THE WISCONSIN SUPERCONDUCTING RF ELECTRON GUN

J. Bisognano, R. Bosch, D. Eisert, M. Fisher, M. Green, K. Jacobs, K. Kleman, J. Kulpin, G. Rogers (UW-Madison/SRC); J. Lawler, D. Yavuz (UW-Madison Physics); R.Legg (JLab); T. Miller (UIUC)

PROPOSAL TITLE

Construction and Test of a Novel Superconducting RF Electron Gun

August 22, 2011

DOE Award # DE-SC0005264

Starting Point: Next Generation VUV/Soft X-ray Source

- Probe physical, chemical, and biological systems on their critical temporal, spatial, and energy scales—femtoseconds, nanometers, and millivolts
- Performance goals
 - Full 6D coherence
 - Short pulses
 - High repetition rates into megahertz
 - High peak and average flux
 - Tunability and polarization control
 - Many beamlines operating independently and simultaneously to spread costs
- Superconducting-linac-driven FEL "farm" is an ideal solution
 - CW
 - Naturally a coherent process
 - Seeding ensures temporal as well as transverse coherence

For example:

Wisconsin Free Electron Laser Concept (WiFEL)

CW Electron Gun is a Critical Element Requirements Driven by FEL

Gun repetition frequency	Up to 5 MHz		
I peak at undulator	1000 Amps		
∆E /E at undulator	< few 10 ⁻⁴		
Normalized ε _{Transverse}	<1 mm-mrad		
Bunch length, rms	70 fsec		
Charge/bunch (derived)	200 pC		
I average (derived)	1 mA		

Wisconsin Superconducting RF Electron Gun

- SRF offers advantages for high average current electron gun
 - Higher gradients achievable at cathode (~ 40 MV/m)
 - Without need to optimize for heat load, integrated field in gap can be large, yielding substantial increase in output beam energy (to ~4 MeV)
- Lower frequency for temporal field flatness (quasi-DC)
- High gradient allows operation in so-called "blow out" mode

Ellipsoidal bunch expansion

Blow-Out Mode Smooths Initial Distribution Errors

Key Gun Parameters

- Electric field at cathode up to 45 MV/m
- Peak surface magnetic field 93 mT
- Dynamic power loss into He 39 W at 4K
- Q 2.5E9
- Frequency 199.6 MHz

Key Bunch Parameters

- RMS bunch length at gun exit 0.18 mm
- Cathode spot ~1 mm for 0.85 mm-mrad thermal emittance
- At gun exit, $\delta p/p \sim 2.5\%$, divergence 7 mrad
- Q 200 pC
- Kinetic energy 4.0 MeV
- With smaller spot, can be operated in lower charge modes with lowered emittance

Sequence of Events

- Start in August 2010
- ~FY 2011: final design, procurements, and vault prep
- ~FY 2012: fabrication, installation, and commissioning
- ~FY 2013: beam tests to establish necessary performance
- Key procurements are in place: superconducting cavity, low level RF, RF amplifier, High-Tc solenoid, laser
- Total DOE program \$4.5 million
- UW providing supplemental funds; for example, vault refurbishment
- Expect delivery and installation on schedule

Key Systems

- Cavity and helium vessel-Niowave contract
 - Spring 2012 delivery
 - JLab will be doing heat treatment to avoid Q-disease
- High temperature superconducting solenoid from Danfysik
- RF Systems
 - Power amplifier delivered
 - LLRF from JLab, with delivery at end of year
- Drive laser "off shelf," with delivery at end of year
- Cryostat and beamline diagnostics in final design phase
- Vault area adjacent to Aladdin storage ring under refurbishment
- Cryogenics—using campus expertise to finalize delivery system

Final Design Review of Cavity/He Vessel at Niowave Completed and Fabrication Under Way

Fabrication Moving Forward

Figure 5: Outer Shell Halves

Figure 6: Cathode Tube (machining weld seat)

Figure 1: Copper Prototype for Cake Pan

Figure 2: NbTi Cathode Flange

Frequency Map

- Map which starts with a cold cavity at the correct frequency and moves back through the series of production steps producing an expected resonant frequency at each step
- Goal is to understand any deviations from the calculated frequency map and apply that knowledge to next generation

FEA to Evaluate Stress and Deformation

	Freq,	D Freq,	Volume,	D volume,
State	MHz	MHz	in^3	in^3
Nominal, 4 K	199.58953	-	6269.213	
Remove 1600 lb				
preload on tuner	199.65256	0.06303	6267.753	-1.46
Warmed to 273 K	199.3704	-0.28216	6294.653	26.9
Skin depth vs temp at				
200 MHz	199.3185945	-0.05180	6295.853	1.2
Remove vacuum load	199.2485945	-0.07	6300.243	4.39
Change in permitivity,				
fvac/fair	199.1947645	-0.05383	6300.243	0
Undo BCP etch	199.3688075	0.174042	6282.793	-17.45
Final weld shrinkage,				
0.7 mm	199.280	-0.088	6294.87	12.08

TABLE 1. Steps from cavity blank to final frequency

RF Coupler and HPA and LLRF

- Power is introduced through a ceramic rf window and a tuned resonant structure.
- Relatively low power, <10kW, at 1 mA of beam

20 kW solid state amplifier procured

Harris Corporation Broadcast Communications Division

Vault Layout

Spectra-physics Tsunami (oscillator) + Spitfire (amplifier) system

• Pulse duration: 100 femtoseconds

• Repetition rate: 1 kHz – 1 Hz

• Pulse energy

• Up to 4 mJ per pulse at the fundamental (800 nm)

- •~ 1 mJ per pulse at the second harmonic (400 nm)
- ~ 300 microjoule per pulse at the third harmonic (266 nm)
- Average power: 4 W

Current Scope

- Demonstrate single bunch beam dynamics and operation of SRF gun
- Low repetition rate drive laser
 - Allows option of using doubled or tripled Ti:Sapphire laser
- Cu Cathode Used for Initial Operation
 - Little chance of cavity contamination from evaporated cathode material
 - Cathode will not degrade over time like semiconductor
 - No cathode preparation chamber needed

Coming Attractions

- Cathode Preparation Chamber
- High repetition rate drive laser for milliamp current
- Photocathode physics program for more exotic cathodes

Bi thin film in the rombohedral phase. The surface state ~ 0.4 eV below the Fermi edge (blue spot) only has $\pm 2^{\circ}$ emission angle. This involves accessing a specific surface state without thermalization.

G. Bian, T. Miller, and T.-C. Chiang, Phys. Rev. B 80, 245407 (2009)

Overall WiFEL R&D Plan

- Development of a high repetition rate, VHF superconducting RF electron gun, including a high repetition rate (several megahertz) photocathode drive laser
- R&D on photocathode materials, including novel approaches, by Angle Resolved Photo Emission Spectroscopy (ARPES) studies on the Aladdin storage ring at SRC
- Studies of the laser high harmonic generation (HHG) process to establish the necessary noise performance as a seed laser source
- Evaluation of FEL facility architectures with the specific goal of cost containment
- Ultimately, addition of post acceleration (~50 MeV) as test bed for beam and FEL physics

Summary

- Wisconsin SRF electron gun development moving forward as planned
- Offers attractive capabilities as CW electron source for FELs and other applications
- In a year, we hope to have made our first low emittance electron bunch

