Applications of Beam-Driven Plasma Wakefield Accelerators

Eric Colby SLAC National Accelerator Laboratory

Overview

Beam-Driven Plasma Wakefield Accelerators have demonstrated in meter-scale plasmas:

- Accelerating gradients E_z ~50 GV/m
- Focusing gradients $dB_{\theta}/dr \sim 10^6$ T/m

Potential Applications

• "Afterburner" to significantly raise x-ray energy of an existing XFEL without a large-scale linac upgrade

 Ion Channel Laser (Whittum, Sessler & Dawson, 1990)
 High-K regime: Hyper-spectral sources: THz (CTR) to Gamma Rays (Betatron Radiation)

→ Early BD-PWFA experiments demonstrated x-ray production from betatron motion of mismatched beam in plasma

•Low-K regime: plasma "undulator", more monochromatic

→FACET will study offset witness beam production of narrowband radiation as a variant of planned acceleration experiments

Afterburner Case Study: FERMI@Ellettra FEL

- FERMI@Elettra is a single-pass FEL user-facility located next to the thirdgeneration synchrotron radiation facility ELETTRA in Trieste, Italy.
- Our Goal: Study using existing linac, undulators and civil footprint.
- Start from FEL-1 and find a self consistent set of parameters for beam and undulator that boost energy by two and get 20nm down to 5nm.

Parameter	FEL-I	Units
Wavelength	100-20	nm
Electron Beam Energy	1.2	GeV
Bunch Charge	0.8	nC
Peak Current	850	А
Bunch Length (FWHM)	400	fs
Norm. Emittance (slice)	0.8-1.2	mm-mrad
Energy Spread (slice)	150-250	keV
Repetition Rate	10-50	Hz

MM

(d

(C)

Afterburner

(b)

Afterburner Concept and Example

FIG. 1 (color online). The electron density from a PIC simulation with OSIRIS [19] for $k_p R_b = 5$ is presented. The beams move to the right. The broken black line traces the blowout radius in the absence of the load. On the bottom, the red (black) line is the lineout of the wakefield $E_z(\xi, r_b = 0)$ when the beam load is present (absent).

M. Tzoufras *et al*, *Phys. Plas.* **16**, 056705 (2009).

Preliminary simulation by Weiming An, UCLA

- Drive = 0.75 nC, witness= 0.25 nC
- Bunch lengths: 6 μm, 2 μm
- Plasma density 10¹⁸/cc
- Drive/witness separation 32 microns
- dE/E|_{rms} ~ 0.34%

Parameters for an Afterburner for FERMI@Elletra

2010 House and the second	Parameter	Units	Short Wavelength FELI	Afterburner Upgrade	
Upgrade	Energy Multiplication			2	1
	Witness Bunch Charge	nC		0.25	1
	Drive Bunch Charge	nC		0.75	
	Witness Bunch Length	μm		1.7	1
	Drive Bunch Length	μm		7ļ5	1
	Bunch Separation	μm		32	1
Beam	Bunch Charge	nC	0.8	0.25	1
CAN PERSON AND IN COLOR	Bunch Energy	GeV	1.2	2.4	1
	Projected Energy Spread	%	0.06	0.34	1
	Normalized Emittance	mm-mrad	0.8	1.47	
	Peak Current	kA	0.85	17.65]
Undulator (Planar NdFeB)	Period	cm	6.5	6.5	1
	Undulator K		2.4	2.4	1
	FODO Period	m	7.6	7.6	
	Max Beta	m	9	5	1
	Undulator Length	m	22.8	22.8	1
Radiation Parameters	Wavelength	nm	20	5	1
Calculated Using	Saturation Length	m	23.15	18.5	
PSI PARMS Spreadhseet	Gain Length	m	1.1	0.84	1
Incorporates Ming Xie	Photons per bunch		2.00E+14	5.00E+13	1
3D FEL Formalism	Output Power	GW	2.3	130	1
	Bandwidth	%	1.25	2.8	10

Slide from Mark Hogan, SLAC

NATIONAL ACCELERATOR LABORATORY

Saddle Point Calculation of Intensity Radiation pattern (integrated in frequency)

Yi Shi, USC student of Patrick Muggli

• Saddle- point method,
$$\frac{d^2 W}{d\omega d\Omega} = \frac{e^2 \omega^2}{4\pi^2 c} \left[\int_{-\infty}^{\infty} \vec{n} \times (\vec{n} \times \overline{\beta(t)}) e^{i\omega(t-\vec{n}\cdot\vec{r(t)})} dt \right]^{2*} \text{ is simplified as}$$
$$\frac{d^2 W}{d\omega d\Omega} = 2N_0 \frac{e^2 \eta^2 \rho^2 \chi^2}{3\pi^2 c} \left[\frac{\sin^2 \theta \sin^2 \phi}{\chi} K_{\frac{1}{2}}^2(q) + K_{\frac{2}{2}}^2(q) \right]^{**}, N_0 \text{ betatron oscillation number, } \rho = \sqrt{\frac{2\gamma_z}{p_x^2 - \sin^2 \theta \cos^2 \phi}}$$
$$\chi = \gamma_z^{-2} + \sin^2 \theta \sin^2 \phi, \quad q = \frac{1}{3} \eta \rho \chi^{\frac{1}{2}} \sqrt{\frac{p_x^2 - \sin^2 \theta \cos^2 \phi}{\chi^2 - \sin^2 \theta \cos^2 \phi}}$$

Off-set pattern radiates more

NAT

• In future experiments, total power will be a combined radiation of on-axis drive bunch + off-axis witness bunch

* J. D. Jackson, Classical Electrodynamics 197 **I.Kostyukov, Phys. Of Plasmas 2003

Extending the FFTB Experiments to the Witness Bunch Case at FACET

Operation as an Undulator Requires a Different set of Operating Parameters

Parameter	Value		Parameter	Value
n _p	2x10 ¹³ cm ⁻³		λ ₁	240 nm
σ _r	5 µm		$\Delta\lambda_1$	80 nm
N _e	10 ⁹		Ν _{γ.1}	5x10 ⁸
γ	1000		17	photons
r _o	50 µm	- [.	E _{tot,1}	4x10 ⁻¹⁰ J
L _p	1 m		P _{tot,1}	4 kW
K	0.94	× -		
M ₀	$\frac{1.4 \mathrm{x} 10^{6}}{d^{2} I}$	×	Incoherent S Radiation S On A	Synchrotron Spectrum Axis
SLACE NATIONAL ACCELERATOR LABORATORY	Mike	× Litos, SLAC	$^{ imes}\omega_{ m r}$ (rad/s)	×

Summary

 The performance requirements for High Energy Physics and Photon Science applications of Beam-Driven PWFA are compatible:

•High peak current, small dE/E, low emittance, excellent stability, cost effectiveness...

 The demonstrated ability to sustain GV/m and MT/m gradients on the meter scale will enable novel x-ray and THz sources to be developed

• A BD-PWFA based afterburner offers a very compact upgrade path for linac XFELs to extend energy reach