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Accelerator Modeling with EM Code Suite ACE3P Design & Optimization of Accelerating Cavity
Electromagnetic Code Suite ACE3P LCLS RF Gun Detlecting Cavity for APS Upgrade
= Supported by DOE’s HPC initiatives Grand Challenge, SciDAC-1 (2001-2007), and SciDAC-2 (2007-2012), Omega3P provided dimensions for = Short Pulse X-ray (SPX) generation with new

SLAC has developed ACE3P, a comprehensive set of parallel electromagnetic codes based on the LCLS RF gun cavity to meet design superconducting deflecting cavity R&D
conformal, high-order finite-element method requirements: = In collaboration with Argonne and Jlab, SLAC is
« Reduce pulse heating by rounding modeling the design with the ACE3P code suite
ACE3P (Advanced Computational Electromagnetics 3D Parallel) of the z-coupling iris and will evaluate the wakefield effects in the
Frequency Domain: Omega3P - Eigensolver (damping) * Minimize dipole and quadrupole coupled SPX 2-cavity system.
- S3p _ S-parameter fields via a racetrack dual-feed = The cavity will be built and tested at Jlab and
Time Domain: T Wakefields and Transients coupler design delivered to Argonne for final installation.
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Challenges for Accelerator Modeling o . ] ——
= Future light sources will employ high currents and short bunches to achieve machine requirements such as Code validated by measurement ~ Quadrupole moment as a

high brightness. function of rf phase
= Accelerating cavities need to be optimized to satisfy both rf and beam characteristics. Emittance calculation using Pic3P
= Accurate calculation of wakefield is essential to determine the current threshold for beam breakup, which » Racetrack cavity design: Almost 2D drive mode.

requires substantial computational resources especially for short bunches. Cylindrical bunch allows benchmarking of 3D code

L _ _ _ Pic3P against 2D codes Pic2P and MAFIA for _ N
= Development of new capabilities in ACE3P will address modeling needs of these accelerators, and its use emittance calculation. Trapped mode in 2 SPX cavities
of high performance computing will facilitate the design and optimization process. _ _
= Unprecedented accuracy due to higher-order patrticle- SPX Crab 2-cavity —
field coupling and conformal boundaries 1.0E+09 2 R_V (Ohm/m)
1.0E+08 = A R_H (Ohm/m)
1.0E+07 =
- Pic3P LCLS RF Gun Emittance Convergence . 1. 0E+06
. = n . - 5 InC. 1 pslf at-top. r=lmm . PARMELA o ] e + 4
Multipacting Studies iIn SRF Cavity ] el e e N R P
< 4l Pic3P 2M DOFs ; 1.0E+04 e s & A A m
: . 2 ®  1.0E+03 | -
SNS Superconducting RF Cavity oesor | e tFa1 t,
% 2f 1.0E+01 : S
E 1 DOFs: FieldDegrees ofFreedg)lll | 1.0E+00 - ®
=t 500k macro particles, At=100 fs
% ' lPic7-P and IMAFIA 2[.) results agree 2.000 2.500 3.000 3.500 4.000 4.500
2 0 0 2 4 B 6 8 10 F (GHz)
Snapshot of electron bunch Monopole and dipole HOM impedance
and scattered self-fields

Final Impact Kinetic Energy vs. Field Gradient
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e = Beam breakup (BBU) observed at beam currents

well below design threshold

» Using measured RF parameters such as f, Q.,,, and
field profile as inputs, solved the inverse problem

« SNS SCRF cavity experienced rf heating at HOM coupler

o Cavity - Both experiment and simulation showed same MP band:

11 MV/im ~ 15MV/m to find the deformed cavity shape. ____ igh @ modes
* Coupler - Experienced rf heating at HOM coupler;3D simulations - Meastirement = Found cavity is 8 mm short as predicted and izz ¢ideal Q,:) " [Field profiles n i

showed MP barriers close to measurements P confirmed by measurements (causing the fields of 1:E+07 A cavd-meas L | deformed cavity

TmemmmaTm the 3 abnormally high Q modes shifted away from - u«r
the coupler). 8 s mem® > *THOM
» Experimental diagnosis, advanced computing Lvos | A S : jicoupler
and applied math worked together to solve a real LE+03 .| j
. . world problem as intended by SciDAC. 1E+02 ‘ ‘ % R - -
Wakefield Computation for Short Bunches " ’

* Next generation light sources plan to operate with ultra-short bunches and their wakefield effects are Effects of Cavitv Deformation

Important to the design of these facilities.
= Accurate wakefield simulation for very long 3D structures is extremely challenging due to the huge « ERL cavity shape is optimized to minimize the

computation resources needed. dipole mode BBU parameters:
= A moving window technique in T3P localizes the calculation to within the bunch region, thus reducing the = The actual ERL cavity cell shapes differ from the

computation resources by several orders of magnitude. ideal one:
= This capability has been applied with success to the PEP-X storage ring beamline components and the = Mesh distortion method is used to study the

Cornell ERL vacuum chamber transition. effects of elliptical cell shapes to the dipole

modes.
PEP-X Undulator Chamber Cornell ERL Vacuum Chamber = x and y coupling of dipole modes results from Cornell ERL SRF Cavity
R the spread of polarization angles in deformed

cavities
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