Coherent Light Source R&D at MIT

W.S. Graves, F.X. Kärtner, D.E. Moncton (MIT) Ph. Piot (NIU)

August, 2011

Annapolis, MD

Massachusetts Institute of Technology

Light Source Performance

High Repetition Rate ICS with SRF Linac

ERL driving 4 X-ray Beamlines

Concept for Multi Beamlines, Multi Independent Energies

Use 3 photocathode drive lasers with different arrival times to generate pulses into multiple beamlines each with independently tunable energy.

FEL Facility Design

2004 MIT-Bates FEL Proposal

A next generation light source will adopt many of the concepts pioneered in these designs

- Many tunable beamlines
- Fully coherent seeded operation
- CW Superconducting RF
- High rep rate
- Lasers tightly integrated

2007 WiFEL Proposal

High Power Laser Technology

Coherent cavity stores ~1000X laser amplifier power. Uses Bessel-Gauss ring-shaped modes to avoid mirror damage and oscillator instability.

Cavity Results With Two Patterned Mirrors

Misaligned Cavity (sweep) Aligned Cavity (sweep) Aligned Cavity (locked) Finesse ~300 Finesse ~ 60 Transverse profile also changes Dramatic finesse drop on from sweep to lock—Implication: alignment (expected finesse sweep sums multiple transverse

Analog to Microwave Cavity

shapes.

~300)

Cryo-cooled Laser Amplifier

200 W cryo-cooled Yb:YAG

developed at MIT-Lincoln Lab by T.Y. Fan group

Pursuing R&D on mode-locking and Yb:YLF for sub-ps pulses

Next Generation SRF Cavities at 4K

1/4-wave resonator gun with UW, Naval Postgraduate School, Niowave Inc, Jlab

Spoke cavity development with Jlab

ICS Performance Optimization

Winthrop Brown (MIT Lincoln Lab)

Coherent X-rays via ICS

New Idea to produce coherent x-rays. No FEL required.

Arrange electrons to have periodic modulation, as if they had been bunched by FEL interaction.

Combine two key technologies: nanocathode array and emittance exchange

<u>Steps</u>

- 1. Emit array of beamlets from Field Emission Array nanocathode.
- 2. Accelerate and focus beamlet array.
- 3. Perform emittance exchange (EEX) to swap beamlet spacing into longitudinal dimension. Arrange dynamics to give desired period.
- 4. Coherently bunched beam emits ICS x-rays in phase.

Coherent ICS Example at 13 nm

Double Gated Field Emitter Array

for collimating / focusing e-beam

T. Akinwande & L. Velasquez-Garcia, MIT Microsystems Technology Lab

K. Berggren, MIT Nanostructures Lab

Field Emitter Array with 200 nm Pitch

Poisson Model of Tip Electric Field

Initial Electron Distribution on Nanotip

sigx = 0.60 nm from F.-N. and surface field sigpx = 163.17 eV/c

Design x-emittance = 1.93e-13 m-rad At cathode x-emittance = 1.91e-13 m-rad

Build input distribution for PARMELA

Beam Dynamics of 3X1 Tip Array

PARMELA tracking results. No space charge

Transverse & Longitudinal Matching to EEX

Bunched Beam after Emittance Exchange

Light Source Performance

Summary

Wide variety of light source activities at MIT

- Optical femtosecond synchronization
- High power *ultrafast lasers* for seeding, ICS, as HHG sources
- FEL *facility concepts* including high rep rate, many beamlines, CW stability, FEL dynamics studies
- ICS optimization, *prototyping*, and facility concepts
- 4K SRF gun and linac development with Jlab and others
- *Nanocathode* development for high brightness electron beams
- New concepts for *coherent x-ray emission*

