - A 5-6 year program, costing about \$20 million
 - Use the improved computational models developed by the base theory program
 - Significantly improve simulation and modeling capabilities
- o Panel members
 - FESAC members
 - Experts recommended by ASCAC
- o Obtain fusion community input using workshops
 - Current status
 - Vision for simulation of toroidal confinement systems
 - New theory and math needed
 - Computer science needed
 - Computational infrastructure
 - Validation and use
- o Summary report by July 15, 2002

Final roadmap recommendation by December 1, 2002

Non-Electric Applications

- o Realizing the vision of fusion electricity requires long-range development effort
- o Past studies have explored ways to use fusion to meet other needs not requiring the levels of physics and technology understanding needed for electricity production
 - Hydrogen production
 - High-energy neutrons for many uses, i.e. waste transmutation
- o FESAC consider if program should be broadened to include non-electric applications of intermediate fusion devices
 - What are promising opportunities
 - What steps are needed to include these opportunities in program
 - What are the possible negative impacts and mitigation strategies
- o Report by January 2003

FESAC Membership

- O Current FESAC membership terms are scheduled to expire on August 18, 2002. We are going to request an extension until the end of the year for the sake of continuity in dealing with the burning plasma experiments issue
- o We request that current members contact Al Opdenaker to indicate whether they are interested in continuing to serve
- o We request that anyone wishing to serve or wishing to suggest someone who might serve contact Al Opdenaker

albert.opdenaker@science.doe.gov

301-903-4927

International Progress on ITER

Negotiations under way:

- o First meeting, Toronto, November 8-9
 - Senior level delegations
 - Lay out a work plan
 - Establish working group
- o Second meeting, Tokyo, January 22-23
 - Review first drafts of key documents
 - Accelerate working group activities
- o NEXT MAJOR STEPS:
 - Japan and EU--decide to offer site candidates
 - Cabinet level discussion with decisions expected in the next few months
 - Reach consensus on site, roles, organization, etc
- o Third meeting, Moscow, April 23-24: possible site offers
- o Fourth meeting, Cadarache, June 5-6: possible consensus

In U.S., Secretary Abraham responded to Congress on ITER: "expect to complete initial review in next few months"

Background

"Housekeeping"

	FY 2002	FY 2003
TSTA	3.0	3.0
D-Site	0.0	0.5
HBCU	0.8	0.9
Education Outreach	1.2	1.6
ORNL Move	0.0	1.0
SBIR	6.0	6.0
STTR	0.4	0.4
Kritz	0.2	0.0
GPP/GPE	1.5	1.5
Reserves		
OFE	0.9	0.9
SC-1	_0.6	_0.6
Total Housekeeping	<u>14.6</u>	16.7

"All Other"

	FY 2002	FY 2003
ANL	1.7	1.5
Air Force	0.5	0.5
INEEL	2.3	2.4
NRL	0.2	0.2
ORISE	0.4	0.8
PNNL	1.3	1.6
SNL/A	2.4	2.5
SNL/L	0.6	0.7
WSR	0.1	0.0
Industry	2.8	2.8
NIST	0.4	0.4
NSF	1.1	0.9
NAS	0.1	0.1
Reserves	3.8	5.3
SBIR/STTR	6.4	6.4
Total Other	23.9	<i>26.0</i>

Safety is Key Element in Fusion

- o Most publicly understandable aspect of our work
- o PPPL has devoted much energy to safety this year
 - EH Assessment--resulted in better appreciation of PPPL's best practices and areas for needed improvement
 - Surprising spate of injuries and a near-miss--resulted in serious, lab-wide inward look at what needed to be improved
- o ORNL (Madia) has devoted much energy as well
 - Spate of accidents (outside of Fusion)
 - Madia has prepared a safety video with his sincere concerns
 - Lab-wide stand-downs to address key issues, including complacency
- o PPPL, GA, ORNL, etc. prepared to assist university labs
 - In 2001, UCLA (Abdou) invited GA to assess lab safety
 - GA recommended, and UCLA carried out, full range of safety improvements
 - Universities encouraged to invite labs to help them
 - Voluntary basis, no cost to universities, should be not liability for this advice
 - UFA (Jarboe) will likely include this invitation in upcoming Newsletter

Fusion Energy Sciences Budget by Institution

(\$ in Millions)

Institution	FY 2002 Dec Fin Plan	FY 2003 Congressional
General Atomics	44.1	48.3
Lawrence Berkeley National Lab	5.9	5.8
Lawrence Livermore National Lab	14.3	14.4
Los Alamos National Lab	7.4	7.3
Oak Ridge National Laboratory	17.9	19.3
Princeton Plasma Physics Lab	68.8	64.1
Massachusetts Institute of Technology	20.9	25.2
Other Universities	44.3	46.9
All Other	_23.9	_26.0
Total	247.5	257.3