Advanced Neutron Detectors with Pad Readout

G. De Geronimo, N.A. Schaknowski, G.C. Smith, E.O. Vernon, B. Yu, J. Fried Instrumentation Division, Brookhaven National Laboratory

C.L. Britton, W.L. Bryan, L.G. Clonts and S.S. Frank Engineering, Science and Technology Division, Oak Ridge National Laboratory

Neutron beam tests at CG1D of HFIR (Instrument Development Beamline)

General view of beamline CG1D

Pad detector on X-Y stage at end of CG1D beamline

Side view of pad detector on X-Y stage

Results from scanning a 1mm diameter beam diagonally across two pad rows: blue circle represent position of beam, white circles represent previous/next positions

Green boundary outlines those pads feeding one particular 64-channel ASIC

Red brightness is a relative measure of electron charge collected by that corresponding pad

Beam Position: *x, y* (center of pad)

(*x* + 1mm), (*y* -1mm)

(x + 2mm), (y - 2mm)

(x + 2.5 mm), (y - 2.5 mm)

╗╙╗╙╦		

Beam Position: (x + 3mm), (y - 3mm)

(*x* + 4mm), (*y* - 4mm)

(*x* + 5mm), (*y* - 5mm)

(*x* + 6mm), (*y* - 6mm)

Position resolution is better than half a pad pitch, or 2.5mm

Rate capability is 2.5kHz per pad/channels, with total of 2304 channels

Exceeds rate capability of existing detectors by ~ two orders of magnitude

Long term stability is extraordinarily good – operation in ionization mode

