Brainstorming session Plasma Based Accelerators

Wim Leemans

ADRD meeting -- DOE-BES Annapolis, Md August 22-23, 2011

OUTLINE

Laser plasma accelerators -- this presentation

Plasma wakefield accelerators:

- E-beam driven

 Largely similar plasma-beam interaction physics compared to laser driver (with important differences):

- Some of what is in this talk applies as well

- Talks by:
 - Eric Colby (SLAC)
 - Vitaly Yakimenko (BNL)

Discussion (throughout talks as well)

Hyperspectral radiation from THz to Gamma Ray (+electrons and protons/neutrons), synchronized and ultra-short

X-rays from betatron source

Incoherent

- Few keV to 10's of keV to MeV
 - Seen from PWFA's and LPA's
- Ultra-short x-rays (fs), synchronized
- Bunch diagnostic:

- X-ray spectrum carries information about the electron beam inside the undulator (plasma ion column)
- Beam size inside plasma can be sub-micron
- Biological imaging application

X-ray emission from betatron motion provides information of electron beam size inside LPA

Bunch radiates x-rays

rrrrr.

Wiggler parameter is determined by bunch radius:

•
$$\mathbf{K} = \gamma \mathbf{k}_{\beta} \mathbf{r}_{\beta} \propto \gamma^{1/2} \mathbf{n}_{e}^{1/2} \mathbf{r}_{\beta}$$

Measuring x-rays provides bunch information

Imperial College London Imaging of Biological Specimens

Michigan Engineering

S Kneip et al., Nat. Phys. 10, 980 (2010) S Kneip et al., arXiv 1105.2517v1 (2011)

INAFAS

Imperial College London Imaging of Biological Specimens

laser power	60-100 TW
pulse duration	32 fs
spot size	l l um
plasma density	8 x 10 ¹⁸ cm ⁻³
plasma length	5 mm
electron energy	230±70 MeV
beam charge	0.1 - 0.3 nC
x-ray source size	I-3 um
K parameter	~5
divergence	5-15 mrad
photon number	10 ⁷ -10 ⁸
critical energy	29±13 keV
peak brightness*	I 10 ²²

*ph/s/mm²/mrad²/0.1%BW

Imperial College London Imaging of Biological Specimens

S Kneip et al., Nat. Phys. 10, 980 (2010) S Kneip et al., arXiv 1105.2517v1 (2011)

World-wide effort aimed at FEL using laser accelerator

Fully coherent XUV-FEL based on LPA Technology

Latest results:

- Spontaneous emission seen in visible (Schlenvoight et al., Nature Physics 2008) and XUV (Fuchs et al., Nature Physics 2009)
- Tuning techniques, stability improvement
 - Colliding pulse injection
 - Longitudinal density tailoring for phase velocity/trapping control
- Normalized emittance: <0.2 micron
- Observation of coherent optical transition radiation >4 meter from LPA
- First light from undulator at LBNL
- Next steps:
 - FEL gain measurements
 - Seeding with laser produced high harmonics

- Undulator based single shot diagnostic for e-beam
- Uses gas jet + capillary based LPA
- Beam is imaged onto undulator using permanent magnet quads

Electron beam can be steered using plasma channel alignment

.....

BERKEL

Ш

Ultra-low emittance reduces constraints on other beam parameter -- Seeding should allow saturation in ~ 2meter

Undulator: K=1.25, 2.18 cm Beam: 308 MeV, 0.2 micron emittance, 0.5%, 21 fs FWHM (1.5kA=30pC) Fundamental wavelength: 53 nm FEL parameter (5 kA): 5x10⁻³ HHG seed (15th): 1 MW, 0.1 mrad, 8.5 fs RMS

New plasma based high harmonic emission physics is being discovered

Coherent wake excitation

- Thaury et al., Nature Physics 2007
- 10¹⁶ 10¹⁷ W/cm²
- Solid target

Relativistic oscillating mirror

- Dromey et al., Nature Physics 2006
- >10¹⁸ W/cm²
- Solid target

Plasma shocks in underdense plasmas

- S.V. Bulanov et al., 2011
- >10¹⁸ W/cm²

Harmonics are generated at the electron density singularities (cusps)

BELLA Facility: state-of-the-art PW-laser for laser accelerator science Control Room Gowning Room BELLA Laser

BELLA laser opens significant opportunities

- Accelerator science studies
- 10 GeV Module for collider, (10 GeV, beam optimization, efficiency etc...)
- Positron production; plasma wakefield acceleration, etc...
- Driver for FEL

W. Leemans et al., AAC2010 Proceedings

Observations

- Laser/plasma based sources:
 - Hyperspectral source -- laser plasma accelerator technology (and science!)
 - Coherent (THz IR, visible XUV/soft x-ray):
 - FEL experiments underway, with seeding
 - Lots of innovation taking place in high harmonic sources
 - Incoherent (hard x-rays, gamma rays)
 - Electrons:
 - Magnetic switching, electron injection MeV to GeV beams
 - PoP 10 GeV experiments starting in 2012
- Laser technology
 - Up to PW-class lasers commercially available but rep rate low (1-10 Hz)
 - Need strategy and technology for high average power
 - ICFA-ICUIL Joint taskforce workshops and white paper in progress
- Small/medium scale facility
 - Agile test platform: development of FEL concepts (including seeding, fs bunch diagnostics and beam manipulation), technology development, reconfigurable/ flexible, training of students, postdocs etc...
 - Fs pump-probe science (see e.g. F. Parmigiani's talk)
 - Center piece of ELI Hungary and ELI Czech Republic

- Linac costs near nothing build multiple linacs and beam lines driven by single laser or multiple lasers
- With laser cost decreasing and performance increasing: power each beam line with its own laser

