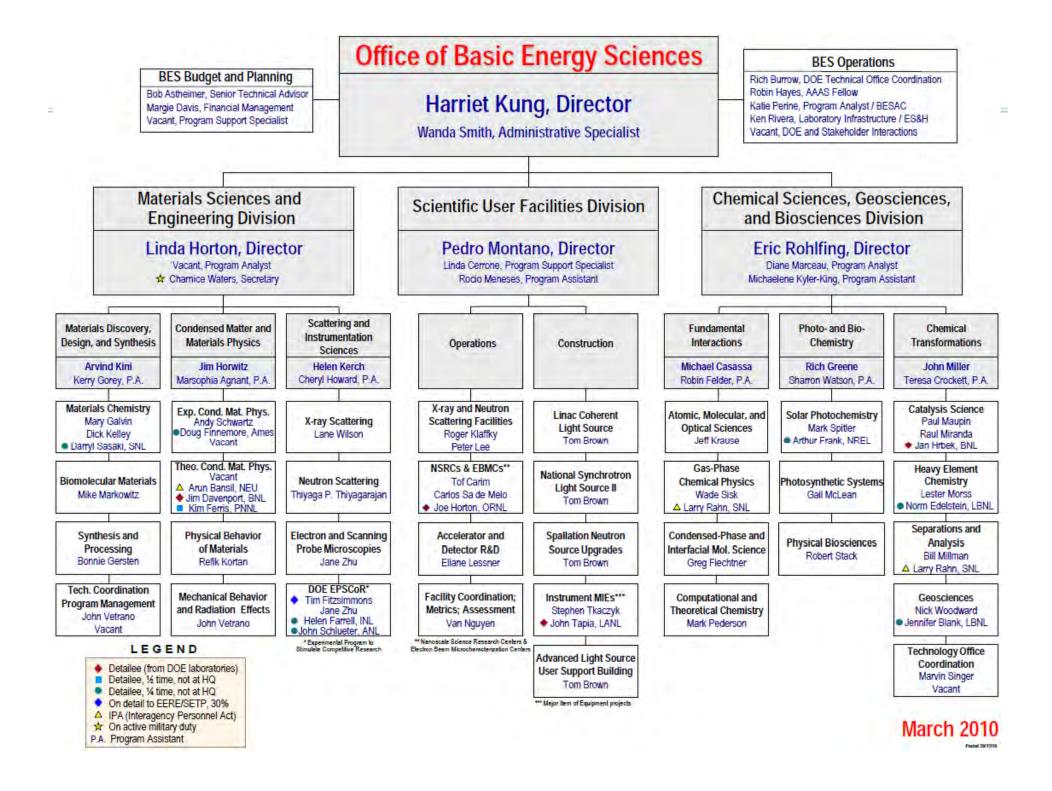
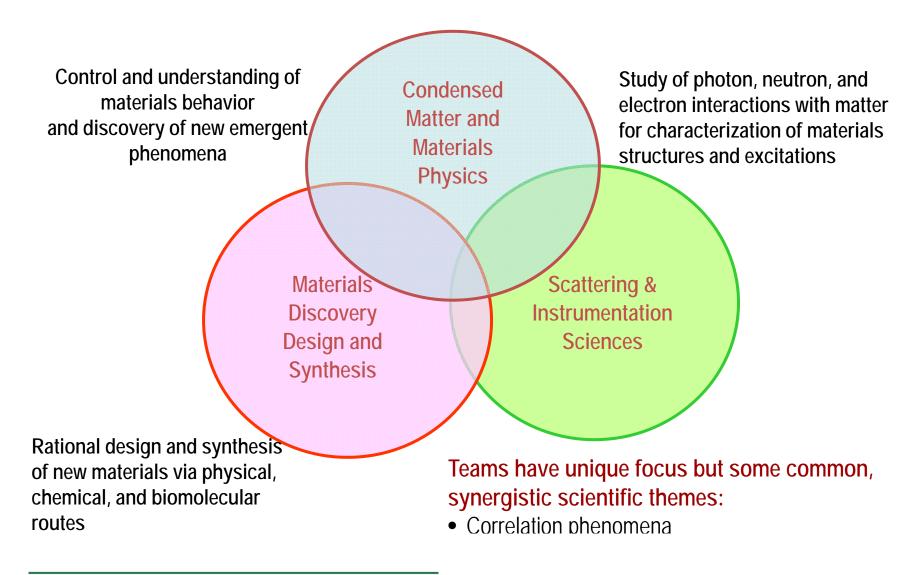


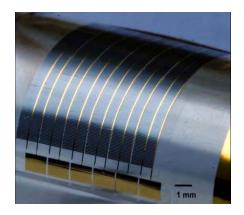
The Role of Advanced Computing in Basic Energy Sciences

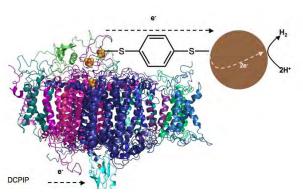

March 31, 2010

Harriet Kung Director, Basic Energy Sciences Office of Science, U.S. DOE The mission of the Basic Energy Sciences program is to support fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels in order to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security.

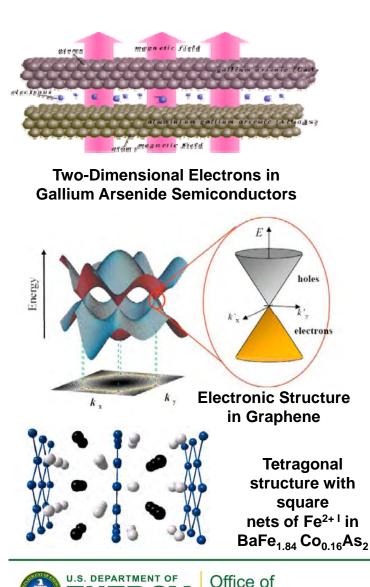

Priorities:

- To discover and design new materials and molecular assemblies with novel structures, functions, and properties.
- To conceptualize, calculate, and predict processes underlying physical and chemical transformations.
- To prove, understand, and control the interactions of phonons, photons, electrons, and ions with matter to direct and control energy flow in materials and chemical systems.
- To conceive, plan, design, construct, and operate scientific user facilities to probe the most fundamental electronic and atomic properties of materials at extreme limits of time, space, and energy resolution through x-ray, neutron, and electron beam scattering.
- To foster integration of the basic research conducted in the program with research in NNSA and the DOE technology programs.



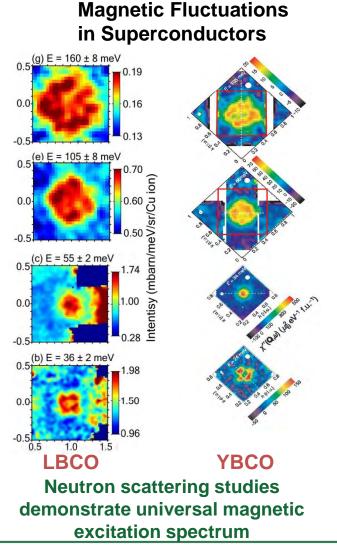

Materials Sciences and Engineering

Key Areas of Research in Materials Discovery, Design, and Synthesis



PS-I covalently attached to nanoparticle catalysts via a molecular wire yields 75% of plant electron transfer rates resulting in photo-

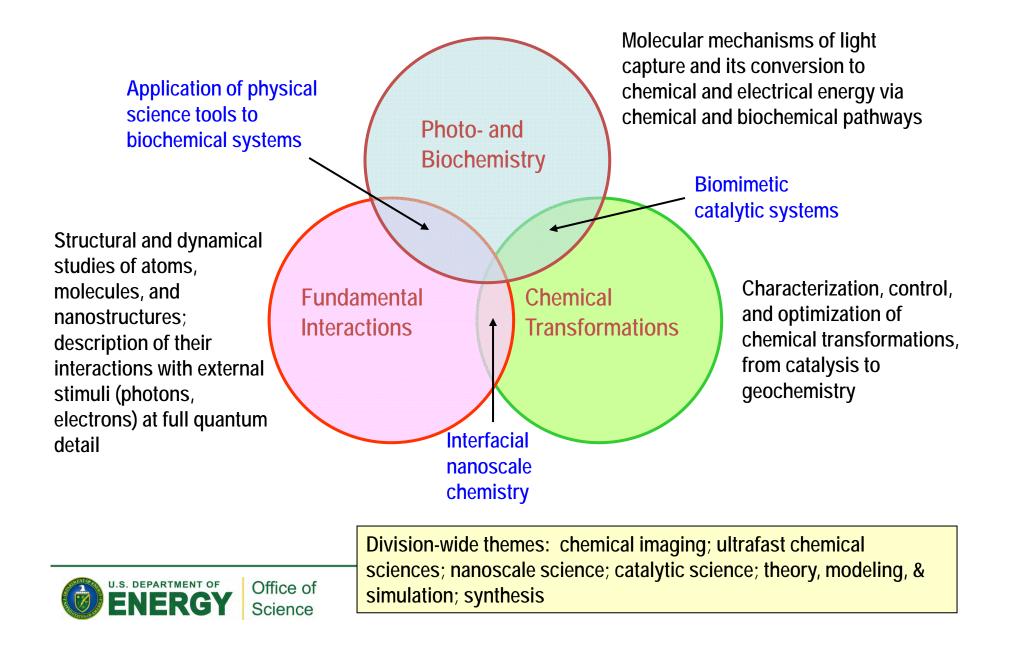
- Develop scientific strategies to fabricate macroscopic materials with nanometer scale precision
- Establish fundamental understanding of thermodynamics, kinetics and dynamics of selfassembly
- Understand fundamental principles to produce materials with precisely controlled defects
- Develop multi-component, multi-functional materials
- Develop new classes of materials and innovative architectures that can revolutionize energy conversion, storage and transfer

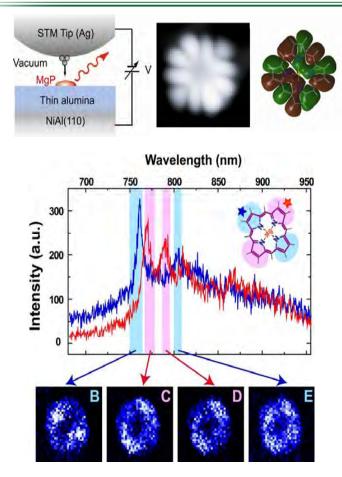

Key Areas of Research in Condensed Matter and Materials Physics

Science

- Develop a detailed understanding of the phenomena of superconductivity and magnetism
- Understand the influence of defects on materials at the atomic scale
- Investigate the properties of materials under extreme environments
- Understand and control the structure and properties of materials at the nanoscale
- Design, fabrication and characterization of metamaterials

Key Areas of Research in Scattering and Instrumentation Sciences

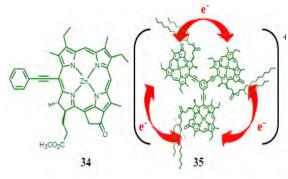


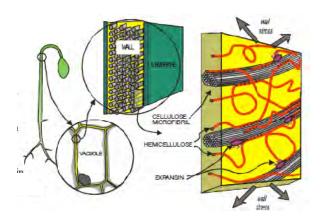

 Utilize scanning probes to elucidate mechanisms that control phenomena in correlated electron systems

- Develop a structural and dynamical understanding of nanostructured materials
- Understand dynamics and materials functionality using ultrafast diffraction, spectroscopy and imaging techniques
- Unify the complementary information obtained through multiple techniques

Chemical Sciences, Geosciences and Biosciences

Key Areas of Research in Fundamental Interactions

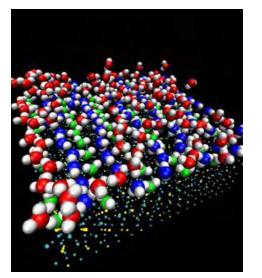

Scanning tunneling microscope images produced while monitoring the emission spectrum of a single molecule show, with atomic resolution, different spectra emitted from different locations on the molecule, giving an unprecedented atomic-level view of the coupling of electronic and vibrational motion. (Wilson Ho, UC Irvine)


models and computational tools to predict rates, products, and dynamics of chemical processes in the gas phase.

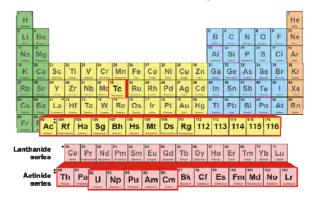
Develop a molecular-level understanding

 Theory and computational methods to advance research goals across the Division.

Chlorophyll monomer and trimer building block for supramolecular charge transport systems. (Tiede et al, ANL)



Mechanism of plant cell wall loosening by the protein expansin, which modulates non-covalent linkages between hemi-cellulose and celluose (Cosgrove, Penn State).



 Basic research in solar photochemistry with the goal of creating viable and officient artificial photosynthetic systems

Key Areas of Research in Chemical Transformations

Molecular dynamics simulation of water on a mineral surface based on neutron scattering data from the SNS

Actinide elements of interest to advanced fuel cycle

 Resolving the f-electron challenge to understand the chemistry and physics of actinide compounds

BES Research — Science for Discovery & National Needs Three Major Types of Research Thrusts

Core Research

Support single investigator and small group projects to pursue their specific research interests.

- Enable seminal advances in the core disciplines of the basic energy sciences—materials sciences and engineering, chemistry, and aspects of geosciences and biosciences. Accelerator and detector R&D is also supported.
- Build research programs that provide world-class, peer-reviewed research results cognizant of both DOE mission needs and new scientific opportunities. Scientific discoveries at the frontiers of these disciplines establish the knowledge foundation to spur future innovations and inventions.

Energy Frontier Research Centers

\$2-5 million-per-year research centers, established in 2009, focused on fundamental research related to energy

- Multi-investigator and multi-disciplinary centers to harness the most basic and advanced discovery research in a concerted effort to accelerate the scientific breakthroughs needed to create advanced energy technologies. Bring together critical masses of researchers to conduct fundamental energy research in a new era of grand challenge science and use-inspired energy research.
- EFRCs are overseen by program staff, who are managed centrally within BES to ensure a unified management strategy and structure.

Energy Innovation Hubs

\$20 million+ -per-year research centers will focus on integrating basic & applied research with technology development to enable transformational energy applications

- Hubs comprise a larger set of investigators spanning science, engineering, and other disciplines focused on a single critical national need identified by the Department; each Hub is expected to become a world leading R&D center in its topical area to develop a complete energy system.
- With robust links to industry, the highly integrated Hubs can bridge the gap between basic scientific breakthroughs and industrial commercialization.

BES Scientific User Facilities

Light sources

Stanford Synchrotron Radiation Laboratory (SLAC) National Synchrotron Light Source (BNL) National Synchrotron Light Source II (BNL) (start construction FY 2010) Advanced Light Source (LBNL) Advanced Photon Source (ANL) Linac Coherent Light Source (SLAC)

Neutron sources

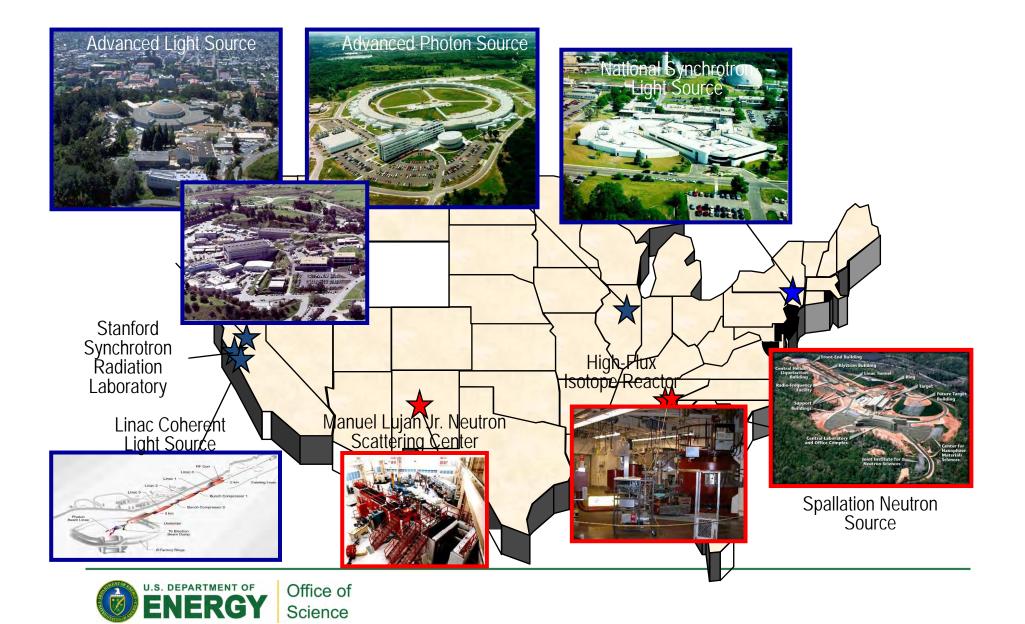
Manuel Lujan, Jr. Neutron Scattering Center (LANL) High Flux Isotope Reactor (ORNL) Spallation Neutron Source (ORNL)

Electron beam sources

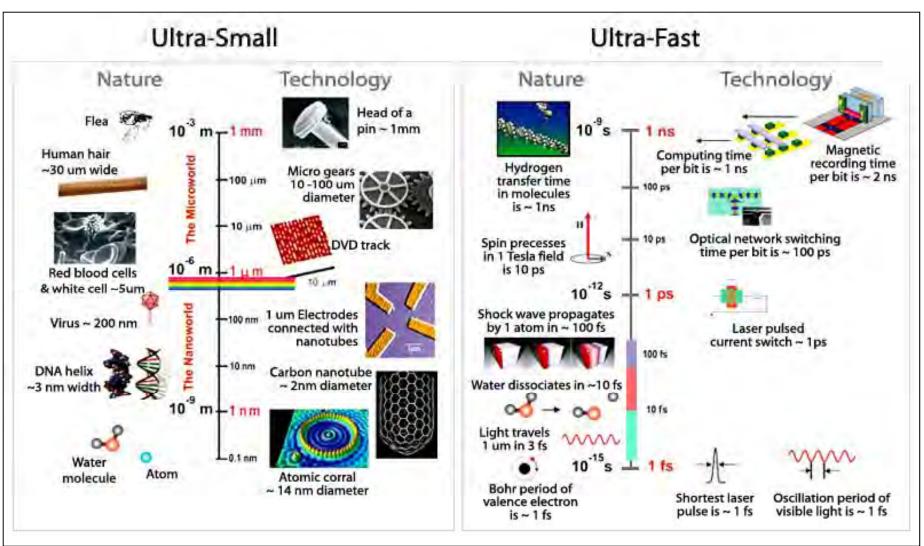
Electron Microscopy Center for Materials Research (ANL) National Center for Electron Microscopy (LBNL) Shared Research Equipment Program (ORNL)

Nanoscale Science Research Centers

Center for Nanophase Materials Sciences (ORNL) Molecular Foundry (LBNL) Center for Integrated Nanotechnologies (SNL/A & LANL) Center for Functional Nanomaterials (BNL) Center for Nanoscale Materials (ANL)

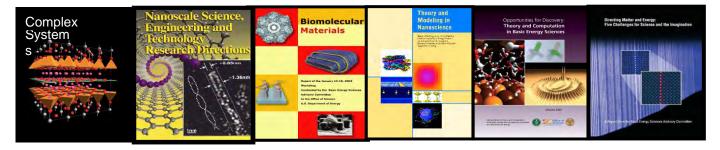


Artist's drawings of National Synchrotron Light Source-II (top) and Linac Coherent Light Source (bottom)



BES Facilities for X-ray and Neutron Scattering

Nanoscale Science Research Centers



BESAC & BES Strategic Planning Activities

Science for Discovery

Science for National Needs

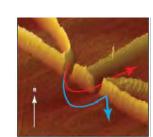
National Scientific User Facilities, the <u>21st century</u> to<u>ols of science</u>

Present Report President and present and present Report		Report of the ie Energy Sciences Advisory Commi	Manuel Luian Jr. Neutron Scattering Center	J. L. Energy	Report of the y Sciences Advisory Comp	Nanoscale Science, Engine office of Basic Energy Sci	Facilities for the Future of Science 3 tuemp: face Curlock	Next Generation Photon Sources for Grand Challenges in Science and Emergy Annets & Annet Science Sources (Science Sources) Annets & Annet Science Sources)
in the distance is seen in the second states the first Ream Marcel Park	Santidiantasiah Cene Santidi Yakano 1920 Maria Santidi 1920 Maria Santidi 1920 Maria Santidianan, San Dingo Santidi	anel on Novel Coherent Light Source January 1999	at Los Alamos Kational Laboratory Felosary 201		nei on Neutron Scattering February 2000 Department of Energy Office of Science	And the second s		M. B
** 0000	Rateda, MP 1981	-	U.S. Department of Energy Office of Ecimes					

Science for Discovery -Directing and Controlling Matter and Energy

- Control the quantum behavior of electrons in materials Direct manipulation of the charge, spin, and dynamics of electrons to control and imitate the behavior of physical, chemical and biological systems, such as digital memory and logic using a single electron spin, the pathways of chemical reactions and the strength of chemical bonds, and efficient conversion of the Sun's energy into fuel through artificial photosynthesis.
- Synthesize, atom by atom, new forms of matter with tailored properties Create and manipulate natural and synthetic systems that will enable catalysts that are specific and produce no unwanted byproducts, or materials that operate at the theoretical limits of strength and fracture resistance, or that respond to their environment and repair themselves like those in living systems
- Control emergent properties that arise from the complex correlations of atomic and electronic constituents

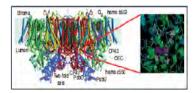
Orchestrate the behavior of billions of electrons and atoms to create new phenomena, like superconductivity at room temperature, or new states of matter, like quantum spin liquids, or new functionality combining contradictory properties like super-strong yet highly flexible polymers, or optically transparent yet highly electrically conducting glasses, or membranes that separate CO_2 from atmospheric gases yet maintain high throughput.


 Synthesize man-made nanoscale objects with capabilities rivaling those of living things

Master energy and information on the nanoscale, leading to the development of new metabolic and selfreplicating pathways in living and non-living systems, self-repairing artificial photosynthetic machinery, precision measurement tools as in molecular rulers, and defect-tolerant electronic circuits

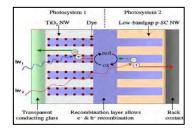
Control matter very far away from equilibrium

Discover the general principles describing and controlling systems far from equilibrium, enabling efficient and robust biologically-inspired molecular machines, long-term storage of spent nuclear fuel through adaptive earth chemistry, and achieving environmental sustainability by understanding and utilizing the chemistry and fluid dynamics of the atmosphere.





according to their spin


Directing Matter and Energy: Five Challenges for Science and the Imaginatio

Structure of nature's photosynthetic membrane. The inset shows the manganesebased biological machine.

(Left) Atomic-resolution scanning tunneling microscope image at 4.2K of BiSrCaCuO, (Right) A map of the superconducting gap.

Tandem photovoltaics combine two systems for photon capture and charge separation, analogous to natural photosynthesis.

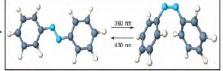


Photo-interconversion of two isomers of the azobenzene molecule. The direction of the interconversion depends on the wavelength of the light.

Science for National Need

Bringing forefront scientific knowledge and state-of-the-art tools to solving grand energy challenges

- Basic Research Needs for the Hydrogen Economy
- Basic Research Needs for Solar Energy Utilization
- Basic Research Needs for Superconductivity
- Basic Research Needs for Solid State Lighting
- Basic Research Needs for Advanced Nuclear Energy Systems
- Basic Research Needsf or the cilean and Efficient Combustion of 21st Century Transportation Fuels
- Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems
- Basic Research Needs for Electrical Energy Storage
- Basic Research Needs for Catalysis for Energy Applications
- Basic Research Needs for Materials under Extreme Environments

10 workshops; 5 years; more than 1,500 participants from academia, industry, and DOE labs

Research Needs To Assure

RE ENERGY FUTURE

BES Strategic Priorities

COR COR	Energy Sustain				
	Traditional Energy Materials		Sustainable Energy Materials		
	Fuels: coal, oil, gas CH _{0.8} , CH ₂ , CH ₄		Diverse Functions PV, Superconductors, Photocatalysts Battery Electrodes Electrolytic Membranes		
	Passive Function: Combustion		Active Function: Converting Energy		
	Value: Commodities High Energy Content		Value: Functionality 30 year Lifetime		
	Greater Sustainat higher fu Science				

Basic and Applied R&D Coordination

How Nature Works ... to ... Design and Control ... to ... Technologies for the 21st Century

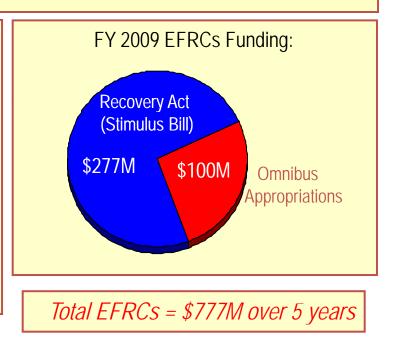
Grand Challenges How nature works	Use-Inspired I Materials properties and chemical fun	Basic Research nctionalities by design	> Applied Research	Technology Maturation & Deployment		
 Controlling materials Discover processes at the level of quantum behavior of electrons Atom- and energy-efficient syntheses of new forms of matter with tailored properties Emergent properties from complex correlations of atomic and electronic constituents Man-made nanoscale objects with capabilities rivaling those of living things 	 ery analysic research for fundamental new understanding on materials or systems that may revolutionize or transform today's energy technologies Development of new tools, techniques, and facilities, including those for the scattering sciences and for advanced modeling and computation 	goal of addressing showstoppers on real-world applications in the energy technologies	 Research with the goal of meeting <u>technical milestones</u>, with emphasis on the development, pertormance, cost reduction, and durability of materials and components or on efficient processes Proof of technology concepts 	 Scale-up research At-scale demonstration Cost reduction Prototyping Manufacturing R&D Deployment support 		
Controlling matter very far away from equilibrium BESAC Grand Challenges	BESAC & BES Basic Rese	earch Needs Workshops	DOE Technology Office	/Industry Roadmaps		

Energy Frontier Research Centers Tackling Our Energy Challenges in a New Era of Science

EFRC awards provide the recipients with \$2-5 million/year over a five-year award period to pursue collaborative basic research that addresses both energy challenges and science grand challenges in areas including:

- Solar Energy Utilization
- Geosciences for Waste and CO₂ Storage
 Advanced Nuclear Energy Systems

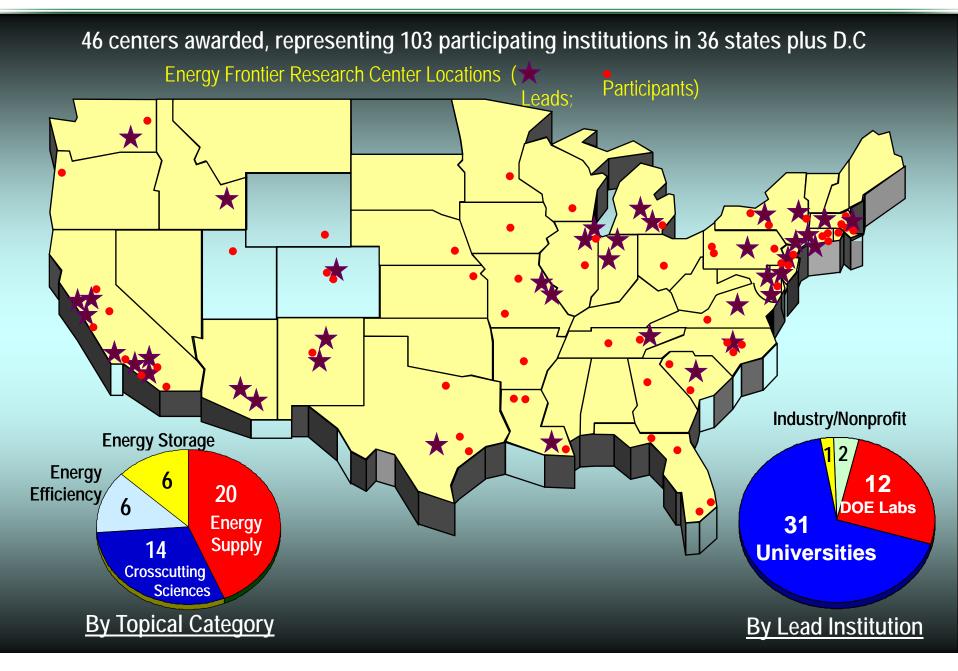
- Bio-Fuels
- Catalysis
- Energy Storage

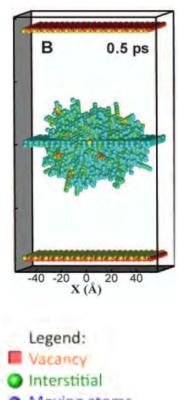

- Materials Under Extreme Environments
- Hydrogen

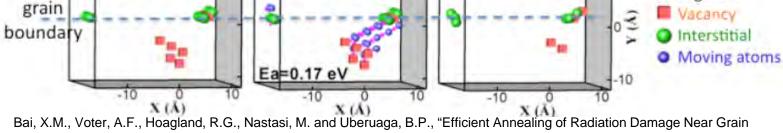
- Combustion
- Superconductivity
- Solid State Lighting

As stated in the Funding Opportunity Announcement for the EFRCs:

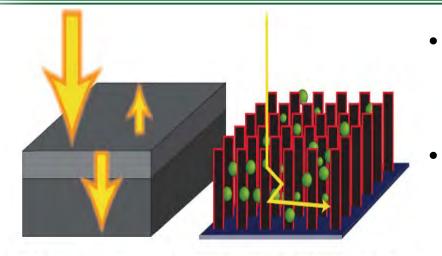
- "... the research proposed in the EFRC application must:
- address one or more of the challenges described in the BESAC report Directing Matter and Energy: Five Challenges for Science and the Imagination (http://www.sc.doe.gov/bes/reports/files/GC_rpt.pdf), and
- address one or more of the energy challenges described in the 10 BES workshop reports in the Basic Research Needs series

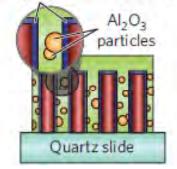

(http://www.sc.doe.gov/bes/reports/list.html)"


The Status of the SC/BES Energy Frontier Research Centers


46 EFRCs were launched in late FY 2009 using FY 2009 Appropriations and Recovery Act Funds

EFRC Highlight: Understanding Radiation Resistance in Materials Energy Frontier Research Center for Materials at Irradiation and Mechanical Extremes


- Key to radiation resistance is efficient recombination of vacancies and interstitials (point) defects) created by damage cascades formed when neutrons collide with atoms in materials. In this early EFRC result, grain boundaries were found to enable a surprising mechanism for increasing point-defect recombination and potentially imparting greater radiation resistance to materials
- After a simulated collision cascade (at right, showing displaced atoms) 0.5 ps after the cascade initiation), fast-moving interstitials move quickly to a nearby boundary (below, at left). Slower-moving vacancies remain in the bulk material.
- This research showed that a grain boundary loaded with interstitials emits these interstitials (below, center) via a newly-discovered lowenergy mechanism to annihilate nearby vacancies much faster than other mechanisms (below, at right)
- This new mechanism may explain the enhanced radiation resistance observed in nanocrystalline materials with large numbers of grain boundaries


Boundaries via Interstitial Emission". Science, available online 3/25/2010

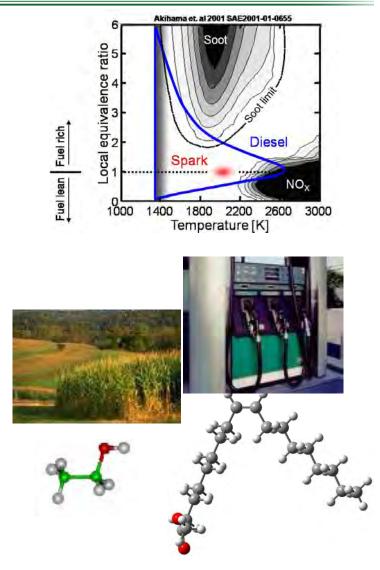
EFRC Highlight: Optimizing Light Absorption and Carrier Transport in Solar Cells Energy Frontier Research Center on Light-Material Interactions in Energy Conversion

Figure 1 | Solar-cell light management. **a**, Conventional thin-film solar cells where incident light gets partially reflected. **b**, In the microwire arrays, Al_2O_3 nanoparticles (shown in green) reflect incident light and redirect it towards the micropillars.

SiN_x antireflective coating

- Simulations predict that light absorption and charge collection are optimal when the diameter of wires is on the order of the minority-carrier diffusion length, ca. 2 to 10 microns in low-purity silicon
- Based on this prediction, silicon solar cells were fabricated as follows:
 - Si wire arrays with these diameters and ${\rm SiN}_{\rm x}$ antireflective coating
 - Arrays embedded in PDMS with 0.9 micron Al₂O₃ which redirect light towards micropillars Arrays can be peeled off and put on flexible substrate
- Absorb up to 85% of the sunlight but fills as little as 1% of the cell's volume and uses only 1/100th of the Si in a conventional cell.
- Potential for increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.

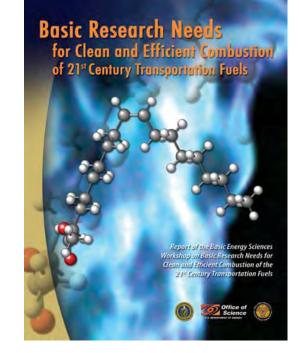
Performers: Nathan Lewis and Harry Atwater, California Institute of Technology-EFRC Publication: M. D. Kelzenberg, et al. *Nature Materials*, **2010**, *9*, 239-244.


The Science Base for Multi-Scale Simulation of Internal Combustion Engines-

A New Initiative in FY 2011

Transportation Combustion Challenge: How to get "clean" and "efficient"?

- Transportation accounts for 60% of oil consumption
- Combustion engine viable for decades to come, but efficiency & cleanliness difficult to achieve together
- Fuel streams are rapidly evolving
 - Heavy hydrocarbons: oil sands, oil shale, coal
 - New renewable fuel sources: ethanol, biodiesel
- New engine technologies
 - Direct Injection (DI)
 - Homogeneous Charge Compression Ignition (HCCI)
 - Low-temperature combustion
- Hybrid vehicle technologies

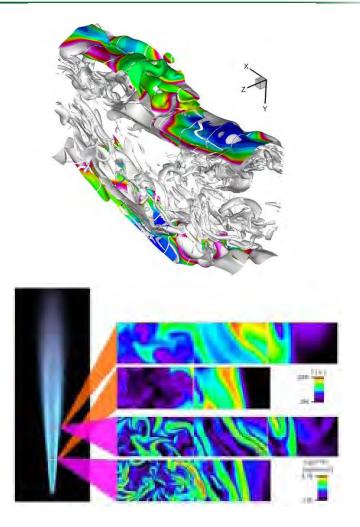

Multi-scale Simulation of Internal Combustion Engines

A new initiative to develop the science base for computational design of advanced engines

Predictive simulation of combustion in an evolving fuel environment is essential for developing more efficient and cleaner engines.

The scientific community has provided a roadmap via:

- BES workshop: *Basic Research Needs for Clean and Efficient Combustion*, October 2006
- ASCR/BES workshop: Discovery in Basic Energy Sciences: The Role of Computing at the Extreme Scale, August 2009
- SC ongoing collaboration with EERE's Vehicle Technology Program


The new BES activity (+\$20,000K) will provide:

- Models that span vast scale ranges: coupling of combustion chemistry with turbulent flow requiring simulation over 9 orders of magnitude in space and time.
- Improved understanding of fundamental physical and chemical properties: multi-phase fluid dynamics, thermodynamic properties, heat transfer, and chemical reactivity.
- Engine simulation: science-based predictive simulation and modeling design

Establishing the science base for multi-scale simulation of advanced engines

- Computational chemistry and benchmark combustion simulations (in collaboration with ASCR).
 - Numerical investigations of canonical flame behavior
 - Automated discovery of chemical reaction mechanisms and kinetics
- Experimental validation, verification, and discovery.
 - Cinematic imaging of canonical flames
 - Mulitplex investigation of chemical reactions
- To set the stage for subsequent development of new, science-based engineering tools for advanced engine design (in collaboration with EERE Vehicle Technologies Program).

Top: Direct numerical simulation of a CO/H2 slot flame Bottom: Imaging of a model flame jet flame

