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OUTLINE

» Laser plasma accelerators -- this presentation
» Plasma wakefield accelerators:

- E-beam driven

- Largely similar plasma-beam interaction physics
compared to laser driver (with important differences):

-Some of what is in this talk applies as well

- Talks by:
- Eric Colby (SLAC)
- Vitaly Yakimenko (BNL)

» Discussion (throughout talks as well)



Hyperspectral radiation from THz to Gamma Ray (+electrons
and protons/neutrons), synchronized and ultra-short

Betatron radiation during
acceleration — Multi keV Transition radiation from beam
exiting plasma — MV/cm THz

electrons

laser propagation

Thomson Scattering — Multi keV/
MeV x-ray/gamma ray Free Electron Laser-> XUV, x-ray



X-rays from betatron source

» Incoherent

» Few keV to 10’s of keV to MeV
- Seen from PWFA's and LPA’s

» Ultra-short x-rays (fs), synchronized

» Bunch diagnostic: A

- X-ray spectrum carries information about the electron
beam inside the undulator (plasma ion column)

- Beam size inside plasma can be sub-micron

» Biological imaging application



X-ray emission from betatron motion provides
information of electron beam size inside LPA
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laser propagation

Bunch radiates x-rays

Wiggler parameter is determined by bunch radius:
K=ykgrg 112 n 12 ro

Measuring x-rays provides bunch information
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» contact radiograph of tetra fish
» specimen and camera ~3m from source
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laser power 60-100 TW
pulse duration 32fs
spot size |l um
plasma density 8 x 10'® cm-?
plasma length 5 mm
electron energy 230170 MeV
beam charge 0.1 -0.3 nC
X-ray source size [-3 um
K parameter ~5
divergence 5-15 mrad
photon number 107-108
critical energy 29+ 13 keV
peak brightness* | 1022
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World-wide effort aimed at FEL using laser accelerator
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Fully coherent XUV-FEL based on LPA Technology

P Latest results:

- Spontaneous emission seen in visible (Schlenvoight et al., Nature
Physics 2008) and XUV (Fuchs et al., Nature Physics 2009)

- Tuning techniques, stability improvement
- Colliding pulse injection
- Longitudinal density tailoring for phase velocity/trapping control

- Normalized emittance: <0.2 micron

- Observation of coherent optical transition radiation >4 meter from
LPA

- First light from undulator at LBNL
» Next steps:

- FEL gain measurements
- Seeding with laser produced high harmonics



First XUV light seen from undulator
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* Undulator based single shot diagnostic for e-beam
* Uses gas jet + capillary based LPA
* Beam is imaged onto undulator using permanent magnet quads
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\‘ v Electron beam can be steered using plasma
\‘ channel alignment
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‘ Ultra-low emittance reduces constraints on other beam

\ parameter -- Seeding should allow saturation in ~ 2meter
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Undulator: K=1.25, 2.18 cm Fundamental wavelength: 53 nm

Beam: 308 MeV, 0.2 micron emittance, 0.5%, FEL parameter (5 kA): 5x1073

21 fs FWHM (1.5kA=30pC) HHG seed (15%): 1 MW, 0.1 mrad, 8.5 fs RMS

Radiation intensity [W/sr]

undulator length [m]



New plasma based high harmonic emission
physics is being discovered

» Coherent wake excitation —
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40 J, 100 fs plasma channel
10“;W/c:m2 1017 cm-3

Laser beam ~ M

LPA electron beam:

Beam energy 7.7 GeV
Peak current 30 kA
Bunch length 20 fs
Relative energy spread 103
Normalized emittance 1 micron

Requires nominal
10 GeV LPA

soft x-ray FEL at 1 nm

Undulator ~ 15 m

7.7 GeV,

Case study: Laser-plasma accelerator driven
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accelerator science

Control Room Gowning Room BELLA Laser

A Compressor

High power diagnostic Blasma Source 10° Off-axis parabola




’\kl BELLA laser opens significant opportunities

Lorentz boosted frame simulation
Full 1 m BELLA stage -- major advance
Courtesy of J.-L. Vay

2013 Experiments

Warp — 10 GeV stage — 2D — gamma frame=10 — June 2010
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 Accelerator science studies
- 10 GeV Module for collider, (10 GeV, beam optimization, efficiency etc...)

- Positron production; plasma wakefield acceleration, etc...
- Driver for FEL

m W. Leemans et al., AAC2010 Proceedings



Observations

" Laser/plasma based sources:
" Hyperspectral source -- laser plasma accelerator technology (and science!)
" Coherent (THz - IR, visible - XUV/soft x-ray):
" FEL experiments underway, with seeding
" Lots of innovation taking place in high harmonic sources
" |ncoherent (hard x-rays, gamma rays)
" Electrons:
" Magnetic switching, electron injection - MeV to GeV beams
" PoP 10 GeV experiments starting in 2012
® [aser technology
® Up to PW-class lasers commercially available but rep rate low (1-10 Hz)
® Need strategy and technology for high average power
® |CFA-ICUIL Joint taskforce workshops and white paper in progress
" Small/medium scale facility

" Agile test platform: development of FEL concepts (including seeding, fs bunch
diagnostics and beam manipulation), technology development, reconfigurable/
flexible, training of students, postdocs etc...

" Fs pump-probe science (see e.g. F. Parmigiani’s talk)
" Center piece of ELI Hungary and ELI Czech Republic
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T Strawman Facility Design

* Linac costs near nothing — build multiple linacs and beam
lines driven by single laser or multiple lasers

* With laser cost decreasing and performance increasing:
power each beam line with its own laser

/ Seeding \




