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1 Executive Summary

About ESnet

The Energy Sciences Network (ESnet) is the high-performance network user facility for the US Department of 
Energy (DOE) Office of Science (SC) and delivers highly reliable data transport capabilities optimized for the 
requirements of data-intensive science. In essence, ESnet is the circulatory system that enables the DOE science 
mission by connecting all of its laboratories and facilities in the US and abroad. ESnet is funded and stewarded 
by the Advanced Scientific Computing Research (ASCR) program and managed and operated by the Scientific 
Networking Division at Lawrence Berkeley National Laboratory (LBNL). ESnet is widely regarded as a global 
leader in the research and education networking community.

ESnet interconnects DOE national laboratories, user facilities, and major experiments so that scientists can use 
remote instruments and computing resources as well as share data with collaborators, transfer large data sets, and 
access distributed data repositories. ESnet is specifically built to provide a range of network services tailored to 
meet the unique requirements of the DOE’s data-intensive science.

In short, ESnet’s mission is to enable and accelerate scientific discovery by delivering unparalleled network 
infrastructure, capabilities, and tools. ESnet’s vision is summarized by these three points:

1. Scientific progress will be completely unconstrained by the physical location of instruments, 
people, computational resources, or data.

2. Collaborations at every scale, in every domain, will have the information and tools they  
need to achieve maximum benefit from scientific facilities, global networks, and emerging  
network capabilities.

3. ESnet will foster the partnerships and pioneer the technologies necessary to ensure that these 
transformations occur.

Requirements Review Purpose and Process

ESnet and ASCR use requirements reviews to discuss and analyze current and planned science use cases and 
anticipated data output of a particular program, user facility, or project to inform ESnet’s strategic planning, 
including network operations, capacity upgrades, and other service investments. A requirements review regularly, 
and comprehensively, surveys major science stakeholders’ plans and processes in order to investigate data 
management requirements over the next 5–10 years. Questions crafted to explore this space include the 
following:

• How, and where, will new data be analyzed and used?

• How will the process of doing science change over the next 5–10 years?

• How will changes to the underlying hardware and software technologies influence  
scientific discovery?

Requirements reviews help ensure that key stakeholders have a common understanding of the issues and the 
actions that ESnet may need to undertake to offer solutions. The ESnet Science Engagement Team leads the 
effort and relies on collaboration from other ESnet teams: Software Engineering, Network Engineering, and 
Network Security. This team meets with each individual program office within the DOE SC every three years, 
with intermediate updates scheduled every off year. ESnet collaborates with the relevant program managers to 
identify the appropriate principal investigators, and their information technology partners, to participate in the 
review process. ESnet organizes, convenes, executes, and shares the outcomes of the review with all stakeholders.
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This Review

Between March and September 2022, ESnet and the Office of Basic Energy Sciences (BES) of the DOE SC 
organized an ESnet requirements review of BES-supported activities. Preparation for these events included 
identification of key stakeholders: program and facility management, research groups, and technology providers. 
Each stakeholder group was asked to prepare formal case study documents about its relationship to the BES 
program to build a complete understanding of the current, near-term, and long-term status, expectations, and 
processes that will support the science going forward. A series of pre-planning meetings better prepared case 
study authors for this task, along with guidance on how the review would proceed in a virtual fashion.

The BES program supports fundamental research to understand, predict, and ultimately control matter and 
energy at the electronic, atomic, and molecular levels in order to provide the foundations for new energy 
technologies and to support DOE missions in energy, environment, and national security.

The research disciplines supported —condensed matter and materials physics, chemistry, geosciences, and 
aspects of physical biosciences—are those that discover new materials and design new chemical processes. 
These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, 
efficiency, and waste mitigation. BES research provides a knowledge base to help understand, predict, and 
ultimately control the natural world and serves as an agent of change in achieving the vision of a secure and 
sustainable energy future.

The BES1 program is one of the nation’s largest sponsors of research in the physical sciences. The program funds 
basic science at nearly 170 universities, national laboratories, and other research institutions in the US. BES has 
also built and supports a national network of major shared research facilities based at DOE national laboratories 
and open to all scientists. These user facilities help form the backbone of the nation’s research infrastructure. 
Over 16,000 scientists and engineers make use of these facilities each year.

This review includes case studies from the following BES user facilities, experiments, and joint  
collaborative efforts:

• Advanced Light Source (ALS)

• Advanced Photon Source (APS)

• National Synchrotron Light Source II (NSLS-II)

• Linac Coherent Light Source (LCLS)

• Stanford Synchrotron Radiation Light Source (SSRL)

• High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS)

• Center for Functional Nanomaterials (CFN)

• Center for Integrated Nanotechnologies (CINT)

• Center for Nanoscale Materials (CNM)

• Center for Nanophase Materials Sciences (CNMS)

• The Molecular Foundry (TMF)

• Autonomous Experiment Steering for BES Facilities 

• BES Design and Development of Digital Twin Strategies

• Multifacility Experimentation and Analysis Workflows: X-ray Light Source Perspective

• Multifacility Experimentation and Analysis Workflows: Neutron Scattering Perspective 

1 https://science.osti.gov/bes
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• Multifacility Experimentation and Analysis Workflows: Nanoscale Science Research Center 
(NSRC) Perspective

• Use of the ESnet for Quantum Simulations of Materials and Molecules 

• The Materials Project (MP): Status and Future Directions

Requirements reviews are a critical part of a process to understand and analyze current and planned science use 
cases across the DOE SC. This is done by eliciting and documenting the anticipated data outputs and workflows 
of a particular program, user facility, or project to better inform strategic planning activities. These include, but 
are not limited to, network operations, capacity upgrades, and other service investments for ESnet as well as a 
complete and holistic understanding of science drivers and requirements for the program offices.

We achieve these goals by review of the case study documents, discussions with authors, and general analysis 
of the materials. The resulting output is a set of review findings and recommendations that will guide future 
interactions between BES, ASCR, and ESnet. 

These terms are defined as follows:

• Findings: key facts or observations gleaned from the entire review process that highlight 
specific challenges, particularly those shared among multiple case studies.

• Recommendations: potential strategic or tactical activities, investments, or opportunities that 
are recommended to be evaluated and potentially pursued to address the challenges laid out in 
the findings.

The review participants spanned the following roles:

• Subject-matter experts from the BES activities listed previously.

• ESnet Site Coordinators Committee (ESCC) members from BES activity host institutions, 
including the following DOE labs and facilities: Argonne National Laboratory (ANL), 
Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), 
Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory, Sandia National 
Laboratories (SNL), and SLAC National Accelerator Laboratory (SLAC).

• Networking and/or science engagement leads from the ASCR high-performance computing 
(HPC) facilities.

• DOE SC staff spanning both ASCR and BES.

• ESnet staff supporting positions related to facility leadership, scientific engagement, 
networking, security, software development, and R&D.

The review produced several important findings from the case studies and subsequent virtual conversations:

• Facility Management and Readiness:

 − Although the data generated by individual experiments varies, over the next decade the 
combined data generation rates for some BES user facilities will reach the exabyte per  
year range. 

 ° Processing power of hundreds of PFLOPs is expected to be available to fully  
analyze this data, which implies strong networking capabilities to link facility 
instruments to edge, local, campus, and centralized computing facilities reliably,  
and with low latency. 

 ° Terabit per second networking and beyond will be required to handle the large 
amounts of data expected in the coming years. 

 ° Upgraded facilities will feature a significant increase in the data throughput from 
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today’s 1–5 GBps to 200 GBps. Future planned upgrades are expected to increase the 
throughput to multiple TBps in the coming years. 

• Scientific Data Management:

 − Data movement and data processing are critical for scientists and researchers, particularly 
once they have performed their experiments, computations, or simulations. Steps include: 

 ° Data acquisition via computational simulations or experiments.

 ° Data reduction using edge processing.

 ° Data movement, cataloging, and archiving.

 ° Data analysis and visualization.

 ° Fitting to models and analysis of the processed data for structure, function, or dynamics 
information.

 − The increase in brightness and advances in detector data rates at BES user facilities will 
generate substantially more data than contemporary equivalents, e.g., multiple orders 
of magnitude more data than is generated today. These advancements will require step-
change improvements in networking, controls and data acquisition, computing, workflow, 
data reduction, and analysis tools to operate effectively.

 − As BES user facilities increase data volumes generated through experimentation, the 
effective utilization of high-rate data streams and real-time management of experimental 
conditions will become more critical. This process will involve: 

 ° Improved methods to cope with raw data management (e.g., high rates and volumes 
from instruments).

 ° Developing suites of tools to optimize facility usage that focus on integrated data 
management, analytics, and simulation.

 ° Integration of AI/ML approaches to automatically steer experimental progress. 

 ° Tightly coupled operation between experimental facilities, analysis and computational 
resources, and networks. 

 ° Adoption of digital twins to improve the overall design and utilization of limited 
instrument access. 

 − The use of multimodal data requires more sophisticated data processing, and will require 
increases in computing capabilities, which can include training AI/ML models as well as 
real-time analysis and feedback for autonomous experiment steering. The BES light sources 
are exploring the utilization of edge-computing resources, coupled closely with detectors 
and instruments, to facilitate AI/ML data reduction algorithms

 − Upgraded BES light source data generation rates may be too large for traditional file-based 
workflows, which will facilitate a move to streaming-based workflows directly to computer 
system memory requiring robust facility and Laboratory networking, and increases in data 
processing capabilities throughout the DOE scientific complex.

 − Access to data generated by BES user facilities is typically governed by the user agreement, 
a legally binding document. In many (most) cases, the data is owned by the users, not the 
facility. In some instances, data is open and available, given there are no restrictions on the 
collected data beyond understanding how it was taken and managed.

 ° Data sharing is extremely difficult. Many users come through the facility, and 
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keeping track of whose data is where is far too time consuming. None of this has been 
automated, as it takes a dedicated team of professionals to keep such a system running.

 ° For large datasets, data storage and movement are bottlenecks in current workflows. 

 − Key elements of a future data management strategy for the light sources include a common 
API for accessing network and computing resources, parallel data-transfer tools, high-
fidelity data transfer, network performance monitoring, reservations, and dynamic  
network provisioning.

• Scientific Workflow:

 − Consistent with the user agreements that typically includes data ownership by the users, 
users of BES facilities are assigned allocations to use instruments for experimentation, but 
no explicit long-term computation or storage at DOE HPC facilities is provided as a part 
of this process. Users are given access to their data when on-site, and encouraged to take it 
with them, as there are rarely resources that can support long-term custodial storage.

 − Future adaptations to the generalized workflow used to support BES science will involve:

 ° Integrated software to manage data movement, processing, and analysis.

 ° More automated methods to handle adaptive/autonomous experiment steering (e.g., 
integration with simulation capabilities).

 ° Categorizing and sharing of data with other national resources.

 ° Increases in data volume due to the upgraded capabilities. 

 − A number of BES user facilities are limited in the scope and capabilities of resources they 
can provide after the experimental phase has completed:

 ° Data is often stored at the facility for a short period of time, provided local storage 
resources are available. Backup facilities (e.g., institutional or cloud-based) are  
not guaranteed. 

 ° Users are encouraged to take a copy of their data; most do through cloud storage, 
external media transfer, or high-performance Data Transfer Nodes (DTNs) and Globus, 
when available. 

 ° Local computational resources vary, and can range from multiprocessor workstations 
with a few analysis tools, to larger clusters that run complex analysis frameworks. 
A number of BES user facilities have taken steps to integrate portions of their 
experimental workflow with DOE HPC resources using an institutional allocation.

 ° The lack of a uniform data pipeline standard that spans facilities causes issues, such 
as differences in metadata associated with different data types and different levels of 
data manipulation. To reach a stable and universal environment, standard data formats, 
software development frameworks, sample tracking, metadata capturing, and labeling 
are required. 

 − The BES instrumentation landscape remains complex, with a number of experimental 
components unable to be operated as integrated components of a larger facility. Many 
instruments are operated stand-alone; in some cases, the instruments do not have sufficient 
storage needs and must be manually integrated into institutional or national-level storage 
and computation resources. This often reveals significant networking challenges in ensuring 
ample capacity and low latency.
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• Computational and Storage Requirements:

 − BES user facilities face three primary challenges in the coming years related to 
computation, storage, and networking:

 ° Data storage is currently sufficient but will become a significant concern as facilities 
upgrade and data volumes increase.

 ° Access to computation is particularly limited for experimental and theory groups. 
When it cannot be used locally, it must be found either within the DOE ecosystem or 
at commercial providers. 

 ° Transfer speeds are also currently sufficient, but will need to keep pace with data 
volumes and a growing need to access external computation.

 − The current storage capacities at BES light source facilities are often insufficient to handle 
the expected data volumes for future upgrades. The most data-intensive facilities are 
expected to have steady-state data rates approaching 10 PB/year, and peak data rates during 
burst acquisition of >1 TB/hour. 

 − After a number of BES light source upgrades, it will be impractical and unreasonable  
to support the scale of computing required with local resources only. BES user facilities  
are increasingly partnering with DOE HPC facilities to deliver a new model of  
computing, tightly coupling experiment instruments and supercomputers to accelerate 
scientific discovery. 

 − BES user facilities of the future will rely on a pipeline that facilitates data transfer from 
experimental source to different layers of computation. These computational capabilities 
could be edge computers close to experiments that will facilitate AI and ML tasks, as well 
as midcapacity and HPC infrastructure in national labs to produce simulations and operate 
analysis workflows. These resources will guide experimental investigation and accelerate 
materials as well as fundamental physics discoveries. 

 − DOE HPC facility allocations are not automatic and must be applied for on cycles. When 
they run out, it can sometimes be hard to request more. Having a more stable way to rely 
on HPC resources at a given facility (or several interchangeable facilities) is desirable. BES 
would like to explore having a permanent allocation for use, instead of having each facility 
(or principal investigator (PI)) have to request each time. In the future, BES may have 
fewer dollars to spend on storage and computation. Having a permanent way to address 
computing challenges would alleviate some of this pressure off the workflow. It would also 
lend itself to simplified use cases, using standard APIs, and less bespoke ways to address 
the overall challenge of data reduction, analysis, or storage approaches. 

• Remote Collaboration and Operational Requirements:

 − Current remote science activities remain primitive, and reflect the results of a rapid 
deployment process to cope with the COVID pandemic. As these approaches adapt, remote 
engagement among scientific collaborators is necessary, and future facilities will need to 
support remote progress. Outstanding challenges include:

 ° Developing and deploying tools to facilitate remote data acquisition and analysis.

 ° Providing a remote instrument control experience commensurate with that one can 
obtain while local to the instrument. 

 ° Providing remote data access through the facility, or linked to cloud storage solutions 
within the DOE facility space, or through the use of commercial cloud vendors. 
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 ° Increasing the capabilities to support streaming data analysis, when the size and time 
constraints of bulk-data movement are not possible due to users without access to 
dedicated computation or storage resources, or a lack of sophisticated software tools.

 ° Finding future network solutions that integrate seamlessly and provide high-speed 
connections to instruments, storage, and computation. 

• Multifacility Computational Workflows:

 − Users at BES facilities often leverage the complete ecosystem of available DOE 
capabilities. The process of science often involves combining and analyzing data from 
multiple sources. As data rates and complexity continue to increase, sufficient  
networking connectivity, bandwidth, and reliability is required to connect measurement 
facilities, a computing facility, and user home institutions to enable effective data 
management and analysis.

 − BES use of DOE HPC facilities for computational needs does have some limitations: 

 ° Tying a workflow to resources that are not directly controlled by a BES user facility 
or experiment means that if the resources are not available (e.g., due to scheduled or 
unscheduled downtime), it is often not possible to migrate allocation time, research 
data, or code to execute at the last minute. This could be mitigated with the ability to 
more easily port allocations between facilities or resources. 

 ° There is no universal DOE HPC API, which means code written for one facility may 
not work at others natively. 

 ° Allocation resources are finite, and if they expire and are not renewed, data must be 
migrated elsewhere. 

 ° Having a more stable way to rely on HPC resources at a given facility (or several 
interchangeable facilities) is desirable. 

 − BES light source facilities use several DOE HPC facilities for storage and processing. 
Manual, or automated data-movement processes, can move data (bulk or streamed) for 
real-time and offline analysis. For the most demanding computational problems, large-scale 
computing facilities must be used, including the Argonne Leadership Computing Facility 
(ALCF), the National Energy Research Scientific Computing (NERSC) Center, and the 
Oak Ridge Leadership Computing Facility (OLCF). Sending data from a light source 
facility to the HPC facility requires a data path of sufficient bandwidth.

• Domestic Networking for Local and Wide-Area Data Mobility:

 − As data rates and volumes continue to grow, greater demands will be placed on facility, 
DOE national laboratory, and national networks. Each facility is investing considerable 
effort, and working with laboratory IT staff, to re-design the data architecture components. 
BES is moving toward models where complex analysis pipelines are being considered, with 
BES users becoming interested in exploring how to schedule network capabilities, and 
real-time computational resources, to be available during experimentation. 

 − BES users experience complications when sharing data across administrative boundaries 
due to security policies within and between BES user facilities. Identity management 
continues to be a friction point, and is exacerbated in a multifacility workflow model where 
a user may need to authenticate to multiple locations, using multiple identities, on a regular 
basis. A unified way to handle identity is still highly desirable.

 − BES user facilities that leverage DOE HPC resources will continue to expand in the 
coming years, placing heavy emphasis on ESnet connectivity to manage traffic across 
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the country. DOE HPC facilities must keep pace with upgrades at BES user facilities, 
particularly the light sources, to ensure ample capacity to support the scientific mission.

 − By the end of the decade, data aggregated at rates of multiple terabits per second (100–300 
Gbps within three years and exceeding 1 Tbps in five years) may flow via ESnet from any 
of the DOE light sources to any of the DOE HPC facilities. There is an urgent need to 
upgrade the light source to ESnet connections at some of the laboratories to 400 Gbps and 
above to match the input bandwidth at ASCR computing facilities within the next  
two years.

 − All DOE national laboratories supporting BES user facilities are connected to ESnet 
with at least 100 Gbps, with most making plans to increase this to multiples of 100 Gbps, 
or 400 Gbps, in the two- to five-year timeframe. These laboratories also feature Science 
DMZ architectures. These vary in implementation, but have commonality in offering 
high-performance network connections to support data transfer, dedicated DTN hardware, 
availability of Globus for transfer, and participation in regular perfSONAR testing. 

 − Use of cloud storage solutions to support the long-term storage of research data is 
increasing, but is still done in an ad-hoc manner. DOE SC must focus on addressing 
questions regarding the long-term archival storage of facility data, and if it will be stored 
at each facility, in a central DOE HPC center, or in commercial clouds. If facilities are to 
be responsible for long-term storage of user data, then consideration and commitments 
regarding scientific mission, funding for storage resources, and increases in-network 
capacity for access will be needed.

• Emerging Needs:

 − There is limited subject-matter expertise to address technical challenges in the use of HPC 
resources within the BES community. BES leverages HPC expertise from each of the 
facilities when possible, but finds it hard to also grow this within the community of users 
who also know the underlying science use case. 

 − Autonomous experiment steering at BES light source facilities will be crucial to future 
experiment success, and requires that a number of gaps in capabilities and infrastructure  
be addressed:

 ° Sufficient and reliable bandwidth. 

 ° Sufficient and sustainable data storage resources.

 ° On-demand access to large-scale computing systems. 

 ° Transparent access to facilities and systems through federated identity and shared  
data protocols.

 ° Software tools and infrastructure to facilitate the development of scientific  
data workflows. 

 − The rapid advancement in AI/ML algorithms, improved shared workflows, and the advent 
of exascale computational resources make it possible to create a physically informed 
virtual platform to perform experimentation: digital twins. Digital twins are computational 
environments designed to mimic a physical experiment, and will help guide a research 
question from conception to synthesis and measurement. Digital twins will:

 ° Facilitate the creation of a virtual environment to exhaustively explore  
experimental controls. 

 ° Import experimental read-outs at any time to provide instant synthetic read-outs.
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 ° Create data that can iteratively be used as training for model improvements.

 ° Allow for a small subset of simulated experiments to be explored in actual experiments 
at the SUFs. 

 − The further development and application of digital twin simulations supporting 
experimental design and operation requires that a number of gaps in capabilities and 
infrastructure be filled, including sufficient and reliable networks, data storage resources, 
computing systems, transparent access to facilities via federated identity and shared data 
protocols, and software tools to operate across the DOE’s distributed resource landscape.

 − A number of high-performance computation and quantum simulation users and 
collaborations currently use multiple facilities and locations to accomplish science goals that 
cross the DOE, commercial, and university complex. 

 ° Calculations and simulations of quantum systems, materials, and molecules use a 
variety of platforms for hybrid computing, encompassing midsize compute cluster and 
storage systems owned by universities, and high-performance architectures at DOE 
national laboratories. 

 ° A future hybrid computing strategy will require tighter integration of classical and 
quantum resources for an overall multitiered approach to computing. In this case, a 
quantum processor becomes a co-processor on which certain tasks are offloaded, but 
will require real-time data movement. The data transfer would be small, but real-time 
transfer will be critical between resources. 

 ° Data accessibility, searchability, and usability is a key issue for quantum simulation, and 
improvements to enable high-throughput scientific workflows will be required. 

 ° Data sharing is primarily challenged by data formats and searchability, and for certain 
classes of simulations the size of the data to be transferred remains a significant issue  
to solve. 

 ° There are significant needs for software that performs well on heterogeneous 
computers. In addition, cloud computing could be an area of need in the future in 
terms of resources and interoperability.

Lastly, ESnet will follow up with review participants on a number of high-level recommendations that were 
identified. These items are listed as guidance for future collaboration, and do not reflect formal project  
timelines. ESnet will review these with BES participations on a yearly basis, until the next requirements review 
process begins:

• Facility Management and Readiness:

 − ESnet will work with BES user facilities and host DOE national laboratories on strategies 
and implementations of advanced networking to address pending capability upgrades. 
These discussions will focus on:

 ° Increasing network capacity to address growing data volumes between BES user 
facilities, collaborators, and DOE HPC resources.

 ° Implementing advanced services that can address scientific requirements for data 
management, mobility, and remote operation.

 ° Understanding and implementing peering policy to reach networks and resources of 
interest, including commercial cloud providers.

• Scientific Data Management:
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 − ESnet, ASCR, and BES will continue to work to understand the implications of increased 
data rates from facilities through yearly engagements. The estimates in this report show that 
within 10 years, aggregated data rates of multiple terabits per second flowing across ESnet 
from any of the light sources to any of the DOE HPC facilities may be possible. There is an 
urgent need to upgrade the light source to ESnet connections at some of the laboratories to 
400 Gbps and above, to match the input bandwidth at ASCR computing facilities within the 
next two years.

 − BES will continue to work on the ongoing design, development, and adoption of the 
Bluesky framework: a way to streamline data acquisition (DAQ) and ease the process of 
collecting and comparing data. Given that a number of BES light sources plan to implement 
the Bluesky databroker/tiled software for data management, in order to move to a consistent 
“data API,” future integration with network-layer services may be possible when using 
remote DOE HPC resources across ESnet. 

• Scientific Workflow:

 − The five BES light source facilities, coordinated through the five-way LSDCSC, will 
engage with ESnet on networking topics. ESnet can advise this group as it works toward a 
unified vision for the distributed data infrastructure to enable user science, the DISCUS. 

• Computational and Storage Requirements:

 − ESnet, the BES light source facilities, the ALCF, NERSC, and the OLCF must continue to 
collaborate on network upgrade strategies.

 ° After a number of BES facility upgrades, it will be impractical and unreasonable to 
support the scale of computing required with local resources only. BES user facilities 
are increasingly partnering with DOE HPC facilities to deliver a new model of 
computing, tightly coupling experiment instruments and supercomputers to accelerate 
scientific discovery.

 ° BES user facility’s use of DOE HPC resources will continue to expand in the  
coming years and is estimated to top aggregated data at rates of multiple terabits per 
second. This will place heavy emphasis on ESnet connectivity to manage traffic across 
the country. 

 ° BES user facilities of the future will rely on a pipeline that facilitates data transfer from 
initial source to different layers of computation. These computational capabilities could 
be edge computers close to experiments that will facilitate AI and ML tasks, as well 
as midcapacity and HPC infrastructure in national labs to produce simulations and 
operate analysis workflows. These resources will both guide experimental investigation 
and accelerate materials and fundamental physics discoveries. 

 ° Networking must be able to robustly connect BES user facility instruments to remote 
computing facilities with low latency. 

• Remote Collaboration and Operational Requirements:

 − ESnet will explore mechanisms to support the following aspects of remote use of  
BES facilities:

 ° Supporting the network to enable the remote operation of instruments, either fully 
automated or through communication over telecommunications tools.

 ° Building high bandwidth/low latency paths to support computational and storage needs 
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between facilities.

 ° Enabling peering to cloud providers to support communication and collaboration tools.

 ° Encouraging the deployment of user-focused data portals to allow for data mobility.

• Multifacility Computational Workflows:

 − ESnet will continue to advise BES as the use of multimodal data increases, and crosses the 
boundaries between user facilities and DOE HPC resources. Multimodal data requires 
more sophisticated data processing and increases in computing capabilities. 

• Domestic Networking for Local and Wide-Area Data Mobility:

 − ESnet will continue to support R&D efforts within the BES community that are advancing 
use of network technologies to support scientific workflows. For complex analysis pipelines 
or high data rate experiments, it is anticipated that future users of BES facilities will have to 
schedule network capabilities and real-time computational resources to be available during 
the time of experiments. The BES community is coordinating with ESnet and DOE HPC 
facilities on possible solutions. 

 − ESnet will work with BES user facilities to increase the adoption of the Science DMZ 
paradigm, and the affiliated technologies that support network measurement (perfSONAR, 
DTNs) and data mobility (Globus). A number of BES user facilities and their parent 
DOE national laboratories have adopted these tools, but there remain gaps in automated 
approaches to use them regularly to support scientific workflows. 

• Emerging Needs:

 − ESnet will work with BES user facilities, and DOE HPC facilities, as autonomous 
experiment steering is more widely adopted. Given the implicit use of networks to join 
experimental facilities with DOE HPC resources, ESnet can provide high bandwidth, low 
latency network connections to ensure experimental success. 

 − Coupling digital twin simulations with experimental steering will become an increasingly 
relied-upon capability at the light sources as the decade progresses. Due to the high 
computational cost associated with data processing, reduction, and analysis, and of 
model training on such large datasets, the light sources will need to employ the use of 
geographically distributed computing facilities and data repositories.

 − ESnet will continue to work with BES on a strategy to support quantum computing and 
hybrid computing requirements from a network perspective: 

 ° It is expected that a hybrid quantum-classical model, where part of the calculations will 
be carried out on classical architectures and part on quantum hardware, will persist for 
a number of years, implying a transfer between the two platforms. 

 ° A number of high-performance computation and quantum simulation users and 
collaborations currently use multiple facilities and locations on a variety of platforms 
for hybrid computing to accomplish science goals that cross the DOE, commercial, and 
university complex. Data sharing will be required in this environment. 
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2 Review Findings

The requirements review process helps to identify important facts and opportunities from the programs and user 
facilities that are profiled. The following sections outline a set of findings from the BES and ESnet requirements 
review. These points summarize important information gathered during the review discussions surrounding case 
studies and the BES-managed user program in general. These findings are organized by topic area for simplicity 
and by common themes:

• Facility Management and Readiness

• Scientific Data Management

• Scientific Workflow

• Computational and Storage Requirements 

• Remote Collaboration and Operational Requirements

• Multifacility Computational Workflows

• Domestic Networking for Local and Wide-Area Data Mobility

• Emerging Needs

2.1 Facility Management and Readiness

• Although the data generated by individual experiments varies, over the next decade the 
combined data generation rates for some BES user facilities will reach the exabyte per year 
range. [Section 5] 

 − Processing power of hundreds of PFLOPps is expected to be available to fully analyze this 
data, which implies strong networking capabilities to link facility instruments to edge, local, 
campus, and centralized computing facilities reliability, and with low latency. 

 − Terabit per second networking and beyond will be required to handle the large amounts of 
data expected in the coming years. 

 − Upgraded facilities will feature a significant increase in the data throughput from today’s 
1–5 GBps to 200 GBps. Future planned upgrades are expected to increase the throughput 
to multiple TBps in the coming years. 

• The ALS is a user facility with 40 different beamlines and 2,100 scientific users per year from all 
over the world. The biggest change to our facility will be the transition to a diffraction-limited 
light source (ALS-U) starting in 2025. As complexity and data rates ramp up, preparing and 
testing data streaming workflows will be critical. ALS-U will need access to compute and 
analytics resources and the ability to schedule the required resources in advance. [Section 5.1]

• The APS is a scientific user facility that serves approximately 6,000 unique users per year via 
68 beamlines. The APS upgrade (APS-U) project will replace the entire APS storage ring. A 
one-year shutdown is required, and is scheduled to begin in April 2023. [Section 5.2]

• NSLS-II began user operations in 2015 and has hosted approximately 1,800 distinct researchers 
prior to the pandemic, with approximately 1,400 seen during the pandemic years. The NSLS-II 
currently operates 28 beamlines, each with its own unique data generation characteristics. 
Depending on the beamline and measurement, beam time may range from a few hours to more 
than a week in duration. [Section 5.3]

• The LCLS, located at the SLAC National Accelerator Laboratory, features 10 specialized 
instruments. LCLS has had over 13,000 scientific user visits, and more than 3,000 unique users 
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over the course of operation. On average, LCLS has around 1,000 users, and 700 unique users, 
every year. Unlike at a synchrotron where X-rays can be delivered to multiple instruments 
at once, the linear accelerator can deliver X-rays to only one instrument at a time, although 
it is possible for other experiments to run parasitically using the X-rays that pass through the 
upstream instrument. As a result, there are usually one or two experiments during a shift. 
[Section 5.4]

• The SSRL has 32 operational beam line stations on SPEAR3, of which 26 can operate 
simultaneously. SSRL provides facilities to approximately 1,700 unique scientists per year 
(pre-pandemic). [Section 5.5]

• The SNS and the HFIR are both DOE BES scientific user facilities at Oak Ridge National 
Laboratory (ORNL). Between the two user facilities, there are 2,000 people who wish to access 
data remotely per year, and typical beam time requests range from 2 to 16 days. [Section 5.6]

• The CFN is a NSRC operated for the US DOE at BNL. Scientific projects at CFN fall under 
three nanoscience themes: nanomaterial synthesis by assembly, accelerated nanomaterial 
discovery, and nanomaterials in operando conditions. CFN is not a single collaboration. The 
CFN facility includes advanced instrumentation in nanolithography, materials preparation, 
electron and photon probes, and computational resources. [Section 5.7]

• The Center for Integrated Nanotechnologies (CINT) is a DOE Office of Science NSRC 
operating as a national user facility. As a vibrant partnership between LANL and SNL. CINT 
has users from most US states (42) and many (26) foreign countries. In a typical pre-COVID 
year, CINT would host approximately 800 users both on-site and remotely. [Section 5.8]

• The CNM at ANL is one of five NSRCs operated by the DOE Office of Science. During FY21, 
the CNM hosted 349 on-site and 353 remote user researchers from academia, DOE national 
laboratories, and industry. [Section 5.9]

• The CNMS at ORNL is a nanoscience user facility that provides services to users in areas of 
nanofabrication, synthesis, theory, and characterization. The CNMS serves over 600 unique 
users each year. In FY2021, 70% of our users were nonlocal, with 120 US institutions from 36 
states and territories, and 43 foreign institutions from 24 foreign countries. [Section 5.10]

• TMF is one of five national user facilities for nanoscale science that serves roughly 1,000 
academic, industrial, and government scientists around the world each year. Users come to 
the Foundry to perform multidisciplinary research beyond the reach of their own laboratory. 
[Section 5.11] There are seven facilities at TMF:

 − Imaging and Manipulation of Nanostructures

 − Nanofabrication Facility 

 − Theory of Nanostructured Materials Facility

 − Inorganic Nanostructures Facility

 − Biological Nanostructures Facility 

 − Organic and Macromolecular Synthesis Facility

 − National Center for Electron Microscopy (NCEM)

• Some NSRCs are located at higher-security facilities, and because of this must use in-house 
resources. Security compliance can be tricky to manage at a number of BES user facilities, and 
some struggle with the need to accommodate the requirements, but also make data accessible. 
It can be a struggle to migrate even small data sets to users in ways that do not violate cyber 
security requirements. This event has resonated by showing lots of national-scale resources are 
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available, and it is a worthwhile exercise to explore what options may be available to leverage 
HPC facilities and ESnet for future collaborative efforts. [Section 6]

• The Materials Project (MP) provides open web-based access to computed information on known 
and predicted materials, as well as powerful analysis tools, and now serves a community of over 
200,000  registered users. [Section 5.18]

2.2 Scientific Data Management

• Each BES user facility has different requirements surrounding data handling: the relative 
data volumes, the processing steps required, and the analysis and interpretation of data vary 
depending on the facility, measurement technique, detector(s) utilized, and scientific goal. The 
size of the data may vary from a few megabytes to hundreds of terabytes. Some form of data 
processing or reduction is usually performed immediately after data is collected. [Section 5] 

• BES-funded light sources often house multiple beamlines and instruments. Most operate 24/7 
for eight to nine months a year with multiple user groups running concurrently. Experiments 
are diverse in their data size with a daily rate ranging from 10 MB (X-ray spectroscopy) to many 
TB (imaging and tomography). In many cases, data is transferred from the host facilities to the 
users for analysis using portable drives or data-transfer tools. [Section 5]

• The increase in brightness and advances in detector data rates at BES user facilities will 
generate substantially more data than contemporary equivalents, e.g., multiple orders of 
magnitude more data than is generated today. These advancements will require step-change 
improvements in networking, controls and data acquisition, computing, workflow, data 
reduction, and analysis tools to operate effectively. [Section 5]

• Upgraded BES light and neutron source data generation rates may be too large for traditional 
file-based workflows, which will facilitate a move to streaming-based workflows directly to 
computer system memory, requiring robust facility and Laboratory networking, and increases in 
data processing capabilities throughout the DOE scientific complex. [Section 6]

• BES light source scientists and users actively develop and support data management tools that 
assist during the full data lifecycle from acquisition to storage and analysis. These tools include: 
[Section 5.14]

 − Software to detect, package, and transfer data.

 − Database systems that register data and metadata, to allow search and organization.

 − Workflow tools that allow both user-driven and automated processing that leverage local 
and remote HPC resources. 

 − Web portals that allow users to view or download results or seamlessly move data into an 
interactive analysis environment for further processing.

 − Access to storage and computing local to the facility. 

 − An increasing availability of common APIs for accessing network and computing resources, 
parallel data-transfer tools, high-fidelity data transfer, network performance monitoring, 
reservations, and dynamic network provisioning.

• Data rates and volumes for BES light sources can range from several MB per month to 3 GBps 
currently. Datasets can be as small as 1 GB, or as large as 1–10 TB in size. Future light source 
upgrades may produce a PB per shift, or several PBs per experiment. [Section 5.14]

 − Many BES user facilities feature automated methods to manage data volumes to use local 
computation and storage resources, or data mobility tools to facilitate transfer to DOE HPC 
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facilities reached via ESnet and other research and education (R&E) network providers. 

• The use of multimodal data requires more sophisticated data processing, and will require 
increases in computing capabilities, which can include training AI/ML models as well as 
real-time analysis and feedback for autonomous experiment steering. The BES light sources 
are exploring the utilization of edge-computing resources, coupled closely with detectors and 
instruments, to facilitate AI/ML data reduction algorithms. [Section 5.12, Section 5.13]

• Access to data generated by BES user facilities is typically governed by the user agreement, a 
legally binding document. In many (most) cases, the data is owned by the users, not the facility. 
In some instances, data is open and available, given there are no restrictions on the collected 
data beyond understanding how it was taken and managed. [Section 5.11]

 − Data sharing is extremely difficult. Many users come through the facility, and keeping track 
of whose data is where is far too time consuming. None of this has been automated, as it 
takes a dedicated team of professionals to keep such a system running.

 − For large datasets, data storage and movement are bottlenecks in current workflows. 

• Data movement and data processing are critical for scientists and researchers, particularly once 
they have performed their experiments or simulations. Steps include: [Section 5]

 − Data acquisition via computational simulations or experiments.

 − Data movement, cataloging, and archiving.

 − Data analysis and visualization.

 − Fitting to models and analysis of the processed data for structure, function, or  
dynamics information.

• The SNS First Target Station (FTS) at ORNL is constructing the Versatile Neutron Imaging 
Instrument (VENUS). It will require 10 Gbps networking to support the expected data volumes; 
initial estimates are that VENUS will produce 20–30 TB of raw data per day. Reduced data 
will be a fraction of that amount, but the intention is to keep all raw data. The next-generation 
detector in development (five+ years) will have approximately 16 times the data requirements. 
[Section 5.6]

 − The SNS Second Target Station (STS) will add a new suite of instruments to the SNS 
during the next 10 years. The data rates and storage needs are not well defined at present, 
but it is safe to assume that the STS will add another 30% to networking and storage 
requirements over the current FTS plus another VENUS-like instrument.

• A planned collaboration between the CFN at ANL with LBNL to operate a high frame rate 
camera, capable of generating data rates of 50 GBps, suggests that about 1 PB per year will be 
generated. [Section 5.7]

 − In the next two to five years, additional direct detection capabilities will likely be added 
with acquisition of new Scanning/Transmission Electron Microscopes (STEMs) which 
could drive the data generation rate up to as much as 4 PB per year. 

• The BES NSRCs still struggle with data management approaches due to a number of 
technological gaps. [Section 5.16]

 − Data is collected by users and staff either through network transfer (email, ftp) or encrypted 
USB drive as required by host DOE national laboratory security policies. 

 − Many instrument computers are not networked due to patching and reboot requirements, 
so data must be transferred via USB drive. The dataset sizes at most of the NSRCs are  
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1–10 GB. 

 − Some collaboration and data sharing are allowed through cloud resources, primarily  
Google Drive.

 − Limited data movement capabilities, which though not currently an operational inhibitor, 
will become so as data volumes increase. 

• Most microscopy dataset collections are in the 1–10GB range, with more for electron 
microscopy (can be >10GB for a single dataset in that instance). [Section 5.16]

 − The difficulty usually lies not in storage but in analysis, so that there is enough feedback 
for how to optimize measurement parameters before the user departs. For large files, data 
transfer can be an issue if the institutions involved do not possess Globus endpoints.

 − STEM devices typically have data rates of approximately 100Mbps, and 4D-STEM can 
increase this to greater than 100Gbps. Data reduction using edge processing is critical to 
handle the volumes of the latter. 

• NCEM at TMF has nine electron microscopes, of which four are large data generators:  
[Section 5.11]

 − TEAM I generates datasets that range in size from 10–50 GB over the course of 10 minutes, 
and several can be generated per day. 

 − TEAM 0.5 generates data at 480 Gbps, with maximum data sets being 700 GB over 
a 15-second run. To support this use case, the data must either be reduced locally or 
transferred directly to NERSC (via dedicated 100 Gbps campus networking). It can 
produce 20 datasets (14 TBs) per day, but this is currently limited by the data reduction 
time more than the ability to use the instrument. Data generation will increase by 25% in 
the one-year time frame, after an upgrade. 

 − TitanX generates data in the 100 MB–2 GB range. Several of these can be acquired per day.

 − ThemIS generates datasets in the range of 10–50 GB in a few minutes. Several of these are 
acquired per day.

 − A new transmission electron microscope (TEM), similar to TEAM I, will arrive in one to 
two years.

 − A new TEM, similar to TEAM 0.5, will arrive in three+ years. 

• The near real-time interpretation of structure revealed by X-ray diffraction requires significant 
computational resources. The analysis pattern is characterized by bursts of short jobs, requiring 
very short startup time. Current data collection rates are about 15 TB/day for high compute 
experiments. Within three to five years, it is expected that this rate will increase to 500 TB/day 
and in five+ years to > 1 PB/day. [Section 5.14]

 − 4D cameras can operate at 350 Gbps, and can produce 5 PBs of data per year. These types 
of data rates will only increase in electron microscopy due to the increased proliferation and 
continued development of high-speed electron detectors. 

 − Most of the data from microscopy collaboration is first reduced before it is shared over 
cloud storage. Globus is often used to transfer files to local storage to run analysis on  
HPC systems.

 − The size of datasets for frontier electron microscopy experiments (tomography, 4D, high 
frame rate) makes it infeasible for users to download the full dataset, and impractical to 
browse the dataset looking for information of interest. This points to the need for remote 
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interfaces for data browsing and analytics.

• Key elements of a future data management strategy for the light sources include a common API 
for accessing network and computing resources, parallel data-transfer tools, high-fidelity data 
transfer, network performance monitoring, reservations, and dynamic network provisioning. 
[Section 5]

• Scientific characterization tools have been pivotal to increasing our understanding of 
nanoscience. Substantial bottlenecks exist between the data streams emanating from these tools, 
and the feedback from theoretical and simulation insights. Directly coupling the microscope 
data to simulations in real time to assist the experimenter is of crucial importance in the quest 
towards automation and autonomous materials and physics discovery platforms. [Section 5]

• The software being used across facilities is currently highly heterogeneous. There is not 
currently a single, integrated plan for the software systems that will be deployed. [Section 5.16]

 − NSRCs host commercial tools from a multitude of vendors. This makes inevitable 
interacting with a large number of different software systems, many of which use 
proprietary data formats. It remains a significant challenge to integrate these tools with 
automated workflows. 

 − Cross-facility integrated datasets face a substantial challenge with respect to acquiring 
and preserving suitable metadata. Improved software tools for acquiring, transferring, and 
browsing/searching through metadata are necessary.

• Data rates for next-generation electron microscopes exceed typical local infrastructure 
capabilities. As microscope data rates will increase even further in future iterations, it is 
necessary for future network and storage infrastructure to be up to the task of handling these 
data rates. [Section 5.16]

• First principles molecular dynamics (FPMD) simulations generate datasets of tens to hundreds 
of terabytes. [Section 5.17]

 − The diverse and heterogenous data generated may not reside on the HPC facilities where 
they have been created for future access, curation, and reuse, which necessitates data 
transfer between collaborators. 

 − Globus is used through ESnet for the transfer of datasets at different stages of investigation. 

 − Most of the data storage and transfer speeds are appropriate for quantum simulation, and 
this is unlikely to change within the next several years. 

• There is not a common practice on how BES user facilities are handling data storage 
requirements. Some facilities attempt to store all data in perpetuity, others have tried to put 
sensible policies in place to cycle out the oldest data as space becomes limited, and others still 
may rely on time-based allocations that delete based on age alone. [Section 6]

• It is desirable to consider the use of DOE SC facilities for experimental data storage, but 
moving toward this model will require addressing some challenges within BES. Export 
controls, and other security policy differences between facilities, remain a large hurdle to a 
universal solution. A secondary problem is the lack of a unified data storage and metadata 
cataloging framework; these issues remain challenging since automating this is often hard, 
and experimental users often skip this step in the rush to acquire and publish research results. 
[Section 6]

• The amount of data produced by some BES instruments is growing beyond current capabilities. 
Thus, a standard approach to deal with current (and future) technology with unified software, 
computation, and storage is desirable. The NSRCs and neutron sources currently employ a 
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heterogenous approach, which must change to be more uniform. This heterogenous comes from 
having environments where a number of different types of instruments, each with a different 
software stack (some of which may be vendor specific), are integrated into a user facility. This 
environment does not lend itself to creation of a standard workflow without a lot of custom 
software and APIs. [Section 6]

• Data needs from MP users range from highly frequent requests for common objects (hundreds 
of GB to TB sized downloads), to less frequent, but larger, data objects (tens to hundreds of TB). 
[Section 5.18]

 − The need to transfer data to and from MP is expected to increase as third-party 
contributions of data grow. 

 − Transferring data between DOE facilities remains cumbersome; MP is trying to move 
toward accessing other facilities from the cloud, and would like to see templates developed 
in this use case to allow other facilities to set up cloud resources and then connect on the 
Virtual Private Cloud (VPC) level within Amazon Web Service (AWS) regions. 

• BES would like to investigate the emerging use case that allows for streaming data during 
analysis. One concept that has stopped BES, as well as a number of other communities, has 
been the challenges in having HPC worker nodes stream data directly from a remote repository. 
The typical use case has always been to perform a bulk-data movement to scratch storage, since 
worker nodes often do not have the ability to perform a wide-area transfer directly. Ongoing 
research by DOE HPC facilities to enabling different approaches that may help this problem. 
These approaches are being explored by other DOE communities, including facilities and 
experiments from High Energy Physics (HEP). [Section 6]

To better align future upgrades of technology components, understanding how the relationship between upgrade 
capabilities (e.g., detector area captured, readout rate, etc.) will influence the requirements for networking, 
central processing unit (CPU) memory and bandwidth requirements, and overall storage volumes is desirable. 
Currently there is not a one-to-one relationship between any of these items; the BES community notes that any 
technology upgrades that can be provided by ESnet or the HPC facilities will ultimately improve the scientific 
process until the next bottleneck is reached. [Section 6]

2.3 Scientific Workflow

• There are two primary data flow paths for a generalized BES workflow: [Section 6]

 − Acquisition from an instrument, with data then flowing to local storage

 − Migration from local storage to long-term storage, an analysis facility, or sharing  
with collaborators 

• Consistent with the user agreements that typically includes data ownership by the users, users 
of BES facilities are assigned allocations to use instruments for experimentation, but no explicit 
long-term computation or storage at DOE HPC facilities is provided as a part of this process. 
Users are given access to their data when on-site, and encouraged to take it with them, as there 
are rarely resources that can support long-term custodial storage. [Section 5]

 − A number of BES user facilities are limited in the scope and capabilities of resources they 
can provide after the experimental phase has completed: [Section 5]

 − Data is often stored at the facility for a short period of time, provided local storage 
resources are available. Backup facilities (e.g., institutional or cloud-based) are  
not guaranteed. 

 − Users are encouraged to take a copy of their data; most do via the use of cloud storage, 
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external media transfer, or high-performance DTNs and Globus when available. 

 − Local computational resources vary, and can range from multiprocessor workstations with 
analysis tools, to larger clusters that run dedicated workflow tools. A number of facilities 
have integrated with DOE HPC resources that may offer limited resources under an 
institutional allocation.

 − The lack of a uniform data pipeline standard that spans facilities causes issues, such as 
differences in metadata associated with different data types and different levels of data 
manipulation. To reach a stable and universal environment, the BES community must 
create standard data formats. Software development framework, sample tracking, metadata 
capturing, and labeling are required. 

• The BES instrumentation landscape remains complex, with a number of experimental 
components unable to be operated as integrated components of a larger facility. Many 
instruments are operated stand-alone; in some cases, the instruments do not have sufficient 
storage needs and must be manually integrated into institutional or national-level storage and 
computation resources. This often reveals significant networking challenges in ensuring ample 
capacity and low latency. [Section 5]

• There are a number of different sources/sinks for BES user facility data, depending on the 
workflow: [Section 5.14]

 − BES user facility to DOE HPC facility.

 − BES user facility to user facility or DOE national laboratory.

 − BES user facility to university.

 − BES user facility to cloud computing/storage.

• BES Synchrotron facility to an DOE HPC facility is the most heavily used for streaming 
analysis to process raw data or do post-experiment analysis, as well as archive historical data, 
train and retrain AI/ML, and use simulations to inform experimental process. [Section 5.14]

• The BES workflows between DOE national laboratories are exercised when multimodal 
analysis is desired, or if a lab/university has a specialized local computing resource used for 
analysis. [Section 5.14]

• The BES user facility to university use case is mostly used to do the slow transfer of data sets 
post-experiment to a users’ local storage/computing resources. [Section 5.14]

• The BES user facility to cloud computing/storage is not used by the facility but may be 
employed by users. [Section 5.14]

• Data acquisition collects all aspects and metadata. A single measurement is called a run, and 
experiments are composed of many runs. Collections of runs may be grouped into a reduced 
data set. Stored procedures are executed on computing clusters at the end of every run such 
that reduced data can be provided to the users as soon as possible following the end of data 
collection. [Section 5.15]

• A typical BES light source facility workflow can be summarized as: [Section 5.14]

 − Application and execution of facility time for experimentation; this can be done in  
person or remote.

 − Generally, experimental data is first stored on a computer attached to the acquisition 
detector or some other facility storage system. 
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 − Use of integrated management software tools during data acquisition phase.

 − Immediate analysis using local resources, or possible data mobility to remote resources 
such as DOE HPC facilities.

 − Data reduction and analysis rely heavily on the use of HPC, graphical processing units 
(GPUs), edge devices, and distributed computing environments to obtain results with near 
real-time completion. 

 − The final analysis and interpretation of the data for publication is generally carried out by 
the experiment team at their home institutions, is very experiment specific, and may take 
months or even years to perform.

 − Publication of results.

• Future adaptations to the generalized workflow used to support BES science will involve: 
[Section 5.14, Section 5.15, Section 5.16]

 − Integrated software to manage data movement, processing, and analysis.

 − More automated methods to handle adaptive/autonomous experiment steering (e.g., 
integration with simulation capabilities).

 − Categorizing and sharing of data with other national resources.

 − Increases in data volume due to the upgraded capabilities. 

• BES light source facilities are coordinating data management technology strategies through the 
five-way LSDCSC. This group produced a unified vision for the distributed data infrastructure 
to enable user science, the DISCUS. [Section 5.14]

• The BES NSRCs are experimenting with ways to automate their workflows. These may 
resemble the following: [Section 5.16]

 − Experiments involving synthesis or analysis. 

 − When instruments are involved, data is collected on local control device.

 − Data is typically analyzed on the associated local control computer using proprietary 
software, if the instrument is proprietary.

 − Data may be analyzed on a separate workstation if the data is nonproprietary. 

 − Transfer of data between computers or off-site takes place using encrypted USB or 
general network services. Methods for moving data can be dictated by host DOE national 
laboratory IT security policies, and may not be automated. 

• There is a need for common standards and shared workflows for data across the NSRCs which 
will not only provide an effective data solution, but will also enable cross-center data sharing, 
augmentation, and manipulation. NSRCs have different schemes and different levels of 
implementation for acquiring, labeling, storing, and providing access to the heterogeneous data 
generated. The lack of data pipeline standards causes issues, such as differences in metadata 
associated with different data types and different levels of data manipulation. Top address this, 
many levels of technical details need to be worked out: [Section 5.16]

 − Data formats.

 − Software development framework.

 − Sample tracking. 

 − Metadata capturing.
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 − Labeling.

 − Datasets from correlated measurements, and the corresponding simulations, need to be 
handled in a coordinated manner to extract synergistic information. 

• As BES user facilities increase data volumes generated through experimentation, the effective 
utilization of high-rate data streams and real-time management of experimental conditions will 
become more critical. This process will involve: [Section 5.14]

 − Improved methods to cope with raw data management (e.g., high rates and volumes  
from instruments).

 − Developing suites of tools to optimize facility usage that focus on integrated data 
management, analytics, and simulation.

 − Integration of AI/ML approaches to automatically steer experimental progress. 

 − Tightly coupled operation between experimental facilities, analysis and computational 
resources, and networks. 

 − Adoption of digital twins to improve the overall design and utilization of limited  
instrument access. 

• A number of BES light sources plan to implement the Bluesky databroker/tiled software for the 
initial data management layer to enable a data acquisition system consistent with the other light 
sources. This has been developed as a collaborative open-source project. This system aims to 
provide a consistent “data API” rather than prescribe a given on-disk data format. [Section 5.14]

• Future lab instruments should expose a standard API to accommodate automation of data 
acquisition. This will allow users to devise integrated experimental workflows and leverage 
resources that span institutional boundaries. [Section 6]

2.4 Computational and Storage Requirements 

• BES user facilities face three primary challenges in the coming years related to computation, 
storage, and networking: [Section 5.14, Section 5.15, Section 5.16]

 − Data storage is currently sufficient but will become a significant concern as facilities 
upgrade, and data volumes increase.

 − Access to computation is particularly limited for experimental and theory groups. When  
it cannot be used locally, it must be found either within the DOE ecosystem or at 
commercial providers. 

 − Transfer speeds are currently sufficient, but will need to keep pace with data volumes, and a 
growing need to access external computation.

• BES light source facilities adopt a graded approach to resource utilization: [Section 6]

 − Multicore processors and GPU units are typically available local to beamlines.

 − Most BES light sources feature a set of on-site computing and storage cluster resources that 
can be used as needed.

 − Laboratories maintain computing resources as a part of their institutional  
computing programs.

 − DOE HPC facilities (e.g., the ALCF, the NERSC Center, and the OLCF) are available via 
allocation procedure. 

• Data at BES light source facilities is transferred to a local beamline workstation, the facility 
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computing cluster, a computing center located on the intuitional campus, or resources such as 
DOE HPC facilities for processing. [Section 5, Section 6]

• The computational resources at BES light source facilities are limited, and meant to be used 
for temporary storage and limited processing jobs on CPU and graphics processing unit (GPU) 
machines that can be used for analysis on a first come first served (FCFS) basis. These are 
expected to grow as instruments are upgraded, but are still not able to meet the demand of 
all users. It is estimated that 50 to 80% of real-time analysis can be done locally, but that the 
remainder must use other DOE HPC resources. [Section 5.14]

• The current storage capacities at BES light source facilities are often insufficient to handle 
the expected data volumes for future upgrades. The most data-intensive facilities are expected 
to have steady-state data rates approaching 10 PB/year, and peak data rates during burst 
acquisition of >1 TB/hour. [Section 5.14]

• Typically, BES light sources can support storage requirements in the range of hundreds of 
TB of short-term retention, and beyond 10 PB for tape storage. Given the limited nature of 
the storage, retention is limited to weeks or months. Most are in the process of expanding 
networking capacity, and data-movement platforms, to better utilize DOE HPC facility 
resources. [Section 5.14]

• DTNs are often available at BES light sources for reliable, high-speed data movement. Users 
can download data at their home institutions by using Globus or other data mobility tools. Users 
often utilize their own “cloud storage” accounts (e.g., Google Drive, Dropbox, etc.) to transfer 
data. [Section 5.14]

• Most BES light source users complete their offline analysis in the four months following an 
experiment using computing at a facility, or through a DOE HPC allocation. On average, a 
typical user will rerun over their entire dataset up to 10 times. [Section 5.14]

• Taking advantage of available (local or remote) compute and analysis resources will become 
an integral part of BES experimental planning in the very near future. In order to deploy 
efficient analysis and ML approaches at the time of the experiments, workflows will have to be 
established, and ML algorithms will have to be trained on existing or simulated data. [Section 
5.12, Section 5.13]

• After a number of BES facility upgrades, it will be impractical and unreasonable to support 
the scale of computing required with only local resources. BES user facilities are increasingly 
partnering with DOE HPC facilities to deliver a new model of computing, tightly coupling 
experiment instruments and supercomputers to accelerate scientific discovery. [Section 5.14]

• BES user facilities of the future will rely on a pipeline that facilitates data transfer from 
experimental source to different layers of computation. These computational capabilities 
could be edge computers close to experiments that will facilitate AI and ML tasks, as well as 
midcapacity and HPC infrastructure in national labs to produce simulations and operate analysis 
workflows. These resources will both guide experimental investigation and accelerate materials 
and fundamental physics discoveries. [Section 5.12, Section 5.13]

• DOE HPC facility allocations are not automatic, and must be applied for each resource cycle. 
When an allocation runs out, it is sometimes a challenge to request more. Having a predictable 
mechanism to rely on HPC resources at a given facility (or several interchangeable facilities) 
is desirable. BES user facilities would like to explore having a permanent allocation for use, 
instead of having each facility (or PI) have to request each time. In the future, BES may have 
fewer dollars to spend on storage and computation; thus having a permanent way to address 
computing challenges will help to simplify the workflow. It will also lend itself to simplified use 
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cases, standard APIs, and less bespoke ways to address the overall challenge of data reduction, 
analysis, or storage approaches. [Section 6]

• The BES community lacks subject-matter expertise to explore new ways to address 
computational challenges. The BES community leverages HPC expertise from each of the 
facilities when possible, but finds it hard to grow this within the community of users who also 
know the underlying science use case. BES community members do not want to be experts in 
software or networking engineering. and relish adopting BCPs that the ASCR community can 
recommend. [Section 6]

• The NOMAD Repository is used to help with the public dissemination of output from the 
Materials Project, since it is able to provide a platform and means to publicly share and transfer 
large amounts of data that scales to a higher degree to meet user demands. [Section 5.18]

2.5 Remote Collaboration and Operational Requirements

• BES user facilities have adapted to the COVID pandemic by shifting to modalities that facilitate 
some remote scientific capabilities, away from more traditional models with an expectation of 
users being on-site. The BES user facilities anticipate that remote access will continue for some 
users and use cases, and thus is now a critical infrastructure component to support and grow 
from an experimental, computational, and networking perspective. Observations include, but 
are not limited to: [Section 5]

 − A mail-in process for the initial user sample analysis.

 − Remote operation of instruments; either fully automated or through communication over 
telecommunications tools (e.g., VNC, Zoom, Teams, etc.) to facility staff. 

 − Ongoing advances in robotic sample handling, automated data acquisition and data 
management, AI/ML to reduce human intervention, and other technology improvements to 
light sources and detectors.

 − Deployment of remote access tools that enable experimenters to run  
measurements remotely.

 − Remote login infrastructure that provides remote users access to web services, data 
management systems, and a data analysis infrastructure that allow for virtual access to 
enable on and off-site analysis.

 − Associated cybersecurity measures. 

 − Automated data mobility tools that include a set of high-performance DTNs as well as high-
performance software that enables transfer and sharing such as Globus.  

• Current remote science activities remain primitive, and reflect the results of a rapid deployment 
process to cope with the COVID pandemic. As these approaches adapt, remote engagement 
among scientific collaborators is necessary, and future facilities will need to support remote 
progress. Outstanding challenges include: [Section 5]

 − Developing and deploying tools to facilitate remote data acquisition and analysis.

 − Providing a remote instrument control experience that is commensurate with that one can 
obtain while local to the instrument. 

 − Providing remote data access through the facility, or linked to cloud storage solutions within 
the DOE facility space, or through the use of commercial cloud vendors. 

 − Increasing the capabilities to support streaming data analysis, when the size and time 
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constraints of bulk-data movement are not possible due to users without access to dedicated 
computation or storage resources, or a lack of sophisticated software tools.

 − Developing future network solutions that integrate seamlessly and provide high-speed 
connections to instruments, storage, and computation. 

2.6 Multifacility Computational Workflows

• BES multifacility workflows follow a common pattern: [Section 5.14, Section 5.15, Section 5.16]

 − Experimental and simulation data, computer resources, and collaborators are located in 
different locations, requiring remote use.

 − Simulations that can be used to guide and explain the observations encountered in the 
experiment are critical, and require fast processing and network access to be fully realized. 

 − When the compute infrastructure is used to inform experimental decisions (whether fully 
or semi-autonomously) the network transfer speed can be a significant limiting factor on 
experimental throughput.

 − During analysis execution at a remote HPC site the data stream can be about 1 Gbps, 
but is likely to increase by at least a factor of 10x within three years as more sophisticated 
methods of visualizing intermediate results are implemented. 

 − Significant computational needs beyond edge computing will be required in the future, 
including GPUs. 

• Users at BES facilities often leverage the complete ecosystem of available DOE capabilities. 
The process of science often involves combining and analyzing data from multiple sources. As 
data rates and complexity continue to increase, sufficient networking connectivity, bandwidth, 
and reliability are required to connect measurement facilities, a computing facility, and user 
home institutions to enable effective data management and analysis. [Section 5]

• BES use of DOE HPC facilities for computational needs does have some limitations: [Section 6]

 − Tying a workflow to resources that are not directly controlled by a BES user facility 
or experiment means that if the resources are not available (e.g., due to scheduled or 
unscheduled downtime), it is often not possible to migrate allocation time, research data, or 
code to execute at the last minute. This could be mitigated with the ability to more easily 
port allocations between facilities or resources. 

 − No universal DOE HPC API exists, which means code written for one facility may not 
work at others natively. 

 − Allocation resources are finite, and if they expire and are not renewed, data must be 
migrated elsewhere. 

 − Having a more stable way to rely on HPC resources at a given facility (or several 
interchangeable facilities) is desirable.

• BES light source facilities use several DOE HPC facilities for storage and processing. Manual 
or automated data-movement processes can move data (bulk or streamed) for real-time and 
offline analysis. For the most demanding computational problems, large-scale computing 
facilities must be used, including the ALCF, the NERSC Center, and the OLCF. Sending data 
from a light source facility to the HPC facility requires a data path of sufficient bandwidth.  
[Section 5.14]

• During operation of the upgraded BES user facilities, it is expected that local computing 
capabilities will still account for 80% of experiments and will require processing resources 
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on the order of 5 PFLOPS and storage capacities above 100 PB by 2027. These facilities 
must continue to use DOE HPC facilities for the other 20% of experiments with the largest 
computing demands, and will heavily leverage ESnet network resources to facilitate data 
mobility. [Section 5]

• Multifacility workflows contain a deep tie to networking resources, given that many facilities 
are separated by geographical location. As BES workflows become more time dependent, 
particularly those that may try to utilize computational output in a real-time fashion, networking 
is a critical component that must perform well consistently. If a primary link becomes saturated, 
or fails, the workflow could also fail. [Section 6]

• In typical closed-loop experiments, raw data is collected, handled, and stored at the location 
generated using instruments maintained by the experimental teams at their home institutions. 
Depending on the computational power required for data analysis, preprocessed data are either 
analyzed locally or shared across divisions/facilities that might be physically located at great 
distances. Data from multiple sources might need to be gathered at a centralized location for 
multimodal analysis, and transferred to facilitate AI/ML based decision-making. This data is also 
archived for long-term access at database facilities, which ideally should provide data access 
control management. [Section 5.12, Section 5.13]

2.7 Domestic Networking for Local and Wide-Area Data Mobility

• As data rates and volumes continue to grow, greater demands will be placed on facility, DOE 
national laboratory, and national networks. Each facility is investing considerable effort, 
and working with laboratory IT staff, to re-design the data architecture components. BES 
is moving toward models where complex analysis pipelines are being considered, with BES 
users becoming interested in exploring how to “schedule” network capabilities, and real-time 
computational resources, to be available during experimentation. [Section 5, Section 6]

• Typical BES user facility networks are designed to handle internal flows at lower rates of speed, 
and enable a pattern where data flows from the instruments to a centralized data management 
system: [Section 5]

 − In some instances, the facility networks are equipped with tools that directly facilitate 
external requirements via the Science DMZ approach, perfSONAR monitoring, or  
Globus transfer. 

 − In other cases, facilities may be integrated to larger laboratory infrastructure that can 
support these. 

 − In a few instances, none of these tools may be available due to security policy. The 
availability of tools and approaches to support wide-area use cases would be incredibly 
helpful to the process of science. 

• With the growing data volumes, local networking must also be upgraded: typically, the 1 Gbps 
control networks must be increased to 10 Gbps to allow for more seamless operation. As this 
occurs, the possibilities of integrating to national-level resources (such as HPC facilities) is also 
within reach for the majority of BES user facilities. [Section 6]

• BES facility use of DOE HPC resources will continue to expand in the coming years, placing 
heavy emphasis on ESnet connectivity to manage traffic across the country. DOE HPC facilities 
must keep pace with upgrades at BES user facilities, particularly the light sources, to ensure 
ample capacity to support the scientific mission. [Section 5, Section 6]

• By the end of the decade, data aggregated at rates of multiple terabits per second (100–300 
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Gbps within three years and exceeding 1 Tbps in five years) may flow via ESnet from any of the 
light sources to any of the DOE HPC facilities. There is an urgent need to upgrade the light 
source to ESnet connections at some of the laboratories to 400 Gbps and above to match the 
input bandwidth at ASCR computing facilities within the next two years. [Section 5.14]

• BES users experience complications when sharing data across administrative boundaries due to 
security policies within and between BES user facilities. Identity management continues to be 
a friction point, and is exacerbated in a multifacility workflow model where a user may need to 
authenticate to multiple locations, using multiple identities, on a regular basis. A unified way to 
handle identity is still highly desirable. [Section 6]

• All DOE national laboratories supporting BES user facilities are connected to ESnet with at 
least 100 Gbps, with most making plans to increase this to multiples of 100 Gbps, or 400 Gbps, 
in the two- to five-year timeframe. These laboratories also feature Science DMZ architectures. 
These vary in implementation, but have commonality in offering high-performance network 
connections to support data transfer, dedicated DTN hardware, availability of Globus for 
transfer, and participation in regular perfSONAR testing. [Section 5]

• Local area network (LAN) architectures to support BES user facilities vary in size and scope: 
[Section 5]

 − A number of the NSRCs may have LAN capabilities between 1 Gbps and 10 Gbps linking 
instruments and local computational resources. Some NSRCs must still traverse the 
institutional enterprise network to reach ESnet. 

 − The neutron scattering and light source facilities are currently connected at LAN 
capabilities between 1 Gbps and 100 Gbps for their instruments and local computing 
capabilities, with plans to move to large capacities in the coming years when upgrades 
occur at the facilities.

 − BES user facilities maintain strong ties with DOE HPC facilities that may share a parent 
DOE national laboratory. It is common to see solutions where new BES instruments are 
integrated directly into DOE HPC facility storage and computation, to ensure ongoing 
synergistic use of resources. This model is successful, and is encouraged to continue. 

• Networking must be able to robustly connect BES user facility instruments to remote 
computing facilities with low latency. Terabit per second networking and beyond will be 
required to handle the large amounts of data expected towards the end of the decade. There is 
a need to upgrade the facility and DOE national laboratory connections to ESnet to keep pace 
with the expected data rates [Section 5]

 − SLAC expects LCLS-II to require 200 Gbps in 2023 and 1 Tbps by 2028, enabling 
streaming data transfer from LCLS to ASCR computing facilities.

 − LBNL will be upgrading the laboratory ESnet connection from 2x100 Gbps to more than 
1x400 Gbps during the 2025–2026 time period to support use cases such as ALS-U. 

 − The APS network will refresh hardware in the two- to five-year time frame to support 400 
Gbps in support of the APS-U upgrade. 

 − The NSLS-II facility at BNL is connected via a 400 Gbps to the BNL High-Throughput 
Science Network (HTSN), and BNL will upgrade network capabilities in the one- to two-
year time frame to support 400 Gbps connectivity to ESnet. 

 − ORNL connects to ESnet via redundant border routers at 100 Gbps. The expectation is that 
these connections will soon be upgraded to 400 G connections.
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 − An emerging pattern for many BES user facilities is the use of streaming data reduction, 
which can reduce data volume in order to be able to write to disk and stream to DOE HPC 
facilities over ESnet. Throughput from the detectors could exceed 1 TBps by 2028, and 
local data reduction will reduce by a factor of 10 to about 1 Tbps over ESnet. 

• CINT’s most pressing network constraint originates in host laboratory security policy. Currently, 
CINT utilizes the host laboratory networks for connectivity of instruments and office computers. 
If an additional layer could be added that would satisfy host laboratory IT requirements (or not 
be subject to them) and allow easier movement of small data sets between the CINT facilities at 
the two host laboratories (or remote access to certain experimental tools to off-site, non-badged 
users), that would be a benefit to CINT. [Section 5.8]

• BES user facilities are increasingly looking into using commercial cloud computing, but there 
is no official policy or approach. Efficiency of workflow, and cost of service, remain factors in 
the choice to adopt this approach to computing and storage. A barrier to this adoption is often 
related to networking: [Section 5]

 − Ample peering capacity between DOE national laboratories, ESnet, and commercial 
providers remains a critical service.

 − The ability to create cybersecurity-approved linkages between commercial cloud enclaves, 
and that of BES user facilities located at DOE national laboratories, remains an important 
consideration. For example, enabling secure and persistent direct access and data transfer 
between commercial cloud resources and on-premise resources at other DOE facilities 
would significantly reduce the burden of contributing and linking data. 

 − High bandwidth/low latency connections between commercial providers and DOE 
resources will be important to ensure that data can be ingested into the cloud resources in a 
timely manner at all DOE facilitates, delivered via ESnet connectivity. 

 − Increased demand from the BES user community to integrate cloud services for both file 
transfer (e.g., Dropbox, Google Drive, etc.) and for communication (e.g., Slack) into all areas 
of the data lifecycle and compute workflows. 

• Use of cloud storage solutions is increasing, but is still done in an ad-hoc manner. In the long 
term, the DOE complex will need to answer questions about the long-term archival storage of 
facility data. If facilities are to be responsible for long-term storage of user data, then there will 
need to be consideration and commitments regarding facility mission, funding for storage, and 
network infrastructure for access.[Section 5]

• The MP infrastructure has invested heavily in the use of cloud services. Initially supported 
by LBNL and NERSC compute and data infrastructure, it is now transitioning to AWS cloud 
resources to serve the growing user base and usage patterns. [Section 5.18]

 − MP leverages DOE infrastructure for high-throughput computations and management: 
the core subset of the data is available via cloud resources, with less commonly used data 
handled directly through DOE infrastructure. A networking pipeline between the two 
environments is facilitated by ESnet peering relationships. 

 − No private connectivity exists between NERSC and AWS resources, which presents 
a significant roadblock in transitioning to a seamless cloud experience. Establishing a 
high-speed path, along with a security enclave, would significantly reduce the burden of 
contributing and linking data. 

 − Cloud resources can be cost prohibitive in storing and indexing very large datasets, 
or performing long-running computations in batch. The MP model leverages DOE 
infrastructure for high-throughput computations and large-scale data management services: 
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the core subset of the data is then made available via cloud resources, while less commonly 
used related data or source raw data can be handled directly through DOE infrastructure. 

 − Integrating cloud and DOE infrastructure in a seamless manner is possible, and can serve 
as a model for other projects that may need to scale infrastructure beyond the needs of 
DOE compute centers, while still making optimal use of DOE resources. 

2.8 Emerging Needs

• Networking is critical to achieve autonomous and “smart” characterization tools, and for physics 
discovery. [Section 5.12]

 − Data captured at synthesis and characterization tools can be processed and the 
experimental conditions updated. 

 − A sufficient amount of computational and networking resources to keep up with experiment 
flow are required to achieve this vision. 

 − As these approaches are computationally expensive, data needs to be transferred from the 
instrument to computation, and back, to provide instructions during autonomous  
data capture.

• Autonomous experiment steering at BES light source facilities will be crucial to future 
experiment success, and requires that a number of gaps in capabilities and infrastructure be 
addressed: [Section 5.12]

 − Sufficient and reliable bandwidth. 

 − Sufficient and sustainable data storage resources.

 − On-demand access to large-scale computing systems. 

 − Transparent access to facilities and systems through federated identity and shared  
data protocols.

 − Software tools and infrastructure to facilitate the development of scientific data workflows.

• Experimental facilities have a challenging task. Equipment acquisition rates are increasing 
along with the complexity and quantity of scientific questions; thus it is less possible to address 
questions without parallel advances in experimental design. [Section 5.12, Section 5.13]

 − Scientific instruments, combined with the use of robotics and high-throughput workflows 
for sample preparation/loading, can acquire measurements at ever-increasing rates and 
resolutions. 

 − Autonomous experiment steering leverages these advantages by addressing the bottlenecks 
associated with data processing and automatic decision-making by integrating data analytics 
and advanced AI/ML approaches.

 − Autonomous and automated experiments will become heavily adopted in the coming  
years, due to increases in efficiency and the elimination of analysis and decision- 
making bottlenecks. 

• The future of neutron scattering science and the study of quantum and functional materials 
will require large volumes of data, from multiple locations, comprised of simulations and 
experimental results, needing to be co-analyzed and used in ML. Networks are becoming 
increasingly important to this overall process, and the shift toward more automatic operation 
will also require ‘programmatic’ ways to search and retrieve large amounts of data.  
[Section 5.15]
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 − Future multifacility neutron experiments will require: [Section 5.15]

 − The ability to compute and transfer simulations and training data that may exceed 100 TB.

 − Capabilities to use pre-trained AI to automatically direct experimental outcomes.

 − The ability to support real-time analysis during experimentation.

 − Capabilities to support streaming, bulk movement, or datasets from instruments to reach 
remote computation and storage.

 − The addition of specialized computational resources and codes.

 − The ability to perform co-analysis with data sets from other experimental and  
computational facilities.

 − Connectivity via ESnet to bridge multifacility gaps.

• Multifacility workflows that span the NSRCs are developing and deploying methods and tools 
based on AI/ML to analyze electron scattering information. The expected increases to data 
velocities and volumes present significant challenges for moving, storing, and processing data. 
[Section 5.16]

• Policy differences between facilities within BES and ASCR can form large barriers to the 
adoption of autonomous steering approaches because they impart friction into a process 
that requires agility. BES user facilities will not share common definitions of security and 
policy with that of ASCR computing centers, which complicates the design and prototype 
development activities discussed during the requirements review. The common ground of 
requiring a baseline form of AAA implementation that spans facilities is desired, and it should 
apply at a facility, instrument, computation, storage, and data mobility level to ensure friction-
free operation. This will prevent circumvention of security and allow for a more automated 
environment so the community can move away from offline forms of operation. [Section 6]

• BES will employ more use cases for AI and ML in the future, and has experimented with edge 
computing both in or close to the border of the instrumentation and centrally located at large 
computing facilities. ESnet maintains a testbed that is exploring edge-computing options, as 
well as the aforementioned research into smarter APIs to interact with network functions. 
[Section 6]

• As networking and computational resources become more widely available, BES facility users 
respond by trying to double the amount of experimentation and data movement that may be 
accomplished in the same time frame. This scalability will have limitations. however, based 
on the previous discussions on workforce availability. Scientific output will track closely with 
technology upgrades, and the overall quality of experimentation will increase as well. [Section 6]

• The rapid advancement in AI/ML algorithms, improved shared workflows, and the advent 
of exascale computational resources make it possible to create a physically informed 
virtual platform to perform experimentation: digital twins. Digital twins are computational 
environments designed to mimic a physical experiment, and will help guide a research question 
from conception to: [Section 5.12, Section 5.13] 

 − Facilitate the creation of a virtual environment to exhaustively explore  
experimental controls.

 − Import experimental read-outs at any time to provide instant synthetic read-outs.

 − Create data that can iteratively be used as training for model improvements.

 − Allow for a small subset of simulated experiments to be explored in actual experiments at 
the BES user facilities. 
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• Coupling digital twin simulations with experimental steering will become an increasingly relied 
upon capability at the light sources as the decade progresses. Due to the high computational 
cost associated with data processing, reduction, and analysis, and of model training on such 
large datasets, the light sources will need to employ the use of geographically distributed 
computing facilities and data repositories. [Section 5.13]

• The further development and application of digital twin simulations supporting experimental 
design and operation requires that a number of gaps in capabilities and infrastructure be 
filled, including sufficient and reliable networks, data storage resources, computing systems, 
transparent access to facilities via federated identity and shared data protocols, and software 
tools to operate across the DOE’s distributed resource landscape. [Section 5.13]

• Along with the ongoing development of digital twins, it is expected that HPC systems will be 
one of the major data sources for future experimentation. Simulations are used in autonomous 
experiments for synthetic data generation to supplement experimental data. Distributed 
experiments have been proposed that leverage simulations using HPC infrastructure and 
parallel data acquisition at multiple facilities internationally. [Section 5.13]

• Autonomous intelligent decision-making (instead of automated decision-making) will be the one 
limiting factor of future self-driving labs. Most successful approaches are based on HPC-driven 
uncertainty quantification (UQ); this will require readily accessible allocation of HPC resources 
and communication infrastructure. [Section 5.12]

• Future usage of computing will require interaction between multimodal experimental 
and multifidelity theoretical approaches. The urgent need is for “on-demand” computing, 
interoperable smart workflows across various computing platforms, and long-term cloud storage 
solutions. [Section 5.12, Section 5.13]

• A number of high performance computation and quantum simulation users and collaborations 
currently use multiple facilities and locations to accomplish science goals that cross the DOE, 
commercial, and university complex. [Section 5.17]

 − Calculations and simulations of quantum systems, materials, and molecules use a  
variety of platforms for hybrid computing, encompassing midsize compute cluster and 
storage systems owned by universities, and high-performance architectures at DOE 
national laboratories. 

 − A future hybrid computing strategy will require tighter integration of classical and quantum 
resources for an overall multitiered approach to computing. In this case, a quantum 
processor becomes a co-processor on which certain tasks are offloaded, but will require 
real-time data movement. The data transfer would be small, but real-time transfer will be 
critical between resources. 

 − Data accessibility, searchability, and usability is a key issue for quantum simulation, and 
improvements to enable high-throughput scientific workflows will be required. 

 − Data sharing is primarily challenged by data formats and searchability, and for certain 
classes of simulations the size of the data to be transferred remains a significant issue  
to solve. 

 − There are significant needs for software that performs well on heterogeneous computers.  
In addition, cloud computing could be an area of need in the future in terms of resources 
and interoperability. 

 − ML surrogates will require high-performance computations of quantum systems. Training 



31Basic Energy Sciences Network Requirements Review Final Report 2022

these ML models will require training data collected through massively distributed 
simulations on leadership-class supercomputing facilities. The dataset sizes, and bandwidth 
requirements, will require efficient movement of GB to TB of data.  
[Section 5.12, Section 5.13]

 − Simulations on small clusters generate initial structure information for larger simulations. 
Data is on the order of 10 MB per file, with tens of thousands of files. 

 − Simulations at HPC facilities can range from 1 GB to 10 TBs, with the number of files and 
directories can range from one to tens of thousands, with total data set size around tens of 
TBs. 

 − Once exascale computers become more widely available to more users, the size of all of 
simulation data will likely be multiplied by 100 to 1,000-fold. 
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3. Review Recommendations

ESnet recorded a set of high-level recommendations from the BES user facilities and ESnet requirements 
review that extend ESnet’s ongoing support of BES-funded collaborations. Based on the key findings, the review 
identified several recommendations for BES, ASCR, ESnet, and DOE HPC facilities to jointly pursue. These 
items are listed as guidance for future collaboration, and do not reflect formal project timelines. ESnet will review 
these with BES participations on a yearly basis, until the next requirements review process begins.

These are also organized by topic area for simplicity and follow common themes:

• Facility Management and Readiness.

• Scientific Data Management.

• Scientific Workflow.

• Computational and Storage Requirements. 

• Remote Collaboration and Operational Requirements.

• Multifacility Computational Workflows.

• Domestic Networking for Local and Wide-Area Data Mobility.

• Emerging Needs.

3.1 Facility Management and Readiness

• ESnet will work with BES user facilities and host DOE national laboratories on strategies 
and implementations of advanced networking to address pending capability upgrades. These 
discussions will focus on: [Section 5, Section 6]

 − Increasing network capacity to address growing data volumes between BES user facilities, 
collaborators, and DOE HPC resources.

 − Implementing advanced services that can address scientific requirements for data 
management, mobility, and remote operation.

 − Understanding and implementing peering policy to reach networks and resources of 
interest, including commercial cloud providers.

• ESnet and DOE HPC centers will work with the following BES user facilities and host 
laboratories that have identified new scientific data requirements: [Section 5]

 − NSLS-II at BNL: over the next decade, data generation rates will reach the exabyte per 
year range, coupled with the need to utilize hundreds of PFLOPps of computing. BNL 
will upgrade network capabilities in the one- to two-year time frame to support 400 Gbps 
connectivity, and beyond. 

 − LCLS-II at SLAC: the LCLS-II upgrade is scheduled to come online in 2023, and will 
increase data throughput to 200 GBps. Future planned upgrades are expected to increase 
the throughput to multiple TBps by 2028. SLAC anticipates upgrading ESnet connections 
to keep pace with the expected data rates. 

 − ALS at LBNL: the new ALS-U storage ring installation will start in 2025, and LBNL will 
be upgrading the laboratory ESnet connection from 2x100 Gbps to more than 1x400 Gbps 
during the 2025 to 2026 time period. 
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 − APS at ANL: the APS-U project will replace the APS storage ring beginning in April 2023. 
The ANL and APS networks will refresh hardware in the two- to five-year time frame to 
support 400 Gbps in support of the upgrade. 

 − HFIR and SNS at ORNL: The SNS-FTS and STS will add new suites of instruments 
capable of a baseline expected data volumes of 20–30 TB of raw data per day, with orders 
of magnitude increases in the 5- to 10-year time frame. ORNL connects to ESnet via 
redundant border routers at 100 Gbps. The expectation is that these connections will soon 
be upgraded to 400 G connections. 

 − CFN at BNL, with NCEM at LBNL: A planned collaboration between CFN and LBNL 
will explore a multifacility workflow operating advanced camera technology generating data 
rates of 50 GBps and requiring 1 PB per year storage. New STEMs could require as much 
as 4 PB per year. 

 − CINT at SNL: data volumes of new instruments will push the boundaries of current 
capabilities for sharing data from the facility to collaborators and DOE HPC facilities. 
ESnet will collaborate with CINT to review security policies and instrument network 
design, and offer sensible approaches to facilitate data mobility. 

 − CNMS at ORNL: instruments within the facility do not feature advanced and automated 
pipelines to utilize storage, computation, and data mobility approaches. ESnet will work 
with ORNL to suggest strategies to integrate and accelerate workflows. 

 − TMF at LBNL: there is currently not a facility-wide compute and storage strategy to 
link instruments to users and collaborators; this has exacerbated the problems related to 
data sharing and curation. ESnet will work with TMF and LBNL to suggest strategies to 
integrate and accelerate workflows. 

 − The Materials Project at LBNL, NERSC, and AWS: to further the mission of integrating 
cloud and DOE infrastructure in a seamless manner, ESnet will continue to work with 
LBNL on network peering and service approaches to improve the scientific workflow. 
This includes exploring high bandwidth/low latency connections between AWS and 
LBNL/NERSC, as well as understanding performance bottlenecks that exist between the 
infrastructure and the users. 

• ESnet will continue to work with major facilities to establish backup networking options to 
ensure ongoing operation of multifacility workflows. Future considerations could be establishing 
overlay networking, similar to other science communities such as HEP, to separate out critical 
science traffic and allow for more finite control over traffic destined for BES collaborations. 
[Section 6]

3.2 Scientific Data Management

• ESnet, ASCR, and BES will continue to work to understand the implications of increased data 
rates from facilities through yearly engagements. The estimates in this report show that within 
10 years aggregated data rates of multiple terabits per second flowing across ESnet from any 
of the light sources to any of the DOE HPC facilities may be possible. There is an urgent need 
to upgrade the light source to ESnet connections at some of the laboratories to 400 Gbps and 
above, to match the input bandwidth at ASCR computing facilities within the next two years. 
[Section 5, Section 6]

• ESnet will work with BES user facilities as they design, develop, and implement common APIs 
for accessing network and computing resources, parallel data transfer tools, high-fidelity data 
transfer, network performance monitoring, reservations, and dynamic network provisioning. 
[Section 6]
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• BES should work to define a uniform data pipeline standard that spans DOE user facilities. In 
doing so, it will be possible to eliminate friction caused by differences in metadata associated 
with different data types and different levels of data manipulation. To reach a stable and 
universal environment, standard data formats, software development framework, sample 
tracking, metadata capturing, and labeling are required. [Section 5.14, Section 5.15, Section 
5.16]

• BES will continue to work on the ongoing design, development, and adoption of the Bluesky 
framework: a way to streamline DAQ and ease the process of collecting and comparing data. 
Given that a number of BES light sources plan to implement the Bluesky databroker/tiled 
software for data management, in order to move to a consistent “data API,” future integration 
with network-layer services may be possible when using remote DOE HPC resources across 
ESnet. [Section 5.14]

3.3 Scientific Workflow

• The five BES light source facilities, coordinated through the five-way LSDCSC, will engage 
with ESnet on networking topics,.  ESnet can advise this group as it works toward a unified 
vision for the distributed data infrastructure to enable user science, the DISCUS. [Section 5.14]

• ESnet will continue to participate in synergistic community activities that span DOE SC as 
user facilities leverage the complete ecosystem of technology resources to advance scientific 
missions. An emerging common pattern in the process of science often involves combining 
and analyzing data from multiple sources. As data rates and complexity continue to increase, 
sufficient networking connectivity, bandwidth, and reliability are required to connect 
measurement facilities, a computing facility, and user home institutions to enable effective data 
management and analysis. [Section 5]

• ESnet will work with BES user facilities that are still experiencing substantial bottlenecks 
between the data streams emanating from instruments and the feedback from theoretical and 
simulation insights. The goal will be to directly couple instrument data to simulations, in real 
time, to better assist the experimenter and enable automation and autonomous materials and 
physics discovery platforms. [Section 5]

3.4 Computational and Storage Requirements 

• ESnet, the BES light source facilities, the ALCF, NERSC, and the OLCF must continue to 
collaborate on network upgrade strategies. [Section 5.14]

 − After a number of BES facility upgrades, it will be impractical and unreasonable to  
support the scale of computing required with local resources only. BES user facilities  
are increasingly partnering with DOE HPC facilities to deliver a new model of  
computing, tightly coupling experiment instruments and supercomputers to accelerate  
scientific discovery.

 − BES user facility’s use of DOE HPC resources will continue to expand in the coming years 
and is estimated to top aggregated data at rates of multiple terabits per second. This will 
place heavy emphasis on ESnet connectivity to manage traffic across the country. 

 − BES user facilities of the future will rely on a pipeline that facilitates data transfer from 
initial source to different layers of computation. These computational capabilities could 
be edge computers close to experiments that will facilitate AI and ML tasks, as well as 
midcapacity and HPC infrastructure in national labs to produce simulations and operate 
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analysis workflows. These resources will both guide experimental investigation and 
accelerate materials and fundamental physics discoveries. 

 − Networking must be able to robustly connect BES user facility instruments to remote 
computing facilities with low latency. 

3.5 Remote Collaboration and Operational Requirements

• ESnet will continue to support BES user facilities, as they expand their support for remote 
operation of experimentation and computation. The deployment of remote access tools enabled 
experimenters to run measurements remotely during the COVID pandemic, and led to an 
overall increase in remote users, making this functionality a critical infrastructure component. 
[Section 5]

• ESnet will explore mechanisms to support the following aspects of remote use of BES user 
facilities: [Section 5]

 − Supporting the network to enable the remote operation of instruments; either fully 
automated or through communication over telecommunications tools.

 − Building high bandwidth/low latency paths to support computational and storage needs 
between facilities.

 − Enabling peering to cloud providers to support communication and collaboration tools.

 − Encouraging the deployment of user-focused data portals to allow for data mobility.

3.6 Multifacility Computational Workflows

• Multi-facility workflows contain a deep tie to networking resources, given that many user 
facilities are separated by geographical location. As BES workflows become more time 
dependent, particularly those that may try to utilize computational output in a real-time fashion, 
networking is a critical component that must perform well consistently. If a primary link 
becomes saturated, or fails, the workflow could also fail. [Section 5.14, Section 5.15, 
 Section 5.16]

• ESnet will continue to advise BES as the use of multimodal data increases and crosses the 
boundaries between user facilities and DOE HPC resources. Multimodal data requires more 
sophisticated data processing and increases in computing capabilities. [Section 5.12,  
Section 5.13]

• BES should work to define common standards, and shared workflows, for data across the 
NSRCs. Doing so will provide an effective data solution as well as enable cross-center data 
sharing, augmentation, and manipulation. The lack of data pipeline standards affects scientific 
progress. [Section 5.16]

3.7 Domestic Networking for Local and Wide-Area Data Mobility

• ESnet will continue to support R&D efforts within the BES community that are advancing use 
of network technologies to support scientific workflows. For complex analysis pipelines or high 
data rate experiments, it is anticipated that future users of BES facilities will have to schedule 
network capabilities and real-time computational resources to be available during the time 
of experiments. The BES community is coordinating with ESnet and DOE HPC facilities on 
possible solutions. [Section 5]
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• ESnet will continue to support the use of commercial cloud resources by BES user facilities and 
their users. Use of cloud storage solutions has increased, but is still done in an ad-hoc manner. 
In the long term, BES will need to answer questions about the use of cloud resources for 
computation, storage, communication, and data sharing. [Section 5]

• ESnet will work with BES user facilities to increase the adoption of the Science DMZ 
paradigm, and the affiliated technologies that support network measurement (perfSONAR, 
DTNs), and data mobility (Globus). A number of BES user facilities and their parent DOE 
national laboratories have adopted these tools, but there remain gaps in automated approaches 
to use them regularly to support scientific workflows. [Section 5]

3.8 Emerging Needs

• ESnet will collaborate with the BES community and the DOE HPC centers to explore the 
adoption of digital twins. The further development and application of digital twin simulations 
supporting experimental design and operation requires that a number of gaps in capabilities 
and infrastructure be filled, including sufficient and reliable networks, data storage resources, 
computing systems, transparent access to facilities via federated identity and shared data 
protocols, and software tools to operate across the DOE’s distributed resource landscape. 
[Section 5.13]

• ESnet will work with BES user facilities, and DOE HPC facilities, as autonomous experiment 
steering is more widely adopted. Given the implicit use of networks to join experimental 
facilities with DOE HPC resources, ESnet can provide high bandwidth, low latency network 
connections to ensure experimental success. [Section 5.12] 

• ESnet maintains a field-programmable gate array (FPGA) testbed and is also experimenting 
with edge-computing approaches, and will be working to figure out ways to deploy these 
resources close to sites so that it may be possible to perform similar functions for facilities and 
science that could benefit. The BES community is considering many different approaches to its 
computational needs and is invited to collaborate on scientific workflows that require custom 
computing resources (such as Xilinx or Altera) to perform data reduction, using AI and ML to 
steer experimental direction, or other emerging use cases. [Section 6]

• ESnet will continue to work with BES on a strategy to support quantum computing and hybrid 
computing requirements from a network perspective. [Section 5.17]

 − It is expected that a hybrid quantum-classical model, where part of the calculations will 
be carried out on classical architectures and part on quantum hardware, will persist for a 
number of years, implying a transfer between the two platforms. 

 − A number of high performance computation and quantum simulation users and 
collaborations currently use multiple facilities and locations on a variety of platforms 
for hybrid computing to accomplish science goals that cross the DOE, commercial, and 
university complex. Data sharing will be required in this environment. 
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4 Requirements Review Structure

The requirements review is designed to be an in-person event; however, the COVID-19 pandemic has changed 
the process to operate virtually and asynchronously for several aspects. The review is a highly conversational 
process through which all participants gain shared insight into the salient data management challenges of the 
subject program/facility/ project. Requirements reviews help ensure that key stakeholders have a common 
understanding of the issues and the potential recommendations that can be implemented in the coming years.

4.1 Background
Through a case study methodology, the review provides ESnet with information about:

• Existing and planned data-intensive science experiments and/or user facilities, including  
the geographical locations of experimental site(s), computing resource(s), data storage, and 
research collaborator(s).

• For each experiment/facility project, a description of the “process of science,” including the 
goals of the project and how experiments are performed and/or how the facility is used. This 
description includes information on the systems and tools used to analyze, transfer, and store the 
data produced.

• Current and anticipated data output on near- and long-term timescales.

• Timeline(s) for building, operating, and decommissioning of experiments, to the degree these 
are known.

• Existing and planned network resources, usage, and “pain points” or bottlenecks in transferring 
or productively using the data produced by the science.

4.2 Case Study Methodology
The case study template and methodology are designed to provide stakeholders with the following information:

• Identification and analysis of any data management gaps and/or network bottlenecks that are 
barriers to achieving the scientific goals.

• A forecast of capacity/bandwidth needs by area of science, particularly in geographic regions 
where data production/consumption is anticipated to increase or decrease.

• A survey of the data management needs, challenges, and capability gaps that could inform 
strategic investments in solutions.

The case study format seeks a network-centric narrative describing the science, instruments, and facilities 
currently used or anticipated for future programs; the network services needed; and how the network will be 
used over three timescales: the near term (immediately and up to two years in the future); the medium term (two 
to five years in the future); and the long term (greater than five years in the future).

The case study template has the following sections:

Science Background: a brief description of the scientific research performed or supported, the high-level 
context, goals, stakeholders, and outcomes. The section includes a brief overview of the data life cycle and how 
scientific components from the target use case are involved.

Collaborators: aims to capture the breadth of the science collaborations involved in an experiment or facility 
focusing on geographic locations and how data sets are created, shared, computed, and stored. 
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Instruments and Facilities: description of the instruments and facilities used, including any plans for major 
upgrades, new facilities, or similar changes. When applicable, descriptions of the instrument or facility’s compute, 
storage, and network capabilities are included. An overview of the composition of the data sets produced by the 
instrument or facility (e.g., file size, number of files, number of directories, total data set size) is also included.

Process of Science: documentation on the way in which the instruments and facilities are and will be used for 
knowledge discovery, emphasizing the role of networking in enabling the science (where applicable). This should 
include descriptions of the science workflows, methods for data analysis and data reduction, and the integration of 
experimental data with simulation data or other use cases.

Remote Science Activities: use of any remote instruments or resources used in the process of science and how 
this work affects or may affect the network. This could include any connections to or between instruments, 
facilities, people, or data at different sites.

Software Infrastructure: discussion of the tools that perform tasks, such as data source management (local and 
remote), data-sharing infrastructure, data-movement tools, processing pipelines, collaboration software, etc.

Network and Data Architecture: what is the network architecture and bandwidth for the facility and/or 
laboratory and/or campus? The section includes detailed descriptions of the various network layers (LAN, MAN, 
and wide-area network [WAN]) capabilities that connect the science experiment/facility/data source to external 
resources and collaborators.

Cloud Services: if applicable, cloud services that are in use or planned for use in data analysis, storage, 
computing, or other purposes.

Data-Related Resource Constraints: any current or anticipated future constraints that affect productivity, such 
as insufficient data-transfer performance, insufficient storage system space or performance, difficulty finding or 
accessing data in community data repositories, or unmet computing needs.

Outstanding Issues: an open-ended section where any relevant discussion on challenges, barriers, or concerns 
that are not discussed elsewhere in the case study can be addressed by ESnet.
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5 BES Case Studies

The case studies presented in this document are a written record of the current state of scientific process, and 
technology integration, for a subset of the projects, facilities, and PIs funded by the Office of BES of the DOE 
SC. These case studies were discussed virtually between March and September 2022.

The case studies were presented, and are organized in this report, in a deliberate format to present an overview 
based on individual experiments, larger facilities, and in some cases the encompassing laboratory environments 
that provide critical resources for operation. The case studies profiled include:

• Advanced Light Source (ALS)

• Advanced Photon Source (APS)

• National Synchrotron Light Source II (NSLS-II)

• LCLS

• SSRL

• HFIR and SNS

• CFN

• Center for Integrated Nanotechnologies (CINT)

• CNM

• CNMS

• TMF 

• Autonomous Experiment Steering for BES Facilities 

• BES Design and Development of Digital Twin Strategies

• Multifacility Experimentation and Analysis Workflows: X-ray Light Source Perspective

• Multifacility Experimentation and Analysis Workflows: Neutron Scattering Perspective

• Multifacility Experimentation and Analysis Workflows: NSRC Perspective

• Use of the ESnet for Quantum Simulations of Materials and Molecules 

• The MAterials Project (MP): Status and Future Directions

Each of these documents contains a complete set of answers to the questions posed by the organizers:

• How, and where, will new data be analyzed and used?

• How will the process of doing science change over the next 5–10 years?

• How will changes to the underlying hardware and software technologies influence  
scientific discovery?

A summary of each will be presented prior to the case study document, along with a “Discussion Summary” that 
highlights key areas of conversation from authors and attendees. These brief write-ups are not meant to replace a 
full review of the case study, but will provide a snapshot of the discussion and focus during the in-person review.

5.1 Advanced Light Source (ALS)
The ALS is an electron storage ring–based synchrotron radiation facility that is supported by the Department 
of Energy’s Basic Energy Sciences program (DOE BES). The ALS started operation in 1993 and since then has 
been upgraded continuously to remain one of the brightest soft X-ray sources in the world. The ALS is optimized 
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for X-ray spectroscopy, microscopy, and scattering using intense beams from soft X-ray undulator sources but also 
serves a broader community conducting research using hard X-rays, infrared (IR), and vacuum ultraviolet (VUV) 
radiation from superconducting magnets, conventional dipole magnets, and insertion devices.

5.1.1 Discussion Summary

• The ALS is a user facility with 40 different beamlines and 2100 scientific users per year from all 
over the world. 

• Users may only be granted experimental access on a limited basis (e.g., once per year). 

• It is common for users to receive only beamtime once or twice a year. With the complexity of 
experiments increasing and the data rates ramping up, it will be critical to prepare and test the 
data streaming and analysis beforehand if possible. A development like this will need access to 
compute and analysis resources and be able to schedule the required resources in advance. 

• The biggest change to our facility will be the transition to a diffraction-limited light source. We 
currently expect the new ALS-U storage ring installation starting in 2025. 

• The ALS Computing Program, beamline scientists, and users, actively develop and support 
data management tools that assist during the full data lifecycle from acquisition to storage and 
analysis. These tools include:

 − software to detect, package, and transfer data.

 − database systems that register data and metadata, to allow search and organization. 

 − workflow tools that allow both user-driven and automated processing that leverage local 
and remote HPC resources. 

• The ALS web portal allows users to view or download results. The web portal can Alsop 
seamlessly move data into an interactive analysis environment for further processing. 

• The ALS has adapted during the COVID pandemic to move from the primary mode of 
operating with users on-site, to one that facilities a number of new remote capabilities. As such, 
the traditional mechanism of copying the data to removable media is no longer an option, and 
thus more data processing is performed at the ALS or migrated off-site to home institutions, or 
other computational resources through a variety of means (Globus, Google Doc, file transfer 
protocol (FTP)).

• Several end stations have adopted Bluesky framework, a way to streamline DAQ and eases the 
process of collecting and comparing data. It is expected that more will adopt in the future, to 
match the approach of other BES facilities. 

• A typical workflow for a user at the ALS involves:

 − beamtime (in person or remote).

 − use of integrated management tools during data acquisition. 

 − analysis using local resources, or data mobility to remote resources.

• Future adaptations to the generalized workflow used to support BES science will involve:

 − integrated software to manage data movement, processing, and analysis.

 − more automated methods to handle adaptive/autonomous experiment steering (e.g., 
integration with simulation capabilities).

 − categorizing and sharing of data with other national resources.

 − increases in data volume due to upgraded capabilities.
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• Data rates and volumes range from several MB per month to 3GBps currently. The largest data 
producers at the ALS are the scattering beamlines, the tomography beamline, ptychography, 
and the newly developed X-ray photon correlation spectroscopy (XPCS) beamline.  
In addition to the currently high data rate beamlines, we anticipate various new detectors at 
other beamlines.

• The current storage capacity at beamlines is insufficient to handle the data and we are in the 
process of expanding our data movement platform, based on Globus, to more beamlines to move 
the data to NERSC for processing and storage. 

• The ALS has a small institutional storage cluster (a few hundred TB) that can be used for 
temporary storage, along with several small compute clusters and GPU machines that can be 
used for analysis on a FCFS basis. The ALS is working to develop software that better manages 
computational tasks using these resources. 

• The ALS makes use of several DOE HPC facilities for the storage and processing. An 
automated data movement process can move data (bulk, or streamed) for a limited subset of 
beamlines to HPC facilities for processing and storage. 

• Taking advantage of available (local or remote) compute and analysis resources will become 
an integral part of experimental planning in the very near future. In order to deploy efficient 
analysis and machine learning (ML) approaches at the time of the experiments, workflows will 
have to be established, and ML algorithms will have to be trained on existing or simulated data.

• For complex analysis pipelines or high data rate experiments, the users will have to schedule 
network capabilities and/or real-time computational resources to be available during the 
beamtime. We are in discussion with ESnet and NERSC to make this a reality. 

• A few ALS beamlines utilize Globus to facilitate data movement. The ALS is in the process 
of expanding this capability, to enable faster data sharing to other resources (e.g., DOE HPC 
centers, home institutions), reached via ESnet and other R&E network providers. 

• ALS high data rate machines are connected to the facility using 10 Gbps networking, and the 
less data-intensive beamlines are connected with 1Gbps capacity. Many beamlines still rely 
on local storage and computation, implying that most network traffic is localized to a specific 
experimental network. There are plans to upgrade all beamlines to a minimum of 10 Gbps, with 
some connected at 40 Gbps, to support ALS-U in 2025–2026. 

• LBNL will be upgrading the laboratory ESnet connection from 2x100 Gbps to more than 1x400 
Gbps during the 2025–2026 time period to support use cases such as ALS-U. Upgrades to the 
Science DMZ network, include direct connections to user facilities like the ALS, are planned. 

• The ALS is looking into using commercial cloud computing but nothing has been developed or 
decided. The ALS makes use of the NERSC Spin service for hosting containers providing web 
and other services to its users.

5.1.2 ALS Facility Profile
The 1.9 GeV ring hosts world-class end stations and instrumentation at more than 40 beamlines and serves 
nearly 2000 users who publish more than 900 publications per year and conduct basic, applied, and industrial 
research in energy science, earth and environmental science, materials science, biology, chemistry, and physics. 
Our mission is to advance science for the benefit of society by providing our world-class synchrotron light 
source capabilities and expertise to a broad scientific community. The ALS is the primary BES-funded soft X-ray 
facility in the US, and our ambition is to provide the US and the international community with world-leading 
X-ray capabilities that enable consequential scientific discoveries and lead to a detailed understanding of laws 
governing natural processes and the properties of engineered systems.
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5.1.2.1 Science Background 

The ALS Computing Program, together with beamline scientists and users, actively develops and supports 
data management tools that assist users and staff during the full data lifecycle from acquisition to storage and 
analysis as shown in Figure 5.1.2. These tools include software that runs at the beamline to detect, package, and 
transfer new data; database servers that register data with its associated metadata to allow subsequent search 
and organization; and workers, message-passing systems, and workflow tools that allow both user-driven and 
automated processing to be launched on data sets using a combination of local and remote resources (such as 
supercomputing centers) as data arrives. Stored metadata will cover information about experiments, the beamline 
environment, and pointers to raw and derived data that is stored in a variety of locations. An easy-to-use web 
portal allows users to view or download results during or after their beamtime. The web portal also allows users 
to seamlessly move their data into an interactive analysis environment (e.g., Jupyter, or other technique-specific 
web-based tools) for further processing. We expect the data and analysis to be accessed from within the ALS 
and across the country. In conjunction with the MLExchange project we are developing such capabilities right 
now. Either the data, the analysis or both will be containerized and moved over the network to the appropriate 
computational or storage location. 

Figure 5.1.1: ALS beamlines instrumentation
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At various points along the workflow, instrumentation will be added to monitor system performance (network, 
disk, processing.) A seamless experience for the user will require not only network bandwidth but also fast and 
accurate feedback about the existing network availability. Facility-based services responsible for orchestrating 
data transfers and processing jobs will be able to route jobs and data based on the availability of underlying 
services. It would be interesting if the network itself was smart enough to evaluate compute time, network 
transfer speed, and availability and create the smartest plan to move the data analysis to the fastest path.

5.1.2.2 Collaborators

The ALS is a user facility with 40 different beamlines and 2100 scientific users per year from all over the world. 
As shown in Figure 5.1.3, the scientific user community is diverse, ranging from material science to earth and 
environmental science. On the right side of Figure 5.1.3, the geographic origin of ALS users is shown. A portion 
of the user community is directly from LBNL, these users are considered local with direct access to local ALS 
resources and data storage. A large portion of the users are from within California, with a smaller portion of users 
from the rest of the United States. In addition to national users, the ALS is also the research location of choice for 
international researchers.

Figure 5.1.2: Data lifecycle currently developed at the ALS in 
collaboration with other synchrotrons

Figure 5.1.3: Users by discipline and geography
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In Figure 5.1.4, the distribution of users across the US is shown. The majority of users are coming from California 
as mentioned before. The rest of the user community is broadly distributed across the US, including a large 
number coming from the east coast. Scientific users used to exclusively travel to the ALS for beamtime. This 
process has changed during the last two years due to the COVID pandemic. A significant number of users are 
using the newly established remote capabilities at the ALS. This also means that the traditional way of copying 
the data onto thumb drives or hard drives during or directly after the beamtime is not an option anymore 
for many users. For many beamlines significant data processing is performed at the ALS (whether users are 
physically at the ALS or using a remote desktop connection to an ALS computer). Whether users are remote or in 
person, data is made available to them for copying to their home institutions through a variety of means (Globus, 
Google Doc, FTP). 

User/
Collaborator 
and Location

Primary or 
secondary copy 

of the data

Data access 
method

Avg. size of 
data set

Frequency of 
data transfer or 

download

Are data sent 
back to the 
source and 

method

Any known  
issues with 
data sharing

US UNIVERSITY-
BASED PIS

Both data portal, 
data transfer 
(Globus, sftp, 

cloud storage), 
portable hard 

drive

1.MB–10 TB ad hoc N N/A

US NATIONAL 
LABS BASED PIS

Both data portal, 
data transfer 
(Globus, sftp, 

cloud storage), 
portable hard 

drive

1 MB–10 TB ad hoc N N/A

INTERNATIONAL 
PIS

Both data portal, 
data transfer 
(Globus, sftp, 

cloud storage), 
portable hard 

drive

1 MB–10 TB ad hoc N N/A

Table 5.1.1: ALS Collaboration Space

Figure 5.1.4: Geographic map and number of ALS scientific users in the US in 2021
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5.1.2.3 Instruments and Facilities

The ALS is home to 40 beamlines as described earlier in question 1. Each instrument has a variety of detectors 
and control computers. The data rates and data volumes range from several MB per month to 3GBps currently. 
The largest data producers at the ALS are the scattering beamlines, the tomography beamline, ptychography, and 
the newly developed XPCS beamline. In addition to the currently high data rate beamlines, we anticipate various 
new detectors at other beamlines. The current and projected data amounts for ALS are shown in Figure 5.1.7. 

Figure 5.1.5: Distribution of users’ different origins

Figure 5.1.6: A number of ALS collaborations and partnerships

A majority of users are from academia, with the next largest groups at national laboratories. Due to the emphasis 
on basic research, this is understandable. The ALS has a variety of collaborations and connections with Energy 
hubs, CAMERA, EFRCs, SBIRs, and other research centers across the country. 
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The current storage capacity at beamlines is insufficient to handle the data and we are in the process of expanding 
our data movement platform, based on Globus, to more beamlines to move the data to NERSC for processing 
and storage. At the ALS we have a small storage cluster of a few hundred TB to be used as a buffer. The ALS is 
also home to several small compute clusters and GPU machines. We are in the process of developing software 
to distribute smaller compute tasks from individual beamlines to be deployed across these machines. With 
respect to the network, our high data rate machines are connected to our server room with 10G, and the less 
data-intensive beamlines are connected with 1G. However, most beamlines still use local beamline storage and 
beamline compute to preprocess their data directly at the beamline. 

The biggest change to our facility will be the transition to a diffraction-limited light source. We currently expect 
the new ALS-U storage ring installation starting in 2025. The ALS-U is an upgrade of the ALS that will endow 
the ALS with revolutionary X-ray capabilities. The ALS has been a global leader in soft X-ray science for more 
than two decades. Recent accelerator physics breakthroughs now enable the production of highly focused beams 
of soft X-ray light that are at least 100 times brighter than those of the existing ALS. Applying this technology 
at the ALS will help us to better understand and develop the new materials and chemical systems needed to 
advance our energy, economic, and national security needs in the 21st century, securing the United States’ 
world scientific leadership for decades to come. The upgraded ALS will occupy the same facility as the current 
ALS, replacing the existing electron storage ring and leveraging $500 million in existing ALS infrastructure 
and experimental systems. The new ring will use powerful, compact magnets arranged in a dense, circular 
array called a multibend achromat (MBA) lattice. In combination with other improvements to the accelerator 
complex, the upgraded machine will produce bright, steady beams of high-energy light to probe matter with 
unprecedented detail. The improved capabilities of the upgraded ALS will enable transformative science that 
cannot be performed on any existing or planned light source in the world. This new science includes 3D imaging 
with nanometer-scale spatial resolution and measurement of spontaneous nanoscale processes with time scales 
extending from minutes to nanoseconds—all with sensitivity to chemical, electronic, and magnetic properties. 
Moreover, the beam’s high coherence as shown in Figure 5.1.8, will enable new classes of optical techniques that 
will provide the groundbreaking sensitivity and precision needed to detect the faintest traces of elements and 
subtle electrochemical interactions on the scale of nanometers.

Figure 5.1.7: Data storage 
and compute estimates for 
the ALS before and after 
the upgrade
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5.1.2.4 Generalized Process of Science

The current and future generalized process of science varies depending on the size and volume of data produced 
at the beamline. However, below is a more or less typical workflow for knowledge discovery which also includes 
future developments and current projects we are working on. 

It is common for users to receive only beamtime once or twice a year. With the complexity of experiments 
increasing and the data rates ramping up, it will be critical to prepare and test the data streaming and analysis 
beforehand if possible. A development like this will need access to compute and analysis resources and be able to 
schedule the required resources in advance. 

The new science the ALS-U will require high data rate analysis and processing as shown by the amount of data 
estimated in Figure 5.1.8. The software framework we are developing is described below.

Figure 5.1.8: This cutaway view of the Advanced Light Source shows new equip-
ment (colored rings) that will be installed during the ALS Upgrade project

Figure 5.1.9: Coherent flux vs. photon energy of the US and international soft 
X-ray light sources
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Workflow for a User at the ALS

• Present to Two Years

 − Beamline users in person and remote. 

 − Most beamlines use local resources for storage and processing.

 − Rollout of integrated movement, processing and analysis tools.

 − Rollout of adaptive/autonomous scanning tools.

• Next Two to Five Years

 − Increased rollout of movement, processing and analysis tools.

 − Increased integration with Molecular Foundry.

• Beyond Five Years

 − ALS-U will be live, necessitating increased storage and processing. In addition, flexible  
use of storage and processing resources will necessitate more movement of data outside of 
the ALS.

A typical ALS user is assigned 24- to 48-hour shifts per cycle at a beamline. To maximize time, generally  
multiple people from a research team will be present, taking shifts around the clock. During beamtime, user 
activities involve:

• Sample preparation and placement

• Beamline alignment

• Scans

• Data analysis of the scan

• Potential realignment and rescan

• Potential additional sample preparation and placement

Remote users rely on beamline staff for sample placement and beamline alignment. Some beamlines allow users 
to scan remotely, while others depend on beamline staff. Depending on the beamline, data analysis may be 
performed on computers at the beamline (majority), clusters available at the ALS and at NERSC.

• (Current and future development) Taking advantage of available compute and analysis resources 
will become an integral part of experimental planning in the very near future. In order to deploy 
efficient analysis and ML approaches at the time of the experiments, workflows will have to be 
established, and ML algorithms will have to be trained on existing or simulated data. The ALS is 
currently developing such a framework as part of the MLExchange project. In Figure 5.1.10 the 
general process for ML augmented analysis is shown. A network is trained before the beamtime 
on existing data and then deployed during the actual experiment. 

• (Current and future developments) For complex analysis pipelines or high data rate 
experiments, the users will have to schedule network capabilities and/or real-time compute 
resources to be available during the beamtime. We are in discussion with ESnet and NERSC to 
make this a reality. 

• During the beamtime, the users are either on-site or remote and deploy analysis and ML 
processes either locally or remote. The ALS has an integrated solution for remote users as 
shown below in question 5. The deployment location of the analysis algorithm depends heavily 
on the complexity and compute requirements of the algorithms. CAMERA together with ALS 
and MLExchange is developing a framework to allow for optimal deployment of algorithms 
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on devices ranging from edge-computing hardware to compute clusters at leadership-class 
compute facilities. The network requirements heavily depend on several key factors: the data 
rate (file-based vs. streaming), the algorithm (iterative, in situ, post hoc), resource constraints 
(e.g., FPGA vs. GPU, task vs. data parallel), and location of the deployment workflow. 

The ALS is testing a beta version of an integrated processing and analysis application framework based on docker 
containers. During the experiment, the data is moved to NERSC using Globus. For most experiments at the 
ALS right now, this means a simple file copy and then deployment of analysis software. Some beamlines, such as 
tomography and ptychography, have more integrated analysis and processing routines. 

Figure 5.1.10: ML augmented data analysis and processing using MLExchange and CAMERA developments

After the beamtime, most beamlines have their users copy their experimental data and analysis results to hard 
drives or thumb drives. A few high data rate beamlines at the ALS, such as the tomography beamlines, allow the 
download of data sets via Globus to their home institute. The ALS is in the process of expanding the number of 
beamlines that provide better data transfer service. Most users process data at their home institute and will need 
to move the data using ESnet since the data size will prohibit them from storing on disc. Some users will be able 
to use Globus to move data to home institutions, while others are prohibited by the security requirements of their 
institution. Some advanced users leverage the ALS NERSC allocation to further simulate and analyze their data. 
We are planning to expand such capabilities to other computational centers around the country. 
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The U.S. DOE-funded light sources have developed a common vision for computing across the light sources, 
the DISCUS, and a decade-long roadmap to achieve the vision (see Figure 5.1.12). This vision proposes a 
transformative computational fabric that covers the full lifecycle of data generated at the BES light sources to 
accelerate discovery and insight. This vision proposed connecting the 200+ instruments at the light sources 
to a multitiered computing landscape, including edge, local, campus, and ASCR compute resources, and 
discoverable data repositories using high-performance, robust feature-rich networks. This fabric would facilitate 
the full lifecycle of data across the complex, including theory/modeling and simulation, experiment design, 
data generation at scientific instruments within the light sources, data reduction and processing, analysis and 
interpretation, and publication and dissemination, serving the 10,000+ light sources users per year.

Figure 5.1.11: Different deployment locations for analysis algorithms based on the compute and network require-
ments of the data and experiment

Figure 5.1.12: DISCUS Vision
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5.1.2.5 Remote Science Activities

HPC Facilities

The ALS makes use of several DOE HPC facilities for the storage and processing. 

Present–Two Years

An automated data movement process moves data sets for two beamlines (tomography and SAXS/WAXS) to 
NERSC’s Community File System (CFS). This provides storage and the ability to use NERSC processing 
resources. Over the next two years, more beamlines will be added to this framework covering high-bandwidth 
techniques such as XPCS, ptychography and dichroism.

Next Two to Five Years

The ALS will use more DOE HPC facilities, including ALCF/OLCF, requiring data movement from ALS to 
ORNL and ANL. Additionally, workflows involving streaming data to HPC facilities will begin to be implemented 
in order to provide real-time feedback to ALS users.

Beyond Five Years

The data deluge of the ALS-U upgrade will necessitate the implementation of a wide variety of data reduction 
techniques requiring more and more reliance on computing resources at beamlines, both within the ALS and at 
HPC facilities.

Remote Users

The ALS, similar to all the other facilities, has undergone a major transition during the COVID pandemic. As 
shown in Figure 5.1.13, the total number of remote users has changed significantly from 2019 to 2020.

Figure 5.1.13: COVID-19 User Impact at DOE Light Sources
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Scheduling and Remote Desktop

The ALS created a tool that allows beamline scientists to schedule time for users to access beamline computers. It 
allows users to use VNC to access the beamline computer and control the beamline during their beamtime. 

Figure 5.1.14: COVID-19 User Impact at ALS

Figure 5.1.15: ALS Scheduling System

Figure 5.1.14 shows the numbers of ALS users before COVID and now. The ALS has since been developing tools 
for streamlining remote access to beamline computers and analysis tools. 
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Data Portal

The ALS Data Portal, implemented using the cross-facility open-source SciCat scientific catalog project, has 
been implemented to help beamline staff and users to catalog, label, and find data sets taken at the ALS. With 
this database in place, users can find and download data sets. Metadata from beamline scans is “ingested” into the 
data portal automatically as part of the previously mentioned data movement framework.

The tomography beamline is the first to have its data sets ingested into the data portal. The SAXS/WAXS 
beamline will come online very soon. Over the next two years, as beamlines come online with the data movement 
framework, they will also come online with the data portal. With the data portal in place, analysis workflows will 
be developed that take data sets known to the data portal and run processing routines on them. The results of 
those analysis routines will also be ingested into the data portal and associated with the raw data sets from which 
they were calculated. The data portal software allows users to download data sets over HTTP. In the near future, 
we plan to provide users with a convenient way to invoke Globus transfers from the data portal application.

Figure 5.1.16: ALS Data Portal

5.1.2.6 Software Infrastructure

We break the software infrastructure into the following categories: 

• Beamline/Endstation controls

• Data Movement

• Data Analysis

• AI/ML
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Beamline/Endstation Controls

Beamline controls are using the Beamline Control System, based on LabView. A few end stations are using the 
Experimental Physics and Industrial Control System (EPICS)/Bluesky platforms. 

Present–Two Years

Beamline and Endstation Controls use a variety of software tools:

• LabView is used to control all beamlines and a majority of endstations. LabView provides 
system controls and a user interface.

• Several end stations have adopted Bluesky1 on top of EPICS and an EPICS/LabView hybrid.

Next Two to Five Years

• The Bluesky framework will be implemented at an increasing number of endstations.

• Autonomous data collection frameworks (e.g., gpCam2) will be implemented at some beamlines 
to help provide more intelligent scans.

Beyond Five Years

• AI-driven data reduction techniques will be a critical part of the ALS infrastructure, applied at 
many points along the collection, movement and analysis pipelines

Data Movement

The ALS is using a wide variety of data analysis tools and software. To streamline the process, the ALS is building 
out the framework described earlier in this document. 

We do anticipate that ML will play a much greater role in the future. Figure 5.1.17 shows the graphical user 
interface (GUI) to track data movement from the tomography beamline to NERSC. It is a file-based approach for 
now and uses Globus.

1 https://blueskyproject.io/
2 https://gpcam.lbl.gov/

Figure 5.1.17: Data management portal that provides users with current state of transfer using Globus. 
The portal includes document-based support for supplying visual metadata content to users. Addition-
ally, services in the portal enable users to query state of operations. 



55Basic Energy Sciences Network Requirements Review Final Report 2022

Present–Two Years

• Globus SDK 

 − internal transfers from machine to machine

 − external transfers (to NERSC)

• Custom movement code bases for tracking and invoking data transfers and metadata ingestion 
into the SciCat database

 − Python, PHP, FastAPI, MongoDB

Next Two to Five Years

• Similar software stacks as above, with an increased number of beamlines added to the framework

Beyond Five Years

• Similar software stacks as above, with an increased number of beamlines added to the framework

Data Portal

Once the data reaches NERSC, the data and metadata are ingested into SciCAT as described above. Local and 
remote users have access to their data and the opportunity to search for and annotate their data. 

Present–Two Years

• SciCat Scientific Catalog

• Tracking, searching, downloading data sets

• Hosted on NERSC Spin service

Next Two to Five Years

• Similar software stacks as above, with an increased number of beamlines added to the framework

Figure 5.1.18: SciCAT
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Beyond Five Years

• Similar software stacks as above, with an increased number of beamlines added to  
the framework

Data Analysis

For further data processing, the ALS is developing a framework to connect the data residing in SciCAT to a 
flexible analysis framework as described above. In this case, the data is exposed in Jupyter Lab running at 
NERSC. In addition to Jupyter, the ALS is developing a variety of GUI based analysis interfaces written in Dash. 
The availability of data and analysis resources in a web-based environment allows for remote processing of data as 
described above.

Present–Two Years

• Technique-specific data analysis pipelines being developed, in use at the tomography beamline.

• Framework to run processing pipelines on different processors (e.g., ALS local cluster, NERSC).

Next Two to Five Years

• Increased number of techniques and beamlines supported by platform

• Integration with multiple HPC facilities (e.g., ALCF, OLCF)

Beyond Five Years

• Additional real-time and streaming capabilities

Figure 5.1.19: Main View: Showcases the JupyterLab extension utilized as custom user interface for 
performing Tomography pipeline through a tailored sequence of steps. (Inset image in orange): shows 
how the visual interface can seamlessly switch to Jupyter cells
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AI/ML

The ALS will employ ML to accelerate the processing of data at various stages of the data lifecycle, from 
acquisition through analysis. The ALS is developing the MLExchange project to promote the use of AI/ML 
techniques and lower the burden of using them for beamline scientists and beamline users. Models, data sets and 
analysis tools are available in a single deployment framework. Users can choose a variety of processing locations 
to work with models. This project uses a variety of tools including:

• version control systems like git and DVC

• container frameworks like Docker and Shifter

• user interface tools like Dash

Present–Two Years

• Demonstration and proof of concept

• Increasing user base as more modeling techniques are supported

Next Two to Five Years

• Scaling out to multiple facilities

Beyond Five Years

• Scaling out to multiple facilities

Figure 5.1.20: MLExchange project
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5.1.2.7 Network and Data Architecture

There are several Local Area Networks in use at the ALS. These networks are split between those used by the 
back-end control system and those used by the experimental beamlines. Most of the ALS LANs run at 1 Gbps 
with a few running at 10 Gbps. The ALS has two general purpose routers, one dedicated to the control networks 
and the other dedicated to beamline networks. Both routers are connected to the LBNLnet routers through dual 
10 Gbps uplinks. The ALS also has a ScienceDMZ router which is connected to the ESnet routers through dual 
10 Gbps uplinks. perfSONAR nodes exist at the most critical network locations, including in the ScienceDMZ.

In the short term (two-year budget horizon), the ALS is focusing on replacing the two general purpose routers, 
which are reaching their end of life in 2023. Two new routers are on order, and their installation is targeted 
for early 2023. These routers will be capable of 40 or 100 Gbps uplinks, with 10 or 40 Gbps links to the ALS 
networks. In addition to the router replacements, the ALS will be refreshing approximately 25 control network 
switches that will also be reaching end of life in 2023. Most of these switches will have 1 Gbps interfaces with 
10 Gbps uplinks. There may be some delay in receiving this equipment related to COVID-19 supply-chain 
issues. The ALS ScienceDMZ router will be reaching end of life in 2024. LBNLnet is upgrading the LBNL 
ScienceDMZ network to support dual 100 Gbps paths all the way from user devices through the network 
border to ESnet and can provide very high data transfer rates to LBNL systems. Rather than replace the ALS 
ScienceDMZ router, the ALS may choose to take advantage of the LBNLnet ScienceDMZ router, possibly 
keeping the slower ALS ScienceDMZ router available as a backup path. perfSONAR nodes will be deployed to 
more network locations, including the new ScienceDMZ, covering all important distribution points.

Longer term (two to five years and beyond), the ALS has plans to upgrade all beamline network switches to 10 
Gbps, and in some cases up to 40 Gbps when especially high data transfer rates are needed. This will require 
upgrading switch hardware and cabling at the beamlines, and from the beamlines to the ALS server room and 
routers. In addition, large portions of the ALS control networks will be replaced as part of the ALS-U upgrade 
project, currently scheduled for 2025–2026. This will include replacement of approximately 120 switches and 
network cabling, as well as adding interface modules to the ALS routers. LBNL will be upgrading its ESnet 
connection from 2x 100 Gbps to more than 1x 400 Gbps during this time period.
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Figure 5.1.21: ALS Network Architecture
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Figure 5.1.22: LBNL Network Architecture

5.1.2.8 Cloud Services

The ALS is looking into using commercial cloud computing but nothing has been developed or decided. The ALS 
makes use of the NERSC Spin service for hosting containers providing web and other services to its users.

5.1.2.9 Data-Related Resource Constraints

Data management and workflow tools are needed that integrate beamline instruments with computing and 
storage resources, for use during experiment, as well as facility user access for post-experiment analysis. Real-
time data processing capabilities are required to significantly reduce data volumes and provide feedback during 
experiments to improve data quality and to drive the direction of ongoing measurements; the application of 
advanced mathematical algorithms, ML, and the integration of simulations and model-based approaches will 
allow automated steering of data collection. On-demand utilization of computing environments is required to 
enable near real-time data processing. Sufficient data storage and archival resources to house the continually 
increasing amounts of valuable scientific data produced by the ALS and ALS-U is required.
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5.1.2.10 Outstanding Issues 

None to report at this time. 

5.1.2.11 Facility Profile Contributors

ALS Representation

• Andreas Scholl, LBNL, a_scholl@lbl.gov

• Alexander Hexemer, LBNL, ahexemer@lbl.gov

• Dylan McReynolds, LBNL, dmcreynolds@lbl.gov

• Tanny Chavez, LBNL, tanchavez@lbl.gov

• Jason Jed, LBNL, jjed@lbl.gov

• Chris Harwood, LBNL, harwood@lbl.gov

• Nicholas Schwarz, ANL, nschwarz@anl.gov

• Stuart Campbell, BNL, scampbell@bnl.gov

• Apurva Mehta, SLAC National Accelerator Laboratory, mehta@slac.stanford.edu

• Vivek Thampy, SLAC National Accelerator Laboratory, vthampy@slac.stanford.edu

• Jana Thayer, SLAC National Accelerator Laboratory, jana@slac.stanford.edu

ESCC Representation

• Rune Stromsness, LBNL, rstrom@lbl.gov

• Richard Simon, LBNL, rsimon@lbl.gov

http://jana@slac.stanford.edu
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5.2 Advanced Photon Source (APS)
The APS (see Figure 5.2.1), located at ANL, is a synchrotron light source, funded by the US DOE, Office 
of Science-BES to produce high-energy, high-brightness X-ray beams. The source is optimized to put large 
quantities of high-energy photons into a very small area in a very short time. Scientists from around the world 
utilize the APS to conduct forefront basic and applied research in the fields of materials science; biological and 
life science; physics; chemistry; environmental, geophysical, and planetary science; and innovative  
X-ray instrumentation.

5.2.1 Discussion Summary

• The APS is a scientific user facility that serves approximately 6,000 unique users per year. 

• The APS-U Project will replace the entire APS storage ring. A one-year shutdown is required, 
and is scheduled to begin in April 2023.

• The APS currently operates 68 beamlines. As part of the APS-U Project, feature beamlines 
were approved for construction as either new, or replacement of existing beamlines. In addition, 
several beamlines were selected for major enhancements. 

• The feature and enhanced beamlines will generate substantially more data than their 
contemporary equivalents, requiring step-change improvements in networking, controls and 
data acquisition, computing, workflow, data reduction, and analysis tools to operate effectively.

• APS-U data generation rates may be too large for traditional file-based workflows, which will 
facilitate a move to streaming-based workflows directly to computer system memory requiring 
robust facility and Laboratory networking.

• During APS-U, it will be impractical and unreasonable to support the scale of computing 
required with only local APS resources. The APS and ALCF have partnered to deliver a new 
model of computing, tightly coupling APS experiment instruments with ALCF supercomputers 
to accelerate scientific discovery. 

Figure 5.2.1: Aerial view of the APS
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• APS users, and those at other US DOE-funded facilities, often leverage the complete ecosystem 
of DOE experimental facilities. The process of science often involves combining and analyzing 
data from multiple sources. As data rates and complexity continue to increase, sufficient 
networking connectivity, bandwidth, and reliability is required to connect measurement 
facilities, computing facility, and user home institutions to enable effective data management 
and analysis.

• The deployment of remote access tools enabled experimenters to run measurements remotely 
during the COVID pandemic, and led to an increase in remote users. The APS anticipates that 
remote access will continue, and thus a critical infrastructure component.

• The meaning and size of the data, the processing steps, and the analysis and interpretation will 
vary depending on the beamline, the measurement technique, the detector(s) utilized, and the 
scientific goal. 

• Generally, data is first stored on a computer attached to the acquisition detector or some other 
local beamline storage system. 

• The final analysis and interpretation of the data for publication is generally carried out by the 
experiment team at their home institutions, is very experiment specific, and may take months or 
even years to perform.

• The APS Data Management System, a facility-wide software and hardware infrastructure for 
managing data and workflows, provides a data management, workflow, and storage systems. This 
framework integrates with 50 of the 68 APS beamlines, and facilitates the automated transfer of 
data between acquisition devices, computing resources, and data storage systems. The system 
utilizes Globus, GridFTP, remote sync, and secure copy protocol for internal data transfer 
within and external to the facility. 

• Use of multimodal data requires more sophisticated data processing, and requires increases in 
computing capabilities which can include training AI/ML models as well as real-time analysis 
and feedback to enable autonomous experiment steering. The APS is exploring the utilization 
of edge-computing resources, coupled closely to detectors and instruments, to facilitate AI/ML 
data reduction algorithms.

• The APS adopts a graded approach to resource utilization:

• multicore processors and GPU units are available local to beamlines

• APS maintains an on-site computing cluster 

• ANL maintains computing resources as a part of the Laboratory Computing Resource Center

• DOE HPC facilities (e.g., the ALCF, NERSC, and the OLCF) are available via  
allocation procedure 

• Data is transferred to a local beamline workstation, the local APS distributed-memory 
computing cluster, or a computing center located on the Argonne campus, such as the ALCF or 
the Argonne Laboratory Computing Resource Center, for processing. 

• The APS provides approximately 3.6 petabytes (PB) of central disk storage for short- and 
medium-term data retention, and several DTNs for reliable, high-speed data movement as a 
part of the APS Data Management System. 

• The ALCF provides approximately 10 PB of tape storage for longer-term data retention. The 
ALCF also has a 100-PB CFS and a 100-PB project file system, along with tape storage that is 
available for APS use. 



64Basic Energy Sciences Network Requirements Review Final Report 2022

• APS X-ray Science Division operates beamlines that collect approximately 6 PB to 7 PB of raw 
data per year. APS-U estimates that the volume will increase by at least two orders of magnitude 
to 100s of PBs of raw data per year. 

• The computing resources required by the APS are anticipated to grow by at least two orders of 
magnitude to keep up with data generation rates. Prior to the APS-U, most data processing can 
be performed within the range of teraflops per second of computing resources. In the APS-U 
Era, first-pass data processing at the APS will require on-demand access to tens of petaflops per 
second (PFLOPps) of computing resources. 

• Raw and processed data is often stored on a large disk system at the APS using the APS  
Data Management System from which users may retrieve the data or share the data  
with collaborators. 

• Currently, the APS only guarantees storage space for a minimum of three months; the long-term 
management of data is the responsibility of the user group that collected the data. 

• In some cases, experimenters transfer the raw data to computing resources at their home 
institutions for all further processing. 

• Demands for increased data processing capabilities in the APS-U Era are driven by new 
scientific opportunities enabled by the upgraded facility. 

• The increase in brightness and advances in detector data rates will generate multiple orders 
of magnitude more data than are generated today; this increase in data volume necessitates an 
increase in processing power to keep pace. 

• The APS is working to develop a computational data fabric for end-to-end data lifecycle 
management. These tools will be applied at more beamlines in the years after the APS-U. 

• The APS does not presently heavily utilize cloud services for its scientific data infrastructure. 
The APS does not have any immediate plans to further utilize cloud services in this area. 

• The current ANL network supports 10 Gbps, 40 Gbps, 100 Gbps, and 400 Gbps for WAN and 
LAN uses, and features a Science DMZ to support ANL facility use. 

• As data rates and volumes continue to grow, greater demands will be placed on the APS 
network. This is especially true for the APS-U feature and enhanced beamlines. The APS is 
updating its network architecture and infrastructure to better serve the beamlines as it enters 
the APS-U Era. 

• The APS network consists of a pair of core switches that are connected via 2x40 Gbps to  
the APS Tier 2 firewall, which in turn connects to the Argonne Tier 1 firewall with 2x100  
Gbps capacity. 

• The APS network will refresh hardware in the two- to five-year timeframe to support 400 Gbps 
in support of the APS-U upgrade, and support connectivity to the ANL Science DMZ for 
certain use cases. 

5.2.2 APS Facility Profile
Each of the 68 beamlines at the APS offers a unique combination of capabilities. Some of the main considerations 
are energy range and tunability, special sample environments, time structures, and beam size (see Figure 5.2.2). 
The energies used range from relatively “soft” X-rays (as low as 250 eV) to “tender” X-rays (3-5 keV) to “hard” 
X-rays at 100 keV and sometimes higher. At many beamlines, the energy can be tuned with relative ease. Samples 
can be examined under extreme conditions of temperature and pressure, and several facilities are available for 
samples requiring special handling (for example, biohazards and radioactive samples). Many experiments involve 
timing through correlation with a pulsed laser or with the time structure of the X-ray pulses, for example. In the 
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typical operating mode, the X-rays come in evenly spaced bunches or pulses. Some beamlines employ additional 
optics to narrow the already tight beam into even smaller spots, offering spatial resolution into the 20-nm range.

5.2.2.1 Science Background 

The ongoing APS-U Project will replace the entire APS storage ring with a ring based on an MBA lattice design 
including reverse bends. The new storage ring will increase the APS brilliance by factors of up to 500 depending 
on X-ray energy and make the APS the brightest hard x-ray synchrotron light source in the world. Moreover, 
because of both ongoing developments at the APS in superconducting undulators and the fact that the APS is the 
highest energy storage ring light source in the Western Hemisphere, the APS will continue to be world-leading in 
high-energy X-ray capabilities. A one-year shutdown is required for removal and replacement of the storage ring 
followed by time for instrument commissioning; the shutdown period is scheduled to begin in April 2023.

As part of the APS-U project, feature beamlines were selected for new installation and/or complete replacement 
based on their promise to best exploit the capabilities of the new source, namely brightness, coherence, and high-
energy X-rays. In addition, based on similar criteria, several beamlines were selected for major enhancements. 
Because of the greatly enhanced brightness, coherence, and signal at high X-ray energies along with new, 
state-of-the-art, highly pixelated commercial detectors that are part of these projects and amplify these gains, the 
feature and enhanced beamlines require significant improvements in networking, controls and data acquisition, 
computing, workflow, data reduction, and analysis tools to operate effectively. Detailed information about 
computing and data needs, plans, and gaps may be found in the “APS Scientific Computing Strategy” document3.

The meaning of data, the size of data, the processing steps applied to data, and the analysis and interpretation 
of data vary depending on the beamline, the measurement technique, the detector(s) utilized, and the scientific 
goal. Raw data is generated primarily by two-dimensional (area), one-dimensional (strip), or point detectors as 
a part of scattering, imaging, or spectroscopy measurements. Raw data may represent a scattering pattern, a 
transmission image, or spectra, for example. The size of the data may vary from a few megabytes to hundreds of 
terabytes per allocated beam time. Some form of data processing or reduction is usually performed after data is 
collected to transform the data from a technique or detector representation to the physical space of interest in an 
analyzable representation, such as a series of sinograms into a three-dimensional world-space volume, or spectra 
into elemental concentrations.

Generally, data is first stored on a computer attached to the acquisition detector or some other local beamline 
storage system. In many cases, the data is transferred to a local beamline workstation, the local APS distributed-
memory computing cluster, or a computing center located on the Argonne campus, such as the ALCF or the 
Argonne Laboratory Computing Resource Center, for processing. Raw and processed data is often stored on a 
large disk system at the APS using the APS Data Management System (described in detail later in this document) 
from which users may retrieve the data or share the data with collaborators. Currently, the APS only guarantees 
storage space for a minimum of three months; the long-term management of data is the responsibility of the user 
group that collected the data4. In some cases, experimenters transfer the raw data to computing resources at their 
home institutions for all further processing. The final analysis and interpretation of the data for publication is 
generally carried out by the experiment team at their home institutions, is very experiment specific, and may take 
months or even years to perform.

3 “The APS Scientific Computing Strategy,” www.aps.anl.gov/files/APS-Uploads/XSD/XSD-Strategic-Plans/APSScientificComputingStrate-
gy-2021-09-24-FINAL.pdf.
4 “The Advanced Photon Source Data Management and Retrieval Practices,” www.aps.anl.gov/Users-Information/Help-Reference/Da-
ta-Management-Retrieval-Practices
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5.2.2.2 Collaborators

The APS is a scientific user facility with a large and diverse user community. The number of both on-site and 
remote users per year has steadily increased, peaking to almost 6,000 unique users per year (see Figure 5.2.3), 
resulting in approximately, at its peak, 2,500 publications per year (see Figure 5.2.4). A recent decrease in the 
number of users per year is due partly to a change in the way remote users for mail-in experiments are counted, 
but more so to restrictions imposed during COVID-19. In response, the deployment of remote access tools 
enabled experimenters to run measurements remotely and led to an increase in remote users as a fraction of total 
users in fiscal year (FY) 2021.

Figure 5.2.2: Diagram of APS beamlines, systems, and facilities
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APS users perform experiments in many fields, including the biological and life sciences, the materials sciences, 
chemistry, and physics (see Figure 5.2.5). APS users are funded by a diverse group of sources, including the US 
DOE Office of Science and the National Nuclear Security Administration, the US National Science Foundation 
(NSF), the US National Institutes of Health (NIH), and industry, amongst others (see Figure 5.2.6). Facility users 
come from throughout the US (see Table 5.2.2) as well as from many countries (see Table 5.2.3).

Approximately one-half of the beamlines at the APS are managed directly by the APS X-ray Science Division. 
Others are managed by collaborative access teams (CATs), which comprise scientists from universities, industry, 
and federal and private research laboratories. Beam time is allocated to experiments in one of three ways: (1) 
the general user mode is the primary means of access for external users in which applications for beam time are 
peer reviewed; (2) the partner user mode provides access for projects that require guaranteed beam time over 
multiple cycles and will ultimately benefit the general user community; and (3) CATs provide beam time directly 
to CAT members. The APS operates for three three-month runs (or cycles) each year, with a one-month shutdown 
between runs. The runs typically span February to April, June to August, and October to December. Depending 
on the beamline and type of experiment, beam time may range from a few hours to a few weeks in duration.

Figure 5.2.3: Total number of APS users per FY. Note: (a) Prior to FY14, mail-in users were not 
included in the Remote category; (b) In FY20, new BES user counting policy has been applied so 
that only 1 unique user is associated with mail-in experiments and the user is only counted once 
in the whole population.

User/Collab-
orator and 
Location

Primary or 
secondary copy 

of the data

Data access 
method

Avg. size of 
data set

Frequency of 
data transfer or 

download

Are data sent 
back to the 
source and 

method

Any known  
issues with 
data sharing

US UNIVERSITY-
BASED PIS

Both data portal, 
data transfer 
(Globus, sftp, 

cloud storage), 
portable hard 

drive

1 MB–10 TB ad hoc N N/A

US NATIONAL 
LABS BASED PIS

Both data portal, 
data transfer 
(Globus, sftp, 

cloud storage), 
portable hard 

drive

1 MB–10 TB ad hoc N N/A

INTERNATIONAL 
PIS

Both data portal, 
data transfer 
(Globus, sftp, 

cloud storage), 
portable hard 

drive

1 MB–10 TB ad hoc N N/A

Table 5.3.1: APS Collaboration Space
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Figure 5.2.4: Number of publications attributed to the APS per publication year

Figure 5.2.5: Percentage of APS users by experiment subject for FY 2021

Figure 5.2.6:  Percentage of APS users by source of support for FY 2021
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Table 5.2.2: APS users by state for FY 2021. Fractional numbers account for users who relocate to different states during the 
reporting period.

State Description Number of Users State Description Number of Users

ALABAMA 24 NEBRASKA 17

ARIZONA 23 NEVADA 10

ARKANSAS 2 NEW HAMPSHIRE 3

CALIFORNIA 369.37 NEW JERSEY 44

COLORADO 54 NEW MEXICO 43.5

CONNECTICUT 45 NEW YORK 243

DELAWARE 11 NORTH CAROLINA 89

DISTRICT OF COLUMBIA 19 NORTH DAKOTA 9

FLORIDA 62.1 OHIO 73.4

GEORGIA 85 OKLAHOMA 5

HAWAII 8 OREGON 12

IDAHO 1 PENNSYLVANIA 98

ILLINOIS 780.84 PUERTO RICO 4

INDIANA 98.05 RHODE ISLAND 11

IOWA 45 SOUTH CAROLINA 21

KANSAS 4 SOUTH DAKOTA 1

KENTUCKY 13 TENNESSEE 99

LOUISIANA 11 TEXAS 155

MAINE 5 UTAH 18.5

MARYLAND 151 VERMONT 2

MASSACHUSETTS 157.22 VIRGINIA 37.67

MICHIGAN 134 WASHINGTON 67.33

MINNESOTA 55 WEST VIRGINIA 6

MISSISSIPPI 4 WISCONSIN 39.95

MISSOURI 46 WYOMING 5

MONTANA 1 Sum: 3322.93



70Basic Energy Sciences Network Requirements Review Final Report 2022

Table 5.2.3: APS users by 
home institution country for 
FY 2021. Fractional numbers 
account for users who change 
host institution to one that is in 
a different country during the 
reporting period.

Institution Country Number of Users

AUSTRALIA 8

BRAZIL 5

BULGARIA 1

CANADA 117

CHINA, PEOPLES REPUBLIC OF 51.93

DENMARK 17

FRANCE 29

GERMANY 28

HONG KONG 1

INDIA 2

IRELAND 2

ITALY 6

JAPAN 5

KOREA, SOUTH 34

MEXICO 1

NETHERLANDS, THE 2

PORTUGAL 1

SINGAPORE 3

SPAIN 2

SWEDEN 6.14

SWITZERLAND 2

TAIWAN 8

THAILAND 1

TURKEY 2

UNITED KINGDOM 28

USA 3322.93

Total countries: 26 3686

5.2.2.3 Instruments and Facilities

The APS currently operates 68 beamlines, each with its own unique data generation characteristics. As part of 
the APS-U Project, feature beamlines were approved for construction as either new, or replacement of existing 
beamlines. In addition, several beamlines were selected for major enhancements. Because of the greatly 
enhanced brightness, coherence, and signal at high X-ray energies along with new state-of-the-art, high-
bandwidth commercial detectors that are part of these projects and amplify these gains, the feature and enhanced 
beamlines will generate substantially more data than their contemporary equivalents, requiring step-change 
improvements in networking, controls and data acquisition, computing, workflow, data reduction, and analysis 
tools to operate effectively. Detailed information about computing and data needs, plans, and gaps may be found 
in the “APS Scientific Computing Strategy” document.

APS beamlines often have dozens of motors, readout electronics, and X-ray detectors that are controlled by 
real-time hardware devices. Many X-ray detectors have specific manufacturer-supplied interfaces. FPGA or ARM 
devices are often used for real-time coordination of devices used during experiments.
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As data rates and volumes continue to grow, greater demands will be placed on the APS network. This is 
especially true for the APS-U feature and enhanced beamlines. The APS is updating its network architecture 
and infrastructure to better serve the beamlines as it enters the APS-U Era. Figure 5.2.7 depicts the APS-U Era 
network architecture and infrastructure plan. Refer to Section 5.2.2.7, Network and Data Architecture, for a 
detailed description of the APS network and planned upgrades.

Demands for increased data processing capabilities in the APS-U Era are driven by new scientific opportunities 
enabled by the upgraded facility. The increase in brightness and advances in detector data rates will generate 
multiple orders of magnitude more data than are generated today; this increase in data volume necessitates an 
increase in processing power to keep pace. The utilization of multimodal data to answer new questions requires 
more complex and sophisticated data processing algorithms requiring increases in computing capabilities. 
Increases in computing power are needed by advanced algorithms for existing techniques that, for example, 
provide higher-fidelity results, and to train AI/ML models. The need for real-time analysis and feedback to make 
crucial experiment decisions and enable autonomous experiment steering also requires more computing cycles 
than have been traditionally utilized.

The computing resources required by the APS are anticipated to grow by at least two orders of magnitude to keep 
up with data generation rates. Prior to the APS-U, most data processing can be performed within the range of 
teraflops per second of computing resources. In the APS-U Era, first-pass data processing at the APS will require 
on-demand access to tens of petaflops per second (PFLOPps) of computing resources. There is wide variability 
in the computational requirements among techniques and processing approaches, with those instruments and 
techniques that benefit most from high-energy, high-brightness, and coherent X-rays driving most requirements5.

5 Schwarz N., Campbell S., Hexemer A., Mehta A., Thayer J. (2020) Enabling Scientific Discovery at Next-Generation Light Sources with 
Advanced AI and HPC. In: Nichols, J., Verastegui, B., Maccabe, A., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds.) “Driving Scientific and 
Engineering Discoveries Through the Convergence of HPC, Big Data and AI.” SMC 2020. Communications in Computer and Information 
Science, vol 1315. Springer, Cham.



72Basic Energy Sciences Network Requirements Review Final Report 2022

Figure 5.2.7: The APS beamline network and architecture today. See Section 5.2.2.7 for upgrades that are planned over the 
coming years.
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Figure 5.2.8: Computing resources and respective specifications and performance available for use by the  
APS at Argonne
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To satisfy these needs, the APS adopts a graded approach to resource utilization. Small-scale resources, such as 
multicore processors and GPUs local to beamlines, will be used when sufficient. For moderate computational 
needs, the APS maintains an on-site computing cluster, and Argonne maintains computing resources as a 
part of the Laboratory Computing Resource Center. For the most demanding computational problems, large-
scale computing facilities must be used, including the ALCF, NERSC, and the OLCF. To mitigate challenges 
surrounding processing and storing such large, anticipated data volumes, the APS is exploring the utilization of 
edge-computing resources coupled closely to detectors and instruments, to run AI/ML data reduction algorithms. 
See Figure 5.2.8 for a list of computing resources available at Argonne.

Edge computing offers the ability to process data quickly on or near detectors and experiment instrumentation 
without the need to first transfer all data to high-end computing resources. This is particularly promising for 
handling large data when coupled with machine-learning methods. Using only a subset of data, machine-learning 
models may be trained on supercomputers. The trained model is then run using edge-computing devices to 
process newly acquired data, providing fast feedback for experiment steering.

Currently, the APS provides approximately 3.6 PB of central disk storage (easily expandable to 15 PB) for short- 
and medium-term data retention, and several DTNs for reliable, high-speed data movement internally and 
externally (see Figure 5.2.9) as a part of the APS Data Management System. The APS plans to double the size 
of available storage to approximately 8 PB within the next year. The ALCF currently provides approximately 10 
PB of tape storage (easily expandable to meet future APS needs) for longer-term data retention. The ALCF has 
recently deployed a 100-PB CFS (Eagle) and a 100-PB project file system (Grand) along with additional tape 
storage that is available for APS use.

Today, the APS X-ray Science Division operates beamlines that collect approximately 6 PB to 7 PB of raw data 
per year. In the coming years, once the upgraded APS storage ring and beamlines are commissioned and brought 
into operation, it is estimated that the volume of data generated at the APS will increase by at least two orders of 
magnitude to 100s of PBs of raw data per year (see Figure 5.2.10).

Figure 5.2.9: The APS Data Management System storage infrastructure. A Data Direct Networks storage appliance connects 
to an InfiniBand switch. Four DTNs link the storage to the beamline network, two DTNs connect the storage to the ALCF, two 
DTNs provide links to the public Internet for Globus transfers, and two DTNs provide links to the public Internet for Secure 
File Transfer Protocol (SFTP) transfers.
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Detailed information about the data volumes that are anticipated to be generated by the feature beamlines may 
be found in the “APS Scientific Computing Strategy” document [1]. The APS is in the process of collecting similar 
information for the beamlines that will receive major enhancements. Abridged information on anticipated data 
volumes for the feature beamlines and a comparison to current instruments, where available, may be found in the 
tables below.

Figure 5.2.10: Log Scale: Estimated data generation volumes per year at the APS. Data 
generation will drop temporarily due to the installation of storage ring and beamline upgrades.

Table 5.2.4: Data generation rates today at the beamline 34-ID-C Bragg coherent diffraction imaging (CDI) instrument (for 
comparison) and estimated data generation rates at the ATOMIC APS-U feature beamline. For brevity, these tables represent only a 
fraction of the total 68 beamlines at the APS.

Table 5.2.5: Estimated data generation rates at the Coherent Surface Scattering Imaging (CSSI) APS-U feature beamline. For brevity, 
these tables represent only a fraction of the total 68 beamlines at the APS. (GIWAXS: Grazing-incidence wide-angle scattering; 
GISAXS: Grazing-incidence small-angle scattering.)

 Today Technique Data Set Size (GB) Data Per Day (TB) Data Per Year (TB)

TODAY Bragg coherent diffraction imaging (CDI) 0.06 0.0033 0.65

APS-U ERA
Fast Bragg CDI 0.49 1.32 220

High-Resolution CDI > 5.86 0.81 35

 Today Technique Data Set Size (GB) Data Per Day (TB) Data Per Year (TB)

APS-U ERA

GIWAXS 1.3 3.5 276.48

GIWAXS-XPCS 197.8 69.5 5550.08

GISAXS 2.4 6.3 501.76

GISAXS-XPCS 201.2 70.7 5642.24

Fast GIXS
988.8 38.9 655.36

1788.1 70.4 1187.84

CSSI 357.6 40.2 3891.20



76Basic Energy Sciences Network Requirements Review Final Report 2022

Table 5.2.6: Data generation rates today at the 1-ID High-Energy Diffraction Microscopy (HEDM) instrument (for comparison) and 
estimated data generation rates at the HEXM APS-U feature beamline. For brevity, these tables represent only a fraction of the total 
68 beamlines at the APS.

Table 5.2.7: Data generation rates today at the 2-ID-D ptychography and diffraction, 2-ID-E x-ray fluorescence (XRF), and Bio Nano-
Probe (BNP) XRF instruments (for comparison) and estimated data generation rates at the In Situ Nanoprobe (ISN) APS-U feature 
beamline. For brevity, these tables represent only a fraction of the total 68 beamlines at the APS.

 Today Technique Data Set Size (GB) Data Per Day (TB) Data Per Year (TB)

TODAY

Near-Field Diffraction 11 1 62

Far-Field Diffraction 22 12 647

Far-Field Diffraction 11 3 153

Far-Field Diffraction 45 12 366

Far-Field Diffraction 10 92 2,896

Diffraction Tomography 281 1 10

Diffraction Tomography 1,125 4 40

Diffraction Tomography 2,250 3 35

Diffraction Tomography 9,000 13 140

Imaging Tomography 15 1 41

APS-U ERA

Near-Field Diffraction 13 17 894

Far-Field Diffraction 25 116 9,706

Diffraction Tomography 249 21 441

Diffraction Tomography 1,825 154 3,233

Diffraction Tomography 26.37 2.22 47

Diffraction Tomography 1,993 105 1,103

Diffraction Tomography 14,596 410 4,300

Diffraction Tomography 211 45 467

Imaging Tomography 34 4 134

Fast Imaging Tomography 34 10 99

 Today Technique Data Set Size (GB) Data Per Day (TB) Data Per Year (TB)

TODAY

2-ID-D Ptychography 986 8.32 87

2-ID-D Diffraction 0.20 0.21 13

2-ID-E XRF 1.91 0.01 2.16

BNP XRF 0.69 0.01 2.16

APS-U ERA

ISN XRF 1.30 1.98 104

ISN Ptychography 204,322 181.02 7,603

ISN Diffraction 40.86 51.72 3,528
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Table 5.2.8: Data generation rates today at the 4-ID beamline instruments (for comparison) and estimated data generation rates at 
the Polarization Modulation Spectroscopy (Polar) APS-U feature beamline. For brevity, these tables represent only a fraction of the 
total 68 beamlines at the APS. (XMCD: X-ray magnetic circular dichroism; XMLD: X-ray magnetic linear dichroism.)

Table 5.2.9: Data generation rates today at the 2-ID-D ptychography, 2-ID-E XRF, and BNP XRF instruments (for comparison) and 
estimated data generation rates at the PtychoProbe APS-U feature beamline. For brevity, these tables represent only a fraction of the 
total 68 beamlines at the APS.

Table 5.2.10: Data generation rates today at the 8-ID instruments (for comparison) and estimated data generation rates at the XPCS 
APS-U feature beamline. For brevity, these tables represent only a fraction of the total 68 beamlines at the APS.

 Today Technique Data Set Size (GB) Data Per Year (TB)

TODAY

4-ID-D XAS / XMCD 0.53 0.000986

4-ID-D XAS / XMCD  
(mapping 10 um, high-pressure 1 Mbar)

0.53 0.002129

4-ID-D Hard Resonant Magnetic Scattering  
(mapping 100 nm)

0.0004 0.000001

APS-U ERA

4-ID-G Hard Resonant Magnetic Scattering  
(mapping 100 nm)

9.20 834.13

4-ID-G Hard Resonant Magnetic Scattering –  
Polarization Modulated (mapping 100 nm)

229.86 41,706.38

4-ID-G Hard Resonant X-ray Ptychography 25.54 834.13

4-ID-G Hard Resonant X-ray Ptychography –  
Polarization Modulated

638.51 41,706.38

4-ID-G Bragg CDI Magnetic Contrast 638.51 417.06

4-ID-G Tomographic CDI 10.22 834.13

4-ID-H XAS / XMCD / XMLD  
(mapping 300 nm, high-pressure 7 Mbar)

0.26 0.002129

 Today Technique Data Set Size (GB) Data Per Day (TB) Data Per Year (TB)

TODAY

2-ID-D Ptychography 986 8.32 87

2-ID-D Diffraction 0.20 0.21 13

2-ID-E XRF 1.91 0.01 2.16

BNP XRF 0.69 0.01 2.16

APS-U ERA

PtychoProbe XRF 0.65 0.66 35

PtychoProbe Ptychography 2,043 206.88 8,689

PtychoProbe Diffraction 40.86 129.30 8,146

 Today Technique Data Set Size (GB) Data Per Day (TB) Data Per Year (TB)

TODAY XPCS 18.61 1.31 102

APS-U ERA

XPCS — Fast 2,235 75 3,072

XPCS — Fast 2,980 377 15,360

XPCS — Average 670 141 6,144

XPCS — Average 1,788 50 2,048
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Table 5.2.11: Data generation rates today at the 34-ID-E Laue diffraction instrument (for comparison) and estimated data generation 
rates at the 3D Micro and Nano Diffraction (3DMN) APS-U feature beamline. For brevity, these tables represent only a fraction of the 
total 68 beamlines at the APS.

 Today Technique Data Set Size (GB) Data Per Day (TB) Data Per Year (TB)

TODAY Wire Scan

3.91 1.32 125

5.86 1.98 21

3.91 2.64 249

5.86 3.96 42

APS-U ERA

Wire Scan — Fast
23.44 28.25 1,187

39.06 47.08 494

Wire Scan — Average
23.44 7.06 1,038

39.06 11.77 124

Wire Scan — Fast
4.69 28.25 1,187

7.81 47.08 494

Wire Scan — Average
4.69 7.06 1,038

7.81 11.77 124

5.2.2.4 Generalized Process of Science

There is great diversity in the process of science at the APS due to the large and diverse user community. 
Multiple processes and workflows exist for each beamline, instrument, and technique, and new processes and 
workflows are continually developed and refined. Refer to the “APS Scientific Computing Strategy” document 
for detailed workflows for individual beamlines. Many of the processes, however, may be categorized into three 
main themes:

Processing/Reducing/Analyzing Large Amounts of Data from Light Source Instruments

As described earlier in this document, data is first stored on a computer attached to the acquisition detector or 
some other local beamline storage system. In many cases, the data is transferred to a local beamline workstation, 
the local APS distributed-memory computing cluster, or a computing center located on the Argonne campus, 
such as the ALCF, for processing. Raw and processed data is often stored on a large disk system at the APS using 
the APS Data Management System from which users may retrieve the data or share the data with collaborators. 
Researchers may refine results and combine data collected at the APS with data from other sources, including 
simulations; this is usually performed outside of the facility-based workflow. Over the coming few years, due 
to increases in data volumes and complexity, and aligning with the completion of the upgrade project, the APS 
anticipates leveraging supercomputers at the ALCF for much of its data processing needs. See Figure 5.2.11.

Figure 5.2.11: Generalized APS data processing/reduction/analysis workflow process
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Today, users analyze much of their APS-generated data at their home institutions. The amount of computing 
resources needed to analyze APS data is anticipated to greatly increase in the coming years due to the estimated 
increase in APS data generation rates. This amount of computing resources may likely be out of reach for 
individual user groups, necessitating the use of APS-provided computing resources.

Increased data generation rates in the APS-U Era will likely be too great for traditional file-based workflows. The 
APS will utilize streaming-based workflows in which data is transferred from detector system memory directly 
to computer system memory, bypassing intermediate file systems, requiring robust facility and Laboratory 
networking. Event mode data collection will also be utilized in the future, requiring the development of new 
methods for identifying events and analyzing event-based data streams.

Adaptive Feedback and Autonomous Experiment Steering Using Advanced Computational Techniques, 
Including AI/ML Methods

An area of active development that will soon begin showing benefits is the use of advanced computational 
techniques, especially AI/ML, for adaptive feedback and autonomous experiment steering678. In this scenario, 
data collected from a detector acquisition system is considered training data for AI/ML models. This data is sent 
to a large-scale computer where AI/ML models are trained. The training data is stored in a repository for later 
use. The trained model is also stored in a repository for later use and sent to an edge-computing device near 
the detector. Subsequent data sets are processed on the edge device near the instrument generating control 
instructions sent to the instrument. See Figure 5.2.12.

6 Cherukara, M., Nashed, Y., Harder, R.J., “Real-time coherent diffraction inversion using deep generative networks,” Sci. Rep. 8.1, 1-8 
(2018).
7 Liu, Z., Sharma, H., Park, J. S., Kenesei, P., Almer, J., Kettimuthu, R., Foster, I. T., “BraggNN: Fast X-ray Bragg Peak Analysis Using Deep 
Learning,” arxiv.org:2008.08198 (2020).
8 Liu, Z., Ali, A., Kenesei, P., Miceli, A., Sharma, H., Schwarz, N., Trujillo, D., Yoo, H., Coffee, R., Layad, N., Thayer, J., Herbst, R., Yoon, C., 
Foster, I., “Bridging Data Center AI Systems with Edge Computing for Actionable Information Retrieval,” Proceedings of the 3rd Annual 
Workshop on Extreme-Scale Experiment-in-the-Loop Computing (XLOOP 2021), held in conjunction with SC’21, November 19, 2021.

Figure 5.2.12: Data process for an autonomous experiment steering workflow using AI/ML



80Basic Energy Sciences Network Requirements Review Final Report 2022

Coupling Large-scale Simulations, Digital Twins, Surrogate Models, and AI/ML With Experiment Data in 
Real-time to Drive Experiment Design and Experiment Decisions

Building on the previous process, the coupling of large-scale simulations, digital twins, and surrogate models with 
AI/ML is an active area of exploration. This mode of science promises to help accelerate scientific discovery, for 
example, by enabling faster and more complex materials synthesis. In this scenario, a supercomputing resource 
is used to incorporate experimentally derived data into simulations, the results of which are used to guide 
experiments in real time and even to plan experiment campaigns and sample compositions (see Figure 5.2.13).

Note: In these cases, users may access the APS and computing facilities remotely.

The U.S. DOE-funded light sources have developed a common vision for computing across the facilities, 
the DISCUS, and a decade-long roadmap to achieve the vision (see Figure 5.1.12). This vision proposes a 
transformative computational fabric that covers the full lifecycle of data generated at the BES light sources to 
accelerate discovery and insight. This vision proposes connecting the 200+ instruments at the light sources to 
a multitiered computing landscape, including edge, local, campus, and ASCR program compute resources, and 
discoverable data repositories using high-performance, robust feature-rich networks. This fabric would facilitate 
the full lifecycle of data across the BES complex, including theory/modeling and simulation, experiment design, 
data generation at scientific instruments within the light sources, data reduction and processing, analysis and 
interpretation, and publication and dissemination, serving the 10,000+ light sources users per year.

Figure 5.2.13: Data process for coupling large-scale simulations, digital twins, surrogate models, and AI/
ML with experimentally derived data in real time
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5.2.2.5 Remote Science Activities

The majority of studies carried out at the APS have generally been performed by on-site experimenter-led 
teams. But there is a growing proportion of these investigations that is performed by remote researchers. These 
remote measurements are performed either through mail-in programs, where users send arrays of samples to be 
measured in an automated or semi-automated fashion with facility staff providing oversight of the measurements, 
or through remote access mechanisms whereby all or a part of the experiment team is geographically remote and 
remote access tools, particularly NX NoMachine, are used to directly access and manipulate computers running 
data acquisition applications. Due to COVID-19, the portion of remote experimenters at the BES light sources 
increased greatly (see Figure 5.2.3 for the APS example). The APS anticipates that remote access will continue 
to be a substantial mode of operation, and thus a critical infrastructure component for the facility going forward. 
Remote access experiments have the advantages of increasing the user base and scientific output of the facility 
and increasing accessibility to the facility for underserved communities.

In the APS-U Era, it will be impractical and unreasonable to support the scale of computing required with 
only local APS resources. The colocation of the APS and world-leading supercomputing infrastructure at the 
ALCF on the Argonne campus provides an unprecedented opportunity for collaboration. The APS and ALCF 
have partnered to deliver a new model of computing, tightly coupling APS experiment instruments with ALCF 
supercomputers to accelerate scientific discovery (see Figure 5.1.12).

The ALCF deployed a new computing system, Polaris, in 2022. Polaris is a combination commodity CPU/
GPU -based system with performance of approximately 44 PFLOPps. This system follows a new model for 
supercomputing systems, Instrument to Edge (I2E), to better enable use by experimental facilities. Up to 
4 PFLOPps of computing will be prioritized to explore on-demand use of high-end computing resources 
by experimental and observational facilities, including the APS. The APS is currently testing workflows for 
ptychography, XPCS, and HEDM instruments on the Polaris testing platform, Edith.

Work is underway to test preemptive scheduling queues to provide immediate, on-demand access for APS 
jobs. Gateway nodes on this system will provide the ability for the APS to stream data directly to Polaris from 
detectors, avoiding local file input/output. The APS is working with Argonne’s Data Science and Learning 
Division and the Globus Services team to develop a computational data fabric for end-to-end data lifecycle 
management, Gladier9.

Combining these new capabilities will provide the necessary coupling between the APS and the ALCF to more 
seamlessly utilize large computing resources to enable the data processing needed in the APS-U Era. This 
model, once refined using Polaris, will be deployed on more computing resources at the ALCF. These capabilities 
will be employed for many other APS techniques and beamlines for data processing during beam time and for 
postprocessing by APS users after allocated experiment time is over.

Designed in collaboration with Intel and Cray, the 11 PFLOPps Theta supercomputer serves as a stepping stone 
to the next leadership-class ALCF supercomputer, the Aurora exascale supercomputer, which is scheduled to 
become available in 2023. Aurora is designed to support numerical simulation, data analysis, and deep learning 
applications. To this end, it is architected with a mix of Intel central processing units and GPUs to deliver 
sustained performance of greater than one exaflopps 1018 full-precision floating-point operations per second, and 
substantially higher compute rates at reduced precision. It will have aggregate system memory of more than 10 
PBs. The APS will utilize this new class of supercomputer to couple the results of simulations and modeling with 
experiment data and train ML models in real time.

9 Vescovi, R., Chard, R., Saint, N., Blaiszik, B., Pruyne, J., Bicer, T., Lavens, A., Liu, Z., Papka, M., Narayanan, S., Schwarz, N., Chard, K., Fos-
ter, I., “Linking Scientific Instruments and HPC: Patterns, Technologies, Experiences,” https://arxiv.org/abs/2204.05128.
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For data storage, the ALCF currently provides approximately 10 PB of tape storage (easily expandable to meet 
future APS needs) for longer-term data retention. The ALCF has recently deployed a 100-PB CFS (Eagle) and a 
100-PB project file system (Grand) along with additional tape storage that is available for APS use. The APS will 
continue to work closely with the ALCF to help address data storage challenges.

APS users not only perform experiments using the APS, but also at other US DOE-funded facilities, including 
light sources, neutron sources, and nanoscience research centers, and at their home institutions. The process of 
science often involves combining and analyzing data from multiple sources. As data rates and complexity continue 
to increase, sufficient networking connectivity, bandwidth, and reliability is required to connect measurement 
facilities, computing facility, and user home institutions to enable effective data management and analysis.

5.2.2.6 Software Infrastructure

The APS accelerator systems and beamline instruments rely primarily on the EPICS for low-level device control. 
The APS will upgrade EPICS to version 7 in the APS-U Era. The Bluesky10 suite of tools will be adopted for 
high-level experiment control as beamlines and instruments are upgraded. As mentioned in the previous  
section, remote access tools, such as NX NoMachine, will continue to be utilized to enable remote access for  
APS experiments.

The APS Data Management System, the facility-wide software and hardware infrastructure for managing data 
and workflows, provides a data management, workflow, and storage system for managing data resources. The 
APS Data Management System integrates with beamline data workflows and large data storage systems. These 
tools automate the transfer of data between acquisition devices, computing resources, and data storage systems. 
Ownership and access permissions are granted to the users signed up to perform a particular experiment.

APS Data Management System11 12 users can download data at their home institutions by using Globus or SFTP. 
The APS Data Management System utilizes Globus, GridFTP, remote sync, and secure copy protocol for internal 
data transfer within the facility. Some industrial partner beamlines at the APS utilize commercial systems, such as 
Aspera, or other proprietary tools for data transfer.

Since the system’s inception in 2013, the APS Data Management System has been adopted at approximately 50 
of 68 APS beamlines. The system is in use at both APS-managed and CAT-managed beamlines. Use of the system 
increased by 10 additional beamlines over a two-year timeframe (2020-2022) to help facilitate remote experiments 
due to COVID-19. The APS will continue to deliver a multitiered data management and distribution system for 
all current and future APS beamlines.

10 Allan, D., Caswell, T., Campbell, S., Rakitin, M., “Bluesky’s ahead: a multi-facility collaboration for an a la carte software project for data 
acquisition and management,” Synch. Radiat. News 32(3), 19–22 (2019).
11 Veseli, S., Schwarz, N., Schmitz, C., “APS Data Management System,” J. Synchrotron Rad. 25, 1574-1580 (2018).
12 Schwarz, N., Veseli, S., Jarosz, D., “Data Management at the Advanced Photon Source,” Synch. Radiat. News 32:3, 13-18 (2019).

Figure 5.2.14: The APS and ALCF have partnered to deliver a new model of computing, tightly coupling 
APS experiment instruments with ALCF supercomputers and storage infrastructure, to accelerate 
scientific discovery
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The APS is working with the Argonne Data Science and Learning Division and the Globus Services team to 
develop a computational data fabric for end-to-end data lifecycle management. This fabric, Gladier, connects and 
automates many stages of the data lifecycle from acquisition to processing to publication. Science web portals will 
allow APS users to view and download their data and reprocess their data on large-scale computing resources 
using Globus Automate and FuncX. The APS and the Globus team have prototyped this computational fabric for 
XPCS (see Figure 5.2.15) and serial crystallography, and are working to develop such workflows for ptychography, 
HEDM, and Bragg coherent diffraction imaging over the next two years to be ready for use at the newly 
upgraded APS facility.

These tools will be applied at more beamlines in the years after the APS-U and will serve as the basis for enabling 
searchable data catalogs and adopting FAIR data practices. The Materials Data Facility and the DOE Office of 
Scientific and Technical Information will serve as digital object identifier-generating services for APS data sets. 
In the long term, the APS will adopt or develop tools that provide metadata catalogs, electronic logbooks, and 
sample tracking systems.

The APS is focusing data analysis algorithm and software development in the areas needed to answer the novel 
scientific inquiries enabled by the future APS. These areas are techniques driven by coherence, imaging, and 
high-energy, and multimodal techniques. Algorithms and software are being developed to analyze and reconstruct 
massive data volumes, bridge across length and time scales, identify and classify features and patterns, and 
provide feedback to experiments dynamically using real-time reduction and novel AI/ML approaches. 

Coherence, imaging, high-energy, and multimodal techniques are already the most computationally intensive 
techniques performed at the APS, and throughput demands are expected to grow by as much as multiple 
orders of magnitude due to improved detectors and the upgraded source. Data reduction and analysis will rely 
heavily on the use of HPC, utilizing appropriate technologies such as multithreading, GPUs, edge devices, and 
distributed computing environments to obtain results with near real-time completion so that results enable user-
driven or even automated steering of experiments.

Key software developments have been made in this area over the past years. Applications will continue to be 
developed for improved performance and algorithms. A complete list of software produced at the APS can be 
found on the “APS Catalog of Data Analysis Software” web site13.

13 “The Advanced Photon Source Catalog of Data Analysis Software,” www.aps.anl.gov/Science/Scientific-Software.

Figure 5.2.15: Automation used to perform on-demand analysis of XPCS data using computing resources 
at the ALCF. Data is transferred to ALCF where compute nodes are provisioned to perform analysis, extract 
metadata, and plot results, which are published to a Globus data portal for user analysis.
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5.2.2.7 Network and Data Architecture

The Argonne campus network connects 100 buildings and 12 data centers in a multivendor switching and routing 
network. The campus has a new robust single-mode fiber cable plant that has plenty of capacity and ability to be 
expanded.

External network connectivity is provided by ESnet, Metropolitan Research and Education Network (MREN), 
Internet2, and Internet2 Peering Exchange (I2PX). ESnet recently migrated Argonne to the new ESnet6 network 
and has redundant optical transport and routers deployed on the Argonne campus in a redundant configuration 
supporting up to 400GE connections.

There are two primary networking node locations distributed between the north (Building 221) and south 
(Building 541B) sides of the campus to provide network redundancy. Generally, all buildings and data centers 
have connections to each of these networking nodes. The fiber used to connect to off-site providers is diverse and 
exits on the east and west sides of the campus.

The Argonne networks supports many connection speeds. The WAN supports 10GE, 40GE, 100GE, and 400GE. 
The campus core network support speeds of 1GE, 10GE, 40GE, and 100GE. Building connections are generally 
multiple 10GE with some 40GE. Data centers 10GE, 40GE, and 100GE. LAN connections within buildings are 
generally 1GE and 10GE.

See Figure 5.2.16 and Figure 5.2.17 for diagrams of the current and anticipated APS network connections 
to the Argonne campus network, the ALCF, MREN, Internet2, and ESnet. See Table 5.2.12 for planned  
network upgrades.

ANL WAN

The Argonne WAN network connectivity is provided by ESnet and MREN (Internet2 gateway, Peer Exchange 
(I2PX)) ESnet has optical and routing gear on the Argonne campus. Argonne has two Juniper MX960 border 
routers that are split between buildings 221 and 541B for redundancy and diversity.

Argonne uses ESnet OSCARS virtual circuits. (On-Demand Secure Circuits and Advance Reservation System)

The Argonne connections to ESnet are 2x100GE. The connections to MREN are 3x10GE. The border routers are 
connected to each other with 2x100GE connections. The connections to the campus Core network are 2x40GE 
and 40GE to the perimeter firewall.

Argonne has one perfSONAR connected to the border at 40GE.

Argonne deploys cyber security at the border with blackhole routing and network traffic capture taps for traffic 
collection and intrusion detection.

ANL Science DMZ

The Argonne ScienceDMZ is composed of Juniper QFX series equipment that is connected directly to the 
Argonne border routers with redundant 2x100GE links. The ScienceDMZ provides high-speed connectivity 
between scientific organizations for the exchange of data without taking the traditional path through a firewall.

Connections in to the Science DMZ are a minimum of 100GE with most facilities connecting at 2x100G.  
This allows collaborators to exchange data in a high-speed environment that does not affect commodity  
network connectivity.

ANL Core

The Argonne core network is provided by 2 Cisco Nexus 7710s spread across buildings 221 and 541B for 
redundancy. These switches offer network speeds at 1GE, 10GE, 40GE, and 100GE. The Core provide 
connections to the buildings and many of the data centers on the Argonne campus.
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ANL LAN

The Argonne LAN consists of the building access and aggregation switches. The Laboratory has standardized on 
Cisco and Aruba switches in the LAN. There is a combination of 1GE, 10GE, and 40GE network speeds in the 
LAN. Desktops are connected at 1GE.

ANL Data Centers

The primary data center at Argonne consists of Cisco Nexus equipment in an application centric infrastructure 
(ACI) fabric. It connects to the Argonne core network at 4x40GE and offers 2x40GE connectivity to every top of 
rack switch. There is a combination of 1GE, 10GE, 25GE, and 40GE to host in this space.

APS

Refer to Figure 5.2.7 for a diagram of the APS beamline network and architecture. The center of the APS 
beamline network consists of a pair of core switches (HPE Aruba 6410) located in the APS data center. These Tier 
1 switches provide all routing to beamline subnets and to other parts of the APS, Argonne, and the Internet via 
ESnet. The core switches are configured in a redundant active/active configuration. The core switches provide 
multiple 40/50/100-Gbps ports. These core switches are connected via 2 x 40-Gbps uplinks to the APS Tier 2 
firewall, which in turn connects to the Argonne Tier 1 firewall with 2 x 100-Gbps uplinks. The Tier 1 Argonne 
firewall connects to the Internet via ESnet using 2 x 100-Gbps uplinks. The APS core switches also connect 
directly to the ALCF via 2 x 100-Gbps uplinks. The same core switches connect to the storage systems for the 
APS Data Management System, sector data storage systems, and the data servers that host beamline control 
system configurations and software to interface with the APS accelerator network.

Each sector at the APS has a Tier 2 switch (HPE Aruba 6410) that serves to connect beamline devices and to 
connect the beamline to the core APS switches. The Tier 2 switches connect to beamline computers, control 
system EPICS IOCs, detectors and data acquisition servers, wireless access points, cameras, and controls 
hardware. Each Tier 2 beamline network switch will provide line rate 10/100/1000 megabits (Mbps) ports for 
the majority of devices at the beamline, as well as high-speed line rate 10/25/40/50/100-Gbps ports for data 
acquisition where needed. Uplinks to the APS Tier 1 core switches will be sized appropriately based on  
beamline needs.

A Tier 3 managed switch with 48 x 10/100/1000-Mbps ports may be deployed at each experiment hutch f 
or controls hardware stations to provide a dynamic cabling environment and to isolate beamline controls  
hardware traffic.

The APS will adopt a supervisory control and data acquisition architecture for the APS-U beamline control 
system network. Controls and data analysis network traffic will be separated and isolated from outside networks 
for maximum performance and security. Wireless access points can also be provided inside the hutch to support, 
for instance, advanced sensors or augmented-reality headsets.

An additional 96 pairs of single-mode fiber were installed from the APS data center to each of the laboratory 
office module network closets (768 pairs in total). This additional fiber infrastructure will provide sufficient 
network bandwidth from the beamlines to the data center for the next decade.
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Figure 5.2.16: Diagram of the present APS network connections to the Argonne campus 
network, the ALCF, MREN, Internet2, and ESnet

Figure 5.2.17: Diagram of the anticipated APS network connections to the Argonne campus 
network, the ALCF, MREN, Internet2, and ESnet in five years



87Basic Energy Sciences Network Requirements Review Final Report 2022

5.2.2.8 Cloud Services

The APS does not presently heavily utilize cloud services for its scientific data infrastructure. The APS does 
not have any immediate plans to further utilize cloud services in this area. The APS does rely on Globus tools 
for distributing data to its users and for data transfer to computing centers, and is prototyping workflows using 
Globus Automate, Globus FuncX, and Globus Gladier. The APS has prototyped the limited use of Microsoft 
Azure for one scientific computing use case and has prototyped the use of containers on the Argonne Laboratory 
Computing Resource Center. In the past, the APS utilized the Argonne Magellan platform for XPCS data 
reduction. The APS does utilize a number of software-as-a-service products for communication with its users and 
to enable remote experiments, including Box, GitHub, Slack, and Zoom. APS users may utilize cloud services 
outside of the APS infrastructure as a part of their data management and data analysis efforts.

The APS, along with the other US DOE-funded light sources, continues to evaluate the capabilities and cost-
effectiveness of using cloud services.

5.2.2.9 Data-Related Resource Constraints

The APS is facing a multiple order-of-magnitude increase in demand for computing resources over the next 
decade. Data management and workflow tools are needed that integrate beamline instruments with computing 
and storage resources for use during experiments, as well as to facilitate user access. Real-time data analysis 
capabilities are required to significantly reduce data volumes and provide feedback during experiments to 
improve data quality and to drive the direction of ongoing research. The application of advanced mathematical 
algorithms, ML, and the integration of simulations and model-based approaches will allow automated steering 
of data collection. On-demand utilization of computing environments is required to enable near real-time data 
processing. Sufficient data storage and archival resources to house the continually increasing amounts of valuable 

Table 5.2.12: Planned Argonne network upgrades

Present – 2 Years 2 – 5Years 5+ Years

APS • Complete individual beamline 
network switch upgrades

• Increase bandwidth for each 
APS sector to dual 100-Gbps 
or dual 200-Gbps links as 
needed

Continue to increase bandwidth 
for each APS sector to dual 
100-Gbps or dual 200-Gbps 
links as needed

• Networking hardware refresh
• Terabit connectivity to the 

Argonne ScienceDMZ
• Dual 400-Gbps uplinks from 

each APS sector
• Dual 400-Gbps uplinks to the 

regular campus network

Data Centers Hardware refresh for top of rack 
switches

Spine switch replacement Terabit connectivity

LAN • Continual refresh of switches 
older than 5 to 7 years

• Wireless access point 
upgrades

• Consider an overlay network 
topology

• Ongoing switch refreshes
• Zero-trust networking

• Upgrade to next-generation 
devices

• 10-Gbps to desktops

Core No changes Upgrade to next-generation 
devices

Terabit connectivity

Science DMZ 400 Gbps connectivity Router upgrade Terabit connectivity

WAN 400GE upgrade Upgrade border routers
Multiple 400-Gbps links

Terabit WAN connections
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scientific data produced by the APS is required. Advances in networking serve as the basis to realize these  
critical capabilities.

5.2.2.10 Outstanding Issues 

None to report at this time. 

5.2.2.11 Facility Profile Contributors

APS Representation

• Laurent Chapon, ANL, lchapon@anl.gov 

• Nicholas Schwarz, ANL, nschwarz@anl.gov

• Richard Fenner, ANL, fenner@anl.gov

• David Leibfritz, ANL, leibfritz@anl.gov

• Alec Sandy, ANL, asandy@anl.gov

• Brandon Siegel, ANL, bsiegel@anl.gov

• Stefan Vogt, ANL, svogt@anl.gov

• Stuart Campbell, BNL, scampbell@bnl.gov

• Alexander Hexemer, LBNL, ahexemer@lbl.gov

• Apurva Mehta, SLAC National Accelerator Laboratory, mehta@slac.stanford.edu

• Vivek Thampy, SLAC National Accelerator Laboratory, vthampy@slac.stanford.edu

• Jana Thayer, SLAC National Accelerator Laboratory, jana@slac.stanford.edu

ESCC Representation

• Linda Winkler, ANL, winkler@mcs.anl.gov

• Corey Hall, ANL, chall@anl.gov
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5.3 National Synchrotron Light Source II (NSLS-II)
The National Synchrotron Light Source II (NSLS-II) is a state-of-the-art synchrotron facility that provides 
extremely stable and bright photon beams, from infrared to hard X-rays, and data infrastructure to enable 
multiscale, multimodal, high-resolution studies on diverse systems of materials.

5.3.1 Discussion Summary

• NSLS-II began user operations in 2015.

• Approximately 1,800 distinct researchers used NSLS-II beamlines for their research prior to the 
pandemic, with approximately 1,400 seen during the pandemic years. 

• The NSLS-II currently operates 28 beamlines, each with its own unique data generation 
characteristics. Depending on the beamline and measurement, beam time may range from a few 
hours to more than a week in duration. 

• There has been a trend to increasing remote access to synchrotrons, thanks to the ongoing 
advances in robotic sample handling, automated data acquisition and data management, 
technology improvements to light sources and detectors, and the COVID pandemic. 

• The pandemic has heightened the needs for NSLS-II capabilities be operated and accessed 
remotely, both by staff and by the users. NSLS-II has aggressively ramped up the infrastructure 
and capabilities for remote access, along with associated cyber security measures. As the need 
for tools such as AI/ML to reduce human intervention increases, remote capabilities are of high 
strategic importance for the future health of the facility. 

• The meaning of data, the size of data, the processing steps applied to data, and the analysis 
and interpretation of data vary depending on the beamline, the measurement technique, the 
detector(s) utilized, and the scientific goal. The size of the data may vary from a few megabytes 
to hundreds of terabytes per allocated beam time. Some form of data processing or reduction is 
usually performed after data is collected. 

• NSLS-II has a common approach to control software. All beamlines run the Bluesky software 
suite for collecting, storing, managing, and partially analyzing data. Generally, data is first stored 
on a computer attached to the acquisition detector and then written to a shared central storage 
system. In addition to storing the raw data, processed data is also often stored on the central 
shared storage system. 

• Use of multimodal data requires more sophisticated data processing, and requires increases in 
computing capabilities which can include training AI/ML models as well as real-time analysis 
and feedback to enable autonomous experiment steering. The APS is exploring the utilization 
of edge-computing resources, coupled closely to detectors and instruments, to facilitate AI/ML 
data reduction algorithms.

• Although the data generated by individual experiments varies, over the next decade the 
combined data generation rates for NSLS-II (and other DOE-funded light sources) will reach 
the exabyte per year range. Processing power of hundreds of PFLOPps is expected, which 
implies strong networking capabilities top link light source instruments to edge, local, campus, 
and centralized computing facilities reliability, and with low latency. Terabit per second 
networking and beyond will be required to handle the large amounts of data expected in the 
coming years.

• The computing resources required by the NSLS-II are anticipated to grow steadily with the 
overall increase of data generation rates. For the most demanding computational problems, 
large-scale computing facilities must be used, including the ALCF, NERSC, and the OLCF. 



90Basic Energy Sciences Network Requirements Review Final Report 2022

Sending data from a light source facility to the HPC facility requires a data path of  
sufficient bandwidth. 

• Experimenters often transfer the raw data to computing resources at their home institutions 
for all further processing. The final analysis and interpretation of the data for publication is 
generally carried out by the experiment team at their home institutions, is very experiment and 
technique specific, and may take months to even years to perform.

• The NSLS-II only guarantees storage space for a minimum of 12 months; the long-term 
management of data is the responsibility of the user group that collected the data. The NSLS-II 
provides approximately 3.2 PB of central disk storage, which is expandable. 

• Several DTNs are available for reliable, high-speed data movement. NSLS-II users can 
download data at their home institutions by using Globus (paid subscription) or sftp. Users often 
utilize their own “cloud storage” accounts (e.g., Google Drive, Dropbox, etc.) to transfer data.

• There is a high demand from the user community to integrate cloud services for both file 
transfer (e.g., Dropbox, Google Drive, etc.) and for communication (e.g., Slack) into all areas 
of the data lifecycle and compute workflows. We have seen this demand increase during the 
COVID-19 pandemic. 

• BNL features a Tbps HTSN that serves as the primary network transport for all data intensive 
collaborations at BNL, and access to HPC and High-Throughput Computing (HTC) resources 
internal and external to the lab. 

• The BNL network perimeter includes 3x100 Gbps connections to ESnet, and average 15–20 PB 
of data monthly.

• The NSLS-II facility is connected via a 400 Gbps to the BNL HTSN to meet the demands of 
ever-increasing data rates and volumes.

• BNL will upgrade network capabilities in the one- to two-year timeframe to support 400 Gbps 
connectivity, and beyond.

5.3.2 NSLS-II Facility Profile
As a US DOE Office of Science User Facility, the National Synchrotron Light Source II (NSLS-II) enables 
a collaborative, holistic approach to advance scientific endeavors by offering free access to highly advanced 
instruments and unique expertise. NSLS-II creates light beams 10 billion times brighter than the sun, directing 
them towards specialized experimental stations called beamlines (see Figure 5.3.1). 
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5.3.2.1 Science Background 

As one of the newest, most advanced synchrotron light sources in the world, NSLS-II enables its growing 
research community to study materials with nanoscale resolution and exquisite sensitivity by providing cutting-
edge capabilities. Together with visiting researchers from all around the world, interdisciplinary teams at 
NSLS-II uncover the atomic structure, elemental make-up, and electronic behavior of materials. By creating this 
new, deeper understanding of materials, these research teams advance our knowledge in a wide range of scientific 
disciplines such as life sciences, quantum materials, energy storage, advanced materials science, physics, 
chemistry, and biology.

Figure 5.3.1: Aerial View of the National Synchrotron Light Source II (NSLS-II)
Currently, NSLS-II has 28 beamlines in operation, and 4 additional beamlines under construction. These beamlines (see 
Figure 5.3.2) offer unique, cutting-edge research tools, including higvh-throughput robot-driven sample processing, high 
spatial resolution imaging, and high-energy resolution. The storage ring is routinely operated at 400 mA and 30 pm-rad 
vertical emittance, and at 8 pm-rad during special running periods. NSLS-II has been implementing a multiyear devel-
opment plan for the accelerator systems. Once this is completed, it will allow the NSLS-II storage ring to be reliably 
operated at its mature performance specifications of 500 mA and 8 pm-rad vertical emittance.
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All beamlines at NSLS-II are organized into five photon science programs, based on the research capabilities 
they offer and staff expertise. Beyond the current existing portfolio of beamlines, NSLS-II has the capacity 
for additional 30 beamlines with four new beamlines already under development. To ensure all research tools 
are always cutting edge, we have a team of experts working on advancing detectors, X-ray optics, precision 
engineering, and positioning, as well as on theoretical simulations. Detailed information about computing and 
data needs, plans, remote access and gaps may be found in the NSLS-II Strategic Plan document1. 

Part of the holistic approach to research at NSLS-II is a common approach to control software for scientific 
instruments. All NSLS-II beamlines run the Bluesky software suite for collecting, storing, managing, and partially 
analyzing data. Generally, data is first stored on a computer attached to the acquisition detector and then written 
to a shared central storage system. In addition to storing the raw data, processed data is also often stored on the 
central shared storage system. 

The meaning of data, the size of data, the processing steps applied to data, and the analysis and interpretation 
of data vary depending on the beamline, the measurement technique, the detector(s) utilized, and the scientific 
goal. Raw data is generated primarily by two-dimensional (area), one-dimensional (strip), or point detectors as a 
part of scattering, imaging, or spectroscopy measurements. The data from all these detectors either takes the form 
of an image or histogram, or as a stream of time stamped photon detection events. Raw data may be represented 
by a scattering pattern, a transmission image, or spectra, for example. The size of the data may vary from a few 
megabytes to hundreds of terabytes per allocated beam time. Some form of data processing or reduction is 
usually performed after data is collected to transform the data from a technique or detector representation to an 
analyzable representation, such as a series of sinograms into a three-dimensional world-space volume, or spectra 
into elemental concentrations.

1 The National Synchrotron Light Source II Strategic Plan, https://www.bnl.gov/nsls2/docs/pdf/nsls2-strategic-plan.pdf

Figure 5.3.2: NSLS-II beamline diagram based on current funding assumptions

https://www.bnl.gov/nsls2/docs/pdf/nsls2-strategic-plan.pdf
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Currently, the NSLS-II only guarantees storage space for a minimum of 12 months; the long-term management 
of data is the responsibility of the user group that collected the data2. In some cases, experimenters transfer 
the raw data to computing resources at their home institutions for all further processing. The final analysis 
and interpretation of the data for publication is generally carried out by the experiment team at their home 
institutions, is very experiment and technique specific, and may take months to even years to perform.

5.3.2.2 Collaborators

NSLS-II began user operations in 2015. In fiscal year 2019, 1755 distinct researchers used NSLS-II beamlines 
for their research. This number in fiscal year 2020 was 1355 due to the impact of the global COVID-19 pandemic. 
Despite this, NSLS-II saw 577 publications in calendar year 2020, with more than 40% of these publications in 
journals with impact factor great than 7.0, demonstrating the high impact of our relatively young facility. 

NSLS-II operates in three 4-month cycles and all beam time is requested each cycle through the web-based 
Proposal Allocation, Safety, and Scheduling System (PASS) system. In this system, a beam time proposal 
describes the scientific experiments to be performed and identifies the experimental team. Proposals have 
different durations depending upon the type of proposal submitted. For any proposal that has a duration of more 
than one cycle, a beam time request (BTR) must be submitted for every cycle that a user requests beam time. 
Every BTR also requires a Safety Approval Form, which is also submitted through the PASS system once beam 
time is allocated.

There are several modes of access for beam time at NSLS-II, which are described in detail below. However, they 
all follow a common life cycle that involves the following steps: proposal submission, feasibility evaluation, peer 
review, allocation of beam time, scheduling, carrying out the work, and reporting the results.

• General User (GU) Proposals — Most proposals requesting beam time at NSLS-II are GU 
proposals. GU proposals are for scientists that require beam time on beamlines that routinely 
support the technique needed for their experiment. For GU experiments, users often bring only 
samples, but can also provide custom instrumentation for the duration of their experiments. GU 
proposals are valid for one year (3 beam time cycles). Up to 3 beamlines and 2 CFN instruments 
may be requested on a GU proposal. If a proposal is allocated beam time, it will also receive 
time on the CFN instrument(s), subject to feasibility review and sufficient availability. Each 
proposal requests a lifetime number of 8-hour shifts to complete the work for each beamline 
requested. For each cycle that a user requests beam time, he/she must submit a BTR against 
their GU proposal. These proposals are peer reviewed and allocated by the NSLS-II Proposal 
Review Panel. All GU proposals are considered active until either: (a) all beam time allocated to 
the proposal for its lifetime has been used, (b) the proposal is withdrawn, or (c) one year  
has elapsed.

• Rapid-Access (RA) Proposals — RA proposals are specifically for rapid access to beam time f 
or “hot topics” or for straightforward experiments using routine techniques with a fast 
turnaround time. RA proposals are valid for one beam time cycle and typically request a very 
small amount of beam time on one beamline. These proposals are peer reviewed and allocated 
by the NSLS-II Proposal Review Panel with a 1–2-week turnaround time prior to running  
the experiments.

• Joint Bio-SAXS / Bio-SANS Proposals — A collaboration has been established between the 
Bio-SAXS (LiX) beamline at NSLS-II and the Bio-SANS beamline at HFIR (ORNL) to form  
a SAXS/SANS Joint Access Program. In this program, users only need to submit one beam  
time proposal for access to both facilities. In this proposal, the user must justify the need for 
both techniques.

2  The National Synchrotron Light Source II Data Management Policy, https://www.bnl.gov/nsls2/userguide/post-experiment.php#step3

https://www.bnl.gov/nsls2/userguide/post-experiment.php#step3
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• Block Allocation Groups (BAGs) — A mode of beam time access at NSLS-II intended for 
groups of researchers that want to combine their short beam time requests into a single proposal 
in order to permit greater flexibility in beam time allocation and scheduling. BAG proposals 
may be motivated by shared scientific interest, geographical location, affiliation, common 
experimental setup, or other synergistic reasons. Combining the beam time of individual groups 
permits greater flexibility in the choice of projects and samples during a given allocation period 
and offers the individuals in the BAGs the benefit of access to more regular allocation of beam 
time. The term of a BAG proposal is two years (six beam time cycles). Up to five beamlines may 
be requested for a BAG proposal.

• Partner User (PU) Proposals — Partner Users (PU) proposals are for individuals or groups 
who need regular access to beam time on NSLS-II beamlines to carry out their work and who 
also wish to partner with the facility in making contributions that benefit other facility users by 
enhancing the utilization or capabilities of the facility or contributing to its operation. Possible 
examples include, but are not limited to, creating or expanding a user community, contributing a 
sophisticated endstation, contributing staff and/or equipment to provide user support for a given 
program, or the design, construction, or operation of endstation equipment, or even a whole 
beamline. NSLS-II staff may be PU members or PIs with the approval of the NSLS-II Director. 
The lifetime of a PU proposal will typically be up to three years, although it may be up to five 
years in special circumstances. Each beamline at NSLS-II has a maximum 40% of the available 
beamtime available for all PUs on that beamline.

• Proprietary Proposals — Proprietary research is work conducted under a Class Waiver 
for Proprietary Users of Energy Research Designated User Facilities. Private individuals, 
representatives from educational institutions, nonprofit organizations, or industry, may conduct 
such research. Under the terms of the DOE Class Waiver, the user is obligated to pay the 
full-cost recovery rate for use of NSLS-II. In return, the user has the option to take title to 
any inventions made during the proprietary research program and to treat as proprietary all 
technical data generated during the proprietary research program. The terms and conditions 
under which proprietary research may be conducted at the NSLS-II are set forth in the 
Proprietary User’s Agreement, which must be in place before any experiment can commence. 
Proprietary work requires the submission of a Proprietary Proposal, which must contain a 
functional nonproprietary description of the work. Proprietary proposals are RA proposals that 
are reviewed by NSLS-II management.
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User/Collaborator 
and Location

Primary or 
secondary 
copy of the 
data

Data access 
method

Avg. size of 
data set

Frequency of 
data transfer or 
download

Are data sent 
back to the 
source and 
method

Any known  
issues with 
data sharing

US UNIVERSITY-
BASED PIS

Both Data portal, data 
transfer (Globus, 
sftp, cloud storage), 
portable hard drive

1 MB–10 TB ad hoc N N/A

US NATIONAL LABS 
BASED PIS

Both Data portal, data 
transfer (Globus, 
sftp, cloud storage), 
portable hard drive

1 MB–10 TB ad hoc N N/A

INTERNATIONAL PIS Both Data portal, data 
transfer (Globus, 
sftp, cloud storage), 
portable hard drive

1 MB–10 TB ad hoc N N/A

Depending on the beamline and measurement, beam time may range from a few hours to more than a week 
in duration. As previously stated, NSLS-II users perform experiments covering many scientific fields, such 
as life sciences, quantum materials, energy storage, advanced materials science, physics, chemistry, and 
biology. In response to the pandemic, the deployment of remote access tools has enabled experimenters to 
run measurements remotely and has led to an increase in remote users as a fraction of total users in FY 2021. 
NSLS-II caters for users that come from both throughout the United States and overseas.

5.3.2.3 Instruments and Facilities

The NSLS-II currently operates 28 beamlines, each with its own unique data generation characteristics. NSLS-II 
continues to develop new beamlines to meet the research needs of the scientific community. Currently NSLS-II 
is constructing a high-energy X-ray scattering and imaging beamline (HEX), funded by New York State, to be 
completed in 2022. In addition, three undulator beamlines, Coherent Diffraction Imaging (CDI), ARPES and 
RIXS Imaging, and Soft X-ray Nanoprobe, are under construction in a DOE major items of equipment project, 
NEXT-II, to be completed in 2026-28 timeframe. At that time, NSLS-II will have 32 beamlines in operations, out 
of its capacity of ~60 beamlines. 

NSLS-II beamlines often have many dozens of motors, readout electronics, and X-ray detectors that are 
controlled by real-time hardware devices. Many X-ray detectors have specific manufacturer-supplied interfaces. 
FPGA or ARM devices are often used for real-time coordination of devices used during measurements.

To meet the demands of ever-increasing data rates and volumes, there have been recent upgrades to the NSLS-II 
networking. The NSLS-II facility is now connected via a 400 Gbps to the BNL HTSN. Refer to Section 5.3.2.7, 
Network and Data Architecture, for a detailed description of the BNL HTSN network. 

The utilization of multimodal data to answer new questions requires more complex and sophisticated data 
processing algorithms requiring increases in computing capabilities. Increases in computing power are needed 
by advanced algorithms for existing techniques that, for example, provide higher-fidelity results, and to train 
AI/ML models. The need for real-time analysis and feedback to make crucial experiment decisions and enable 
autonomous experiment steering also requires more computing cycles than have been traditionally utilized.

The computing resources required by the NSLS-II are anticipated to grow steadily as beamlines mature, new 
beamlines are constructed, and detector developments all contribute to increase the overall data generation 
rates. There is wide variability in the computational requirements among techniques and processing approaches 

Table 5.3.1: NSLS2 Collaboration Space
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with those instruments and techniques that benefit most from high-energy, high-brightness, and coherent X-rays 
driving most requirements 3.

Edge computing offers the ability to process data quickly on or near detectors and experiment instrumentation 
without the need to first transfer all data to high-end computing resources. This is particularly promising for 
handling large data when coupled with machine-learning methods. Using only a subset of data, machine-learning 
models may be trained on supercomputers. The trained model is then run using edge-computing devices to 
process newly acquired data, providing fast feedback for experiment steering.

The pandemic has heightened the needs for advanced, readily available capabilities at NSLS-II, as well as the 
need for improved experiment infrastructure and processes to allow these capabilities be operated and accessed 
remotely, both by staff and by the users. NSLS-II has been aggressively ramping up the infrastructure and 
capabilities for remote access, along with associated cyber security measures. This is both a short-term need 
driven by the current pandemic, and a long-term need to take full advantage of the high-brightness and high-
throughput capabilities that NSLS-II provides. As the time for a single measurement decreases, the need for tools 
such as AI/ML to reduce human intervention increases. Thus the remote experiments capabilities are of high 
strategic importance for the future health of the facility. 

Currently, the NSLS-II provides approximately 3.2 PB of central disk storage (which is easily expandable, and 
is scheduled to be expanded to 6.4 PB before the end of 2022) for short- and medium-term data retention, and 
several DTNs for reliable, high-speed data movement. The NSLS-II is in the process of collecting revised 
detailed data rate information for all its beamlines to include all the improvements and upgrades that have been 
implemented (and also those that are planned) during the initial years of operations. 

For the most demanding computational problems, large-scale computing facilities must be used, including the 
ALCF, NERSC, and the Oak Ridge Leadership Computing Facility (OLCF).

5.3.2.4 Generalized Process of Science

There is great diversity in the process of science at the NSLS-II due to the large and diverse user community. 
Multiple processes and workflows exist for each beamline, instrument, and technique, and new processes and 
workflows are continually developed and refined. Many of the processes, however, may be categorized into three 
main themes:

Processing/Reducing/Analyzing Large Amounts of Data from Light Source Instruments

Experiments that generate complex and large data volumes are challenging to execute and often require fast 
turnaround between data acquisition and data analysis to enable experimenters to make informed decisions 
when driving experiments to make use of the limited resources of X-ray beam time and samples. Data collection 
rates are growing exponentially due to light source, instrument and detector upgrades, and computational 
requirements are also growing in proportion. To analyze data on experiment timescales, it is necessary to send 
data to remote HPC facilities such as NERSC, the ALCF, or the OLCF. Sending data from a light source facility 
to the HPC facility requires a data path of sufficient bandwidth. Raw and processed data is often stored on a 
large disk system at the NSLS-II from which users may retrieve the data or share the data with collaborators. 
Researchers may refine results and combine data collected at the NSLS-II with data from other sources, 
including simulations; this is usually performed outside of the facility-based workflow. Over the coming few years, 
due to increases in data volumes and complexity, the NSLS-II anticipates leveraging computational resources 
outside of BNL. 

3 Schwarz N., Campbell S., Hexemer A., Mehta A., Thayer J. (2020) Enabling Scientific Discovery at Next-Generation Light Sources with 
Advanced AI and HPC. In: Nichols J., Verastegui B., Maccabe A., Hernandez O., Parete-Koon S., Ahearn T. (eds) Driving Scientific and 
Engineering Discoveries Through the Convergence of HPC, Big Data and AI. SMC 2020. Communications in Computer and Information 
Science, vol 1315. Springer, Cham.
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Adaptive Feedback and Autonomous Experiment Steering Using Advanced Computational Techniques,  
Including AI/ML Methods 

Autonomous experiment steering is an emerging mode of conducting science at the 5 US DOE-funded light 
sources. Within the light sources, this capability has the promise to provide automated setup of the source and 
sample alignment, intelligent data collection, quality verification, data reduction, and coupling of experimentally 
derived data with information derived from theory, models, and simulations456. Autonomous experiment steering 
has the potential to unlock new materials science knowledge to, for example, better understand failure modes 
in materials, enable the synthesis of new materials, aid in the creation of purpose-built designer materials, and 
assist in additive manufacturing processes. Feedback must often be obtained on timescales too short for humans 
to react to plan and steer experiments to, for example, catch rare events or see fast processes. Due to the intrinsic 
capabilities of the current and soon to be upgraded sources, coupled with high data rate detectors that generate 
large volumes of data at increasingly higher rates, advanced computational techniques, including AI/ML, must 
be employed to realize autonomous steering of light source experiments. These methods require the utilization 
of considerable supercomputing power to process data and train AI/ML models that may then be used to make 
real-time decisions using edge or local computing systems

An area of active development that will soon begin showing benefits is the use of advanced computational 
techniques, especially AI/ML, for adaptive feedback and autonomous experiment steering. In this scenario, data 
collected from a detector acquisition system is considered training data for AI/ML models. This data is sent to a 
large-scale computer where AI/ML models are trained. The training data is stored in a repository of training data 
for later use. The trained model is also stored in a repository for later use and sent to an edge-computing device 
near the detector. Subsequent data sets are processed on the edge device near the instrument generating control 
instructions sent to the instrument.

Although the data generated by individual experiments may vary greatly, over the next decade the combined 
data generation rates of the 5 US DOE-funded light sources is expected to approach the exabyte per year range 
(see Figure 5.3.3). In order to process this data, the light sources are expected to require tens to many hundreds 
of PFLOPps of on-demand processing capacity (see Figure 4). Networking must be able to connect light source 
instruments to edge, local, campus, and centralized computing facilities reliability, and with low latency.  
Terabit per second networking and beyond will be required to handle the large amounts of data expected in the 
coming years.

Autonomous experiment steering will become an increasingly relied upon capability at the light sources as the 
decade progresses. Due to the high computational cost associated with data processing, reduction, and analysis, 
and of model training on such large data sets, the light sources will need to employ the use of geographically 
distributed computing facilities and data repositories. This necessitates high bandwidth, low latency network 
connections between the light sources and remote computing and data storage centers.

4 Phillip M Maffettone et al 2021 Mach. Learn.: Sci. Technol. 2 025025
5 Campbell SI, Allan DB, Barbour AM, et al (2021) Outlook for artificial intelligence and machine learning at the NSLS-II. Machine Learn-
ing: Science and Technology 2:013001. https://doi.org/10.1088/2632-2153/abbd4e
6 D. Olds, D. B. Allan, T. A. Caswell, J. Lynch, P. M. Maffettone and S. I. Campbell, “Optimizing High-Throughput Capabilities by Lever-
aging Reinforcement Learning Methods with the Bluesky Suite,” 2021 3rd Annual Workshop on Extreme-scale Experiment-in-the-Loop 
Computing (XLOOP), 2021, pp. 36-42, doi: 10.1109/XLOOP54565.2021.00011, https://ieeexplore.ieee.org/document/9652809.

https://doi.org/10.1088/2632-2153/abbd4e
https://ieeexplore.ieee.org/document/9652809
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YEAR Facility

ALS APS LCLS/LCLS-II NSLS-II SSRL

2022 0.1 PFLOPS 4 PFLOPS 1–100 PFLOPS 2.5 PFLOPS < 1 PFLOPS

2028 30 PFLOPS 50 PFLOPS 50–1000 PFLOPS 45 PFLOPS < 1 PFLOPS

Coupling large-scale simulations, digital twins, surrogate models, and AI/ML with experiment data in real-time 
to drive experiment design and experiment decisions: Coupling of simulations and development of “digital twins” 
to light source experiments has the potential to unlock new materials science knowledge to, for example, better 
understand failure modes in materials, enable the synthesis of new materials, aid in the creation of purpose-built 
designer materials, and assist in additive manufacturing processes. It will also allow for a more efficient and 
optimum use of beamtime at the light sources. For a high-level flow chart of combining experiments with digital 
twins, see Figure 5.3.4.

The coupling of simulations with light source experiments can be split up into three main areas in the experimen-
tal life cycle. Firstly, before the experiment, simulations can be used to help prepare, plan, and determine if the 
experiment is even feasible. Secondly, during the allocated beam time, simulations can help guide and inform the 
strategy and guide the experiment. Finally, simulations can be used to aid in the data analysis in order to extract 
the maximum scientific information from the data. 

Figure 5.3.3: Log Scale: Estimated data generation rates per year at the BES light sources. At the ALS and APS, data generation will 
stop during 2025 and 2024, respectively, due to installations of new storage rings. Aggregate data generation across the BES light 
sources will approach the exabyte (EB) range per year by 2028. The differences in data generation rates across the facilities depend on 
the number, rate, and resolution of the detectors at each instrument which in turn depend on factors like the brightness of the source 
and the actual requirements of the experiment technique specific to that particular instrument.

Table 5.3.2: Estimated PFLOPps of on-demand computing resources required by each of the BES light sources by 2022 and 2028
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This mode of science promises to help accelerate scientific discovery, for example, by enabling faster and more 
complex materials synthesis. In this scenario a supercomputing resource is used to incorporate experimentally 
derived data into simulations, the results of which are used to guide experiments in real-time and to even plan 
experiment campaigns and sample compositions. 

Coupling simulations experiment steering will become an increasingly relied upon capability at the light sources 
as the decade progresses. Due to the high computational cost associated with data processing, reduction, and 
analysis, and of model training on such large data sets, the light sources will need to employ the use of geographi-
cally distributed computing facilities and data repositories. This necessitates high bandwidth, low latency network 
connections between the light sources and remote computing and data storage centers.

Unified solutions across the light sources are required in order to leverage efficiencies of scale, and to provide 
facility users with the ability to easily and transparently manipulate data across the light sources. A shared 
computational fabric for the complex should be developed that connects light source instruments (and other 
scientific user facilities) to a multitiered, distributed computing landscape, including edge, local, campus, 
and supercomputing centers, data repositories and archives, and facility user institutions in a seamless and 
transparent manner. This necessitates the development of advanced networking capabilities and increased 
networking bandwidth, sustainable and discoverable data repositories, on-demand real-time supercomputing 
access, and workflow and orchestration tools. Also, as the majority of light source users are not experts in 
using computational facilities, there needs to be easy access and both in terms of obtaining the resources and 
performing the calculations.

Note: In these cases, users may access the NSLS-II and computing facilities remotely.

NSLS-II has been working closely with the other four BES light source facilities, coordinated through the 
5-way LSDCSC. This group produced a unified vision for the distributed data infrastructure to enable user 
science, the DISCUS, and a decade long roadmap to achieve the vision (see Figure 5.1.12). This vision proposes 
a transformative computational fabric that covers the full lifecycle of data generated at the BES light sources 
to accelerate discovery and insight. This vision proposed connecting the 200+ instruments at the light sources 
to a multitiered computing landscape, including edge, local, campus, and ASCR compute resources, and 
discoverable data repositories using high-performance, robust feature-rich networks. This fabric would facilitate 
the full lifecycle of data across the complex, including theory/modeling and simulation, experiment design, 
data generation at scientific instruments within the light sources, data reduction and processing, analysis and 
interpretation, and publication and dissemination, serving the 10,000+ light sources users per year.

Figure 5.3.4: Flow chart of using a digital twin with light source experiments
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5.3.2.5 Remote Science Activities

There has been a trend to increasing remote access to synchrotrons in recent years, thanks to the ongoing 
advances in robotic sample handling, and in automated data acquisition and data management. The current 
COVID-19 restrictions have accelerated such demands. Furthermore, increasingly brighter synchrotron sources 
and faster detectors have dramatically shortened the data collection times, to the point that data collection is the 
least time-consuming activity in an increasing number of experiments. 

Working with other BES light source facilities, we have formed a remote experiments task force to work on 
implementing remote access and tele-experiments at NSLS-II, and to look at access policies, procedures, and 
user experience. We see remote experiments as essential for NSLS-II to maintain leadership and attract the best 
science in an increasingly connected world.

5.3.2.6 Software Infrastructure

The NSLS-II accelerator systems and beamline instruments rely primarily on the EPICS for low-level device 
control. Bluesky7 is used for high-level experiment control and orchestration. Remote access tools, such as 
Apache Guacamole, will continue to be utilized to enable remote access for NSLS-II experiments. 

NSLS-II users can download data at their home institutions by using Globus (paid subscription) or sftp. Users 
often utilize their own “cloud storage” accounts (e.g., Google Drive, Dropbox, etc.…) to transfer data.

The initial data management layer for experimental data is the Bluesky databroker/tiled software8 which is 
tightly integrated into the data acquisition system. This is developed as a collaborative open-source project with 
contributors from other facilities, both within the DOE complex and internationally. This system aims to provide 
a consistent “data API” rather than prescribe a given on-disk data format. 

These tools will serve as the basis for enabling searchable data catalogs and adopting FAIR data practices. The 
Materials Data Facility (MDF) and the DOE Office of Scientific and Technical Information will serve as a DOI 
generating service for NSLS-II data sets. In the long term, the NSLS-II will adopt or develop tools that provide 
metadata catalogs, electronic logbooks, and sample tracking systems.

There is a high demand from the user community to integrate cloud services for both file transfer (e.g. Dropbox, 
Google Drive, etc.) and for communication (e.g. Slack) into all areas of the data lifecycle and compute workflows. 
We have seen this demand increase during the COVID-19 pandemic. 

Coherence, imaging, high-energy, and multimodal techniques are generally the most computationally intensive 
techniques performed at the NSLS-II. Data reduction and analysis will rely heavily on the use of HPC, utilizing 
appropriate technologies such as multithreading, General Purpose GPUs, edge devices, and distributed 
computing environments to obtain results with near real-time completion, so that results enable user-driven or 
even automated steering of experiments.

5.3.2.7 Network and Data Architecture

BNL High-Throughput Science Network

BNL has implemented a vendor agnostic, resilient, scalable and modular terabit per second (Tbps) HTSN which 
serves as the primary network transport for all data intensive collaborations at BNL. It provides high-throughput 
connectivity to all HPC and HTC collaborations and supports the timely transfer of large amounts of scientific 
data via the Internet. 

7 Allan, D., Caswell, T., Campbell, S., Rakitin, M. (2019) Bluesky’s ahead: a multi-facility collaboration for an a la carte software project for 
data acquisition and management. Synch. Radiat. News 32(3), 19–22.
8 Tiled website — https://blueskyproject.io/tiled/

https://blueskyproject.io/tiled/
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The HTSN has five primary components:

• Network perimeter

 − Three diverse 100 Gbps circuits that peer with ESnet. These circuits are utilized by 
all scientific and administrative communities at BNL. All traffic to and from BNL flows 
through either of these circuits. 

 − The BNL network perimeter transfers on average 15–20 PB of data monthly.

• Science DMZ

 − Supports open, high-speed WAN/Internet) access for all scientific collaborations 
throughout the BNL campus.

• Science Core

 − A Tbps Data Center Interconnect (DCI) for data intensive collaborations at BNL. This 
network interconnect enables high-speed connectivity between collaborations such as 
ATLAS, STAR, PHENIX, CAD, CFN, NSLS-II, HPC Clusters and the Scientific Data and 
Computing Center (SDCC).

 − Intelligence and routing policies are applied within the Science Core to restrict or grant 
access to specific resources within the SDCC.

• Spine

 − A Tbps network Spine that interconnects all Leaf switches. Leaf switches can consist of 
Top of Rack (ToR) or chassis-based switches that connect compute, storage or general 
infrastructure service servers.

 − The responsibility of the Spine is fast packet forwarding and flexibility, not policy insertion 
or server termination.

 − External Border Gateway Protocol (eBGP) is utilized throughout the HTSN. eBGP was 
chosen for its ability to immensely scale and to create modularity and fault domain isolation 
down to the rack level. Each Spine group shares the same Autonomous System Number 
(ASN) but does not have Internal BGP (iBGP) peering’s between them. Each Leaf or pairs 
of Leaves will require their own ASN. 

• Storage Core

 − A redundant terabit per second switching block that aggregates high-performance  
storage services

BNL Next-Generation Network Perimeter

The network perimeter at BNL is a high-speed and fault-tolerant network infrastructure that provides the BNL 
site connectivity to the Internet and various scientific wide-area networks. It supports numerous data intensive 
collaborations such as BES, Biological and Environmental Research, HEP, and Nuclear Physics. It also supports 
critical campus services such as workstations, phone service, security, safety and monitoring and enterprise and 
cloud computing. Since being placed into production in 2013, the network perimeter has transmitted over 100+ 
PBs of data per year to numerous scientific collaborations worldwide. 

In 2013 the BNL network perimeter was bleeding edge 100 GbE technology. Now, the hardware has reached 
8+ years in age and it is no longer cost-effective to purchase additional hardware for these platforms. Newer 
platforms today support much greater 100 GbE interface densities along with supporting 400 GbE which will 
allow BNL to support all its data intensive collaborations well into the future. With these factors in mind, BNL 
will possibly procure a next-generation network perimeter within the next one to two years. This will prepare the 
laboratory to meet the missions needs of all the data intensive collaborations at BNL.
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5.3.2.8 Cloud Services

Currently, we make limited use of Amazon AWS and Microsoft Azure cloud platforms in the areas of prototyping, 
testing and standing up computational/storage resources to support training and demonstrations. There are a 
number of Software as a Services in production use, including Slack, Dropbox, GitHub Enterprise Cloud and 
Office 365. 

The NSLS-II, along with the other US DOE-funded light sources, continues to evaluate the capabilities and 
cost-effectiveness of using cloud services.

5.3.2.9 Data-Related Resource Constraints

Data management and workflow tools are needed that integrate beamline instruments with computing and 
storage resources, for use during experiment, as well as facility user access for post-experiment analysis. Real-
time data processing capabilities are required to significantly reduce data volumes and provide feedback during 
experiments to improve data quality and to drive the direction of ongoing measurements; the application of 
advanced mathematical algorithms, ML, and the integration of simulations and model-based approaches will 
allow automated steering of data collection. On-demand utilization of computing environments is required to 
enable near real-time data processing. Sufficient data storage and archival resources to house the continually 
increasing amounts of valuable scientific data produced by the NSLS-II is required.

5.3.2.10 Outstanding Issues 

None to report at this time. 

5.3.2.11 Facility Profile Contributors

NSLS-II Representation

• John Hill, BNL, hill@bnl.gov

• Stuart Campbell, BNL, scampbell@bnl.gov

• Paul Cianciulli, BNL, pcianciulli@bnl.gov

• Nicholas Talbot, BNL, ntalbot@bnl.gov 

• Nicholas Schwarz, ANL, nschwarz@anl.gov

• Jana Thayer, SLAC National Accelerator Laboratory, janajana@slac.stanford.edu 

• Alex Hexemer, LBNL, ahexemer@lbl.gov 

• Apura Mehta, SLAC National Accelerator Laboratory, jana mehta@slac.stanford.edu 

• Vivek Thampy, SLAC National Accelerator Laboratory, janavthampy@slac.stanford.edu

ESCC Representation

• Mark Lukasczyk, BNL, mlukasczyk@bnl.gov

• Vincent Bonafede, BNL, bonafede@bnl.gov
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5.4 Linac Coherent Light Source (LCLS)
The LCLS, located at the SLAC National Accelerator Laboratory was the world’s first free electron laser 
operating in the “Hard X-Ray” regime, funded by the US DOE, Office of Science, Office of BES. Operational 
since 2009, LCLS has had a dramatic effect on a broad cross-section of scientific fields ranging from atomic and 
molecular science, ultrafast chemistry and catalysis, quantum materials, structural biology, high energy-density 
science, and nonlinear photon science. LCLS produces X-rays that are used to image physical and chemical 
systems with atomic resolution, femtosecond precision, and chemical specificity. 

5.4.1 Discussion Summary

• The LCLS, located at the SLAC National Accelerator Laboratory, features10  
specialized instruments. 

• LCLS has had over 13,000 scientific user visits, and more than 3000 unique users over  
the course of operation. On average, LCLS has around 1000 users, and 700 unique users,  
every year. 

• Unlike at a synchrotron where X-rays can be delivered to multiple instruments at once, the 
linear accelerator can only deliver X-rays to one instrument at a time, although it is possible for 
other experiments to run parasitically using the X-rays that pass through the first instrument. As 
a result, there are usually 1–2 experiments during a shift. 

• Operating experiments is the shared responsibility of beamline scientists, local staff, and  
on-site users. LCLS has web services, a data management system, and a data analysis 
infrastructure that allows for virtual access to enable on and off-site analysis. Because of the 
uniqueness and changeability of LCLS instruments, LCLS does not envision remote operation 
of the instruments. 

• The LCLS-II upgrade represents an advance in X-ray laser technology and will be a 
transformative tool for energy science. The LCLS-II upgrade is scheduled to come online  
in 2023.

• LCLS-II will feature a significant increase in the data throughput from today’s 1–5 GBps to  
200 GBps. Future planned upgrades are expected to increase the throughput to multiple TBps 
by 2028. 

• LCLS uses the same data system at all instruments. The data system provides data acquisition, 
online data reduction, real-time monitoring, fast feedback for data quality monitoring, data 
storage and management, data archiving, a local compute facility for offline analysis and an 
offline analysis framework for data access. 

• The LCLS data system handles the transparent data movement within several layers of 
computing in the pipeline from the Detector Edge through the data reduction compute layer, to 
the data cache where it is accessible to users for fast feedback analysis. 

• Key elements of a future data management strategy for LCLS include a common API for 
accessing network and computing resources, parallel data transfer tools, high-fidelity data 
transfer, network performance monitoring, reservations, and dynamic network provisioning. 

• Analysis is performed by user teams using available computing resources at SLAC, DOE HPC 
facilities, or the users’ home institutions. Analysis is typically begun while the experiment is 
running, but can be refined and repeated with different parameters many times after execution. 
Real-time feedback is critical to drive experiments and ensure experiment success. 
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• Computing systems are important to facility operation, data interpretation, and overall scientific 
productivity. There are a number of sources and sinks for LCLS data, depending on the 
scientific workflow and the needs of the experimenters. The data paths can be summarized  
as follows: 

 − LCLS facility to ASCR compute facility

 − LCLS facility to light source or national lab

 − LCLS facility to university/home institution

 − LCLS facility to cloud computing/storage such as Google, Amazon AWS, or  
Microsoft Azure. 

• LCLS facility to ASCR facility is the most heavily used, and is used:

 − to analyze raw data or do post-experiment analysis

 − archive LCLS data sets (currently between LCLS and NERSC)

 − train/retrain AI/ML models

 − transmit simulation data that can be used during the experiment

• The LCLS to Lab data path is used when multimodal analysis is desired, or to support other 
remote computational resources. 

• The LCLS facility to university/home institution is used for the transfer of data sets post 
experiment, or for the use of remote computational resources. 

• The LCLS facility to cloud computing/storage is typically used by users, and not the facility, 
when they are attempting to share or back-up data, or perform some varieties of analysis. 

• In order to analyze data on experiment timescales, LCLS is sending data to remote HPC 
facilities such as NERSC, the ALCF, or the OLCF. Sending data from a light source facility to 
the HPC facility requires a data path of sufficient bandwidth.

• Experiment data and metadata collected at LCLS may be stored at and retrieved from the  
tape for a period of10years. A copy of the data remains at SLAC and another copy is made at  
a remote site, such as NERSC. LCLS provides space for all experimental data at no cost to  
the user.

• Local SLAC compute resources are sufficient to provide quasi-real-time analysis and feedback 
for roughly 80% of LCLS experiments, but for the remaining 20% of experiments, LCLS 
computational capabilities are not sufficient. LCLS intends to stream data to a DOE HPC 
(NERSC, OLCF, ALCF) for analysis. 

• During LCLS-II operation, it is expected that local computing capabilities will still account 
for 80% of experiments and will require processing resources on the order of 5 PFLOPS and 
storage capacities above 100 PB by 2027. LCLS-II will continue to use DOE HPC facilities for 
the other 20% of experiments with the largest computing demands, and will heavily leverage 
ESnet network resources to facilitate data mobility. 

• Most users complete their offline analysis using SLAC-provided computing resources in the 4 
months following their experiment. On average, a typical user will rerun over their entire data 
set up to 10 times. 

• LCLS produces data sets between 1–10 TB in size. LCLS-II and LCLS-II-HE has an 
expectation of generating data sets of about 1 PB per shift or several PBs per experiment. 

• Approximately a tenth of users copy data to their home institutions, usually using Globus. 
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• The further development and application of autonomous experiment steering requires that a 
number of gaps in capabilities and infrastructure be addressed:

 − sufficient and reliable bandwidth. 

 − sufficient and sustainable data storage resources.

 − on-demand access to large-scale computing systems.

 − transparent access to facilities and systems through federated identity and shared  
data protocols.

 − software tools and infrastructure to facilitate the development of scientific data workflows.

• Networking must be able to robustly connect LCLS instruments to remote computing facilities 
with low latency. Terabit per second networking and beyond will be required to handle the large 
amounts of data expected towards the end of the decade. There is a need to upgrade the SLAC/
LCLS ESnet connections to keep pace with the expected data rates of 200 Gbps in 2023 and 1 
Tbps by 2028 enabling streaming data transfer from LCLS to ASCR computing facilities.

• Autonomous experiment steering will be crucial to experiment success, and requires the use of 
geographically distributed computing facilities and data repositories, which in turn necessitates 
high bandwidth, low latency network connections.

5.4.2 LCLS Facility Profile
LCLS provides ultrashort pulses (from 200 attoseconds to 200 femtoseconds), with peak brightness a billion 
times higher than synchrotron sources, over an energy range from 250 to 25,000 eV, at 120 pulses per second. 
LCLS is currently undergoing major upgrades, LCLS-II and LCLS-II-HE, to provide a million pulses per 
second, delivering orders of magnitude enhancement of the average power and coherent flux compared to any 
other source. LCLS is one of five national user light source facilities available to users from academia, industry, 
government agencies, and research institutions worldwide. 

5.4.2.1 Science Background 

The overall layout of the LCLS instruments is shown in Figure 5.4.1. LCLS features 10 specialized instruments, 
each with a dedicated team of scientists and support staff to conduct pioneering research and provide the 
technical expertise required to operate the cutting-edge instrumentation. In order to detect the interaction of 
photons with matter, each instrument is surrounded by a variety of detectors and diagnostics such as ion time-
of-flight chambers, gas bottles, diodes, and area detectors (cameras). This instrumentation captures precisely 
time-stamped information about the beam, such as energy and profile, the environment, the sample, and the 
location of the photons that scattered off the sample. Detector data for each independent X-ray shot is combined 
with information about the sample environment and other diagnostics to infer the properties of the system under 
study. In order to make sense of this information, science-domain-specific techniques are used to extract the 
physically meaningful information about the structure and dynamics of the target under study. The analysis is 
typically performed by the user team using available computing resources at SLAC, ASCR High End Computing 
(HEC) facilities, or the users’ home institutions. The complex analysis that is used to answer a specific scientific 
question is typically begun while the experiment is running but the analysis is refined and repeated with different 
parameters many times after the experiment has concluded. Due to the dynamic nature of these experiments, 
real-time feedback is critical to drive experiments and ensure experiment success. 

The LCLS-II upgrade represents an advance in X-ray laser technology and will be a transformative tool for 
energy science. It will qualitatively change the way in which X-ray scattering, spectroscopy and imaging will 
be used in the future, to observe in ways never before possible, how natural and artificial systems function, 
spanning multiple decades of time scales (down to the attosecond regime) and multiple spatial scales (down to 
the atomic regime). LCLS-II will further enable powerful new ways to capture rare chemical events, characterize 
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fluctuating heterogeneous complexes, and reveal underlying quantum phenomena in matter using nonlinear, 
multidimensional, and coherent X-ray techniques that are only possible with a true X-ray laser. 

5.4.2.2 Collaborators

LCLS is a scientific user facility with a large and diverse user community. With over 13,000 scientific user visits 
in its first 10 years of operation, researchers from around the world have conducted groundbreaking experiments 
in a variety of fields. LCLS has 3000+ unique users and has conducted 900+ experiments on its 10 beamlines. 
On average, LCLS has around 1000 users and 700 unique users every year. 

Unlike at a synchrotron where X-rays can be delivered to multiple instruments at once, the linear accelerator can 
only deliver X-rays to one instrument at a time, although it is possible for other experiments to run parasitically 
using the X-rays that pass through the first instrument. As a result, there are usually 1–2 experiments during the 
day shift and 1–2 experiments on the night shift, with the maximum possible number of experiments running 
at any given time to maximize the use of the facility by users. Multiplexing, in which multiple instruments run 
simultaneously, is nevertheless common and at least 2–4 experiments at different instruments may be operating 
in any given week. Running each experiment is the shared responsibility of beamline scientists and users. LCLS 
provides data management tools, such as a file manager and web services to configure and launch analysis 
workflows, and a data analysis infrastructure that allows for virtual access to all of the resources necessary to 
analyze the data. In most cases, all the same resources are available to users’ doing analysis at home as on-site  
at SLAC. 

Figure 5.4.1: LCLS features 10 specialized instruments, each with a dedicated team of scientists and 
support staff, to conduct pioneering research and assist users with experiments. Each hutch is equipped 
with a suite of instruments to assist in gathering a wide range of data using various specialized 
techniques, from telltale signatures of electrons and ions to the intricate patterns left by crystallized 
samples struck by the X-ray laser.
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LCLS users perform experiments across a broad cross-section of scientific fields ranging from atomic and 
molecular science, ultrafast chemistry and catalysis, quantum materials, structural biology, high energy-density 
science, and nonlinear photon science.

Figure 5.4.2: Total number of LCLS users per fiscal year. During the COVID pandemic from 2020-2021, 
many users were remote and LCLS staff together with a limited number of on-site users managed the 
experiments.

Figure 5.4.3: LCLS Users and Science Areas by Fiscal Year, including MeV-UED (noting 
that the X-ray facility ran for less than half of FY17, only 10 weeks in FY19, and only 6 
weeks in FY20).
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LCLS users come from academia, industry, government agencies, and research institutions worldwide.

User/
Collaborator and 
Location

Primary or 
secondary 
copy of 
the data

Data access 
method

Avg. size of data set Frequency of 
data transfer 
or download

Are data sent 
back to the 
source and 
method

Any known  
issues with 
data sharing

LCLS FACILITY TO 
ASCR FACILITY — 
STREAMING OR 
POST-EXPERIMENT 
ANALYSIS 

Primary Automated data 
transfer using 
bbcp, xrootd. 
Other: LCLS 
facility handles 
data transfer 
from LCLS 
POSIX file sys-
tem to remote 
facility

1 PB; range from 1 TB 
to tens of PB. Maxi-
mum rate is of order 
100 GBps

Every 2 
months 
(depends 
on LCLS 
experiment 
schedule) 
intense data 
transfer to 
ASCR facility 
for a period 
of ~1 week

Every 2 months 
for 1 week at 
a rate of < 1 
GBps

For streaming 
data, need low 
latency and 
high bandwidth 
during the 
experiment; 
reservation or 
guarantee of 
bandwidth end-
to-end might 
be necessary

LCLS FACILITY TO 
ASCR FACILITY 
– LCLS DATA 
ARCHIVAL  

Secondary Automated data 
transfer using 
rucio, xrootd, 
high perfor-
mance storage 
system (HPSS)

1 PB; range from 1 TB 
to tens of PB. In aggre-
gate, we expect of order 
300 PB/year

Continuous Data restore 
from tape 
archive (rare, 
because this is 
a second copy 
of the data)

N/A

LCLS FACILITY TO 
ASCR FACILITY – 
(RE)TRAINING AI/
ML MODELS

Primary Automated data 
transfer using 
bbcp, xrootd. 
Other: LCLS 
facility handles 
data transfer 
from LCLS, 
POSIX file sys-
tem to remote 
facility

1 TB; range from 1 GB 
to tens of TB. Maximum 
rate is of order 1–10 
GBps

Continuous Yes, at a rate of 
< 1 GBps

Need low 
latency during 
experiments

LCLS FACILITY 
TO OTHER LIGHT 
SOURCE/LAB/
UNIVERSITY — 
MULTIMODAL 
ANALYSIS, POST-
EXPERIMENT 
ANALYSIS, 
ARCHIVAL

Secondary Globus, scp; 
these transfers 
are done by the 
user and we do 
not monitor the 
traffic or how 
the transfers 
are accom-
plished.

10% or fewer exper-
iments may copy 
data to a remote site 
post-experiment; as 
data sets grow, it be-
comes less likely that 
users will copy data to 
home institutions.

HDF5 files are most 
likely to be copied. 
These files are likely to 
range from 1 TB to tens 
of PB. Most likely value 
is ~ 1 PB per experi-
ment

Ad hoc No N/A

Table 5.4.1: LCLS Collaboration Space
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State Number of Users State Number of Users

Arizona 44 Nebraska 9

California 297 Nevada 3

Colorado 2 New Jersey 7

Connecticut 5 New Mexico 17

Illinois 24 New York 33

Indiana 2 Ohio 5

Kansas 10 Pennsylvania 5

Louisiana 1 Rhode Island 9

Maryland 3 Texas 3

Massachusetts 12 Utah 2

Michigan 8 Washington 5

Minnesota 3 Wisconsin 6

Missouri 4 District of Columbia 3

Figure 5.4.4: Percentage of LCLS users by source of support for FY2021

Table 5.4.2: LCLS users by state for FY2021
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Advanced computing systems are playing an increasingly important role in facility operation, data interpretation, 
and overall scientific productivity. There are a number of sources and sinks for LCLS data, depending on the 
scientific workflow and the needs of the experimenters. Most LCLS data is generated by the LCLS facility 
during experiments. Some LCLS data products are generated by users during the analysis of the LCLS data sets 
acquired during an experiment. This data may be generated locally at SLAC or it may be generated at a remote 
compute resource, such as an ASCR facility. Users may also work with theorists to generate simulations that 
are relevant to an experiment; this data may be generated at the ASCR compute facilities or at a university or 
the users’ home institutions. Users may also compare data taken at LCLS to data taken at one of the other light 
sources. During an experiment or during the post-experiment analysis phase, users may generate more results 
data and they may need to compare the simulated results to experimental results from any of the light sources. 
The data paths can be summarized as follows: 1) LCLS facility to ASCR compute facility, 2) LCLS facility to light 
source or national lab, 3) LCLS facility to university/home institution, and 4) LCLS facility to cloud computing/
storage such as Google, Amazon AWS, or Microsoft Azure. 

The first, LCLS facility to ASCR facility is the most heavily used. It is used to do streaming analysis using ASCR 
computing to analyze raw data or do post-experiment analysis. A primary copy of the data set is always kept at 
LCLS and a secondary copy is kept at NERSC. The LCLS facility to ASCR facility workflow is used to archive 
LCLS data sets at NERSC and to train/retrain AI/ML models that are being used by software at a beamline 
during experiments or to analyze data post experiment. An emerging use case is the use of simulations, performed 
at the ASCR facility, and then used during the experiment to inform data analysis. 

The second data path, lab to lab, is used when multimodal analysis is desired, or if a lab/university has a 
specialized local computing resource that is used for analysis. 

The third data path, LCLS facility to university/home institution is primarily used for the slow transfer of data 
sets post experiment to a users’ local storage/computing resources. 

Finally, the LCLS facility to cloud computing/storage is not used by the facility but may be employed by some 
users. The LCLS facility has investigated the possibility of using cloud resources but found that the costs 
associated with I/O were unsustainably high. However, LCLS does not prevent users from making use of these 
resources if they wish, and if multimodal analysis is desired, cloud storage and computing becomes a more 
attractive option. In some cases, such as streaming real-time analysis during an experiment, there may be strong 
real-time constraints on the flow of data between the facility and a computing resource which may limit the use of 
commercial cloud resources.

5.4.2.3 Instruments and Facilities

LCLS serves over 3000 users with 10 instruments and uses the same data system at all instruments, a key 
distinction between LCLS and the other light sources. The data system provides data acquisition, online data 
reduction, real-time monitoring, fast feedback for data quality monitoring, data storage and management, data 
archiving, a local compute facility for offline analysis and an offline analysis framework for data access. The facility 
operates 24/7 with brief shutdowns for maintenance about twice a year. 

Day in the Life of an LCLS User — The Data Lifecycle

The majority of users gain access to BES user facilities via a merit-based peer-review process in which scientific 
proposals for access to facility’s cutting-edge capabilities are evaluated by an independent proposal review panel. 
Calls for these proposals typically take place twice a year. Top-ranking proposals are awarded beam time, and 
the LCLS facility begins discussions with users about their experiment’s needs as soon as beam time is awarded. 
Users may return to the facility with each new run or they may not return to the facility for years at a time. The 
LCLS analysis framework and data management framework must be capable of retrieving old data and enable 
users to access and analyze older data together with newer data.
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Individual users’ experiments are typically allocated ~5 shifts of 12 hours each. Users may begin generating 
simulations, growing samples, or building instrumentation several months in advance of the beam time. 
Experiments are either on a day shift, 9 AM–9 PM or a night shift, 9 PM–9 AM and multiple experiments may 
run simultaneously in any given week. Experiment configurations at beamlines are not static and change weekly 
when the previous user group rotates out and the next user group rotates in. Configurations at beamlines may 
also change during an experiment in response to an experiment’s needs: detectors and diagnostics may be added 
or removed, the samples under study are replenished, renewed, or replaced with different samples, and other 
aspects of the instrument such as laser timing, mirror alignment, etc. may be adjusted for optimal performance. 
Some experiments require coordinated excitation of the sample followed by data-taking. For example, a laser 
pulse may excite a material which is followed up by a precisely timed series of X-ray pulses to image the system 
at different time intervals following the stimulus. In this case, the data system coordinates this sequence of events 
and collects metadata that is stored alongside the instrument data to describe the conditions under which the 
experiment was done. 

Prior to an experiment, users may generate simulations in collaboration with theorists. The resulting data is 
privately managed by the users. These simulations are used to inform the parameters of an experiment and 
may be compared to experimental results during an experiment. Users arrive on-site at the facility several days 
prior to their beamtime to assess the beamline, set up specialized equipment for the experiment, or test analysis 
workflows, a task which may require some access to computing resources. The number of collaborators associated 
with an experiment ranges from 5 to 80, some of which are on-site and driving the experiment during the beam 
time while the others are analyzing data from their home institutions and participating with on-site colleagues via 
telecommunication software. 

During the experiment, beamline scientists work closely with experimenters to optimize the data acquisition 
(calibrate detectors, detector to IP distances, sample delivery, hit rate) and optimize optics/laser timing. Once 
those are setup, the interactive process of data acquisition begins. Data is acquired for about 10 minutes at a 
time, and analyses are run “live” during acquisition with the goal of answering a scientific question within a few 
minutes of stopping acquisition. This feedback allows experimenters to decide how best to steer the experiment. 
Data quality is also assessed as part of this process: is the calibration/timing/alignment good? Is the data reduction 
performing optimally? Is the signal to noise as expected? In addition to data collection for scientific inquiry, data 
is collected to calibrate the detectors, align the beamline, adjust laser timing, and tune sample delivery. By the 
last few days of beamtime, most of the beamline parameters have been optimized to extract the most science 
information. As a result, the average rates of useful data written to disk usually increase during the last days of  
an experiment. 

Real-time data analysis is desired in order to optimize the use of limited beamtime and sample. Users need to 
analyze data at the rate of acquisition in order to obtain analysis results within minutes of ending a period of data 
acquisition. Local SLAC compute resources are sufficient to provide quasi-real-time analysis and feedback for 
roughly 80% of LCLS experiments, but for the remaining 20% of experiments, LCLS computational capabilities 
are not sufficient. LCLS intends to stream data to a DOE Leadership Class Facility (NERSC, OLCF, ALCF) for 
analysis. After data is copied to the spindle-based offline storage, users may copy data to their home institution 
for analysis. Approximately a tenth of users copy data to their home institutions, usually using Globus. Most 
users complete their offline analysis using SLAC-provided computing resources in the 4 months following their 
experiment. On average, a typical user will rerun over their entire data set up to 10 times. In some cases, users 
will also reanalyze data taken during a previous beamtime (up to 10 years ago) or combine results with data taken 
at other light sources to include (but not limited to) ALS, APS, NSLS-II, SSRL, SACLA, PAL, EuXFEL. 

Requirements — Throughput, Storage, Computing

The LCLS-II upgrades, scheduled to come online in 2023, will increase the repetition rate from 120 Hz to 1 
MHz Coupled with the adoption of ultrahigh repetition rate imaging detectors, there will be a significant increase 
in the data throughput from today’s 1–5 GBps to 200 GBps in 2023. Future planned upgrades are expected to 
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increase the throughput to multiple TBps by 2028. The throughput will be handled internally by the LCLS 
facility, but the reduced data that is written to disk, represented by the blue line in Figure 5.4.5 below, will be 
archived and potentially copied or moved to other facilities for analysis. 

In aggregate, data sets produce of order 1–10 TB of data per experiment in the 120 Hz mode of LCLS. With 
LCLS-II and LCLS-II-HE running at 1 MHz, the expectation is that a typical experiment will generate about 1 
PB per shift or several PBs per experiment, already reduced prior to being written to disk via the real-time data 
reduction pipeline.

Figure 5.4.5: Peak data throughput (red), the amount of science data produced by the sensors of an 
instrument every second. LCLS-I throughput, with a repetition rate of 120 Hz, is about 1–5 GBps. LCLS-II 
throughput, operating at a repetition rate of 1 MHz, beginning in 2023 will have a peak throughput of 
200 GBps. In 2027, when LCLS-II-HE instruments come online at 1 MHz, the throughput is expected to 
be ~1 TBps. When the effects of the data reduction pipeline and the duty cycle of the experiment are 
taken into account, the average data throughput (blue) is about 20 GBps.

Figure 5.4.6: This figure shows the integrated data as a function of time in PB assuming a data 
retention policy of 4 months on disk and 10 years on tape. The blue curve shows local disk storage 
requirements as a function of time, requiring 100 PB of disk storage by the end of the decade. The red 
curve shows tape storage requirements as a function of time.
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By 2028, data aggregated at rates of multiple terabits per second (100–300 Gbps) within three years and 
exceeding 1 Tbps in five years may flow via ESnet from any of the light sources (ALS, APS, LCLS, NSLS-II, 
SSRL) to any of the ASCR compute facilities (ALCF, NERSC, OLCF).

LCLS-II Data System

Computing demands at LCLS are driven by the repetition rate of the source, advances in detector technology, 
advances in data analysis algorithms, and the requirement to provide flexible and easy-to-use fast feedback to 
users in real time, a challenge given the weekly turnaround of experiments and the number of new user groups. 
The LCLS-II data system, the main components of which are described in Figure 5.4.8 below, provides core 
hardware and software infrastructure for scalable data acquisition, online monitoring, offline analysis, and data 
management enabling scientists to efficiently go from measurement to scientific insight. The LCLS-II data 
system has some challenging characteristics that may impact networking requirements:

• Ability to provide fast feedback to the experimenters on the timescale of seconds and, for more 
complex analyses, minutes — this is required in order to reduce the time to complete the 
experiment, improve the quality of the data and increase the experiment success rate.

• 24/7 availability.

• The analysis pattern is characterized by bursts of short jobs, requiring very short startup time.

• Storage represents a significant fraction of the overall system, both in terms of cost and 
complexity.

• Throughput between the front-end electronics and the storage layers and between storage and 
processing is a critical element of the system.

Figure 5.4.7: Computational requirements for all experiments as a function of time. In 2023, 66% 
of experiments will require between 0 and 125 TFLOPs of computing. When LCLS-II turns on, most 
experiments will still require < 1 PFLOPs of computing, but a larger fraction will require of order 5 
PFLOPs. Experiments requiring < 5 PFLOPs will be analyzed locally. Any experiment requiring > 5 
PFLOPs will be streamed to HEC for remote processing.
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• Speed and flexibility of the development cycle are critical due to the wide variety of 
experiments, the rapid turnaround required, and the need to modify data analysis  
during experiments.

The LCLS facility handles the challenges of throughput increases, larger data sets, complex, computationally 
demanding analyses and shot-by-shot analysis requirements. Users then provide the last mile and develop their 
analysis on top of this stack. 

Figure 5.4.8: Main components and data flow of the LCLS Data System. For each of the LCLS instruments, 
there is a dedicated infrastructure for reading out detectors and a shared infrastructure for data reduction 
and fast feedback. The data center is also a shared resource and may be supplied by local resources at SLAC 
or by remote HPC facilities.

The LCLS data system handles the transparent data movement within several layers of computing in the pipeline 
from the Detector Edge (FPGA/ASIC) through the data reduction compute layer (CPU, FPGA, GPU), to the data 
cache (NVMe-based disk storage) where it is accessible to users for fast feedback analysis for approximately 1–5 
shifts. From the data cache, the first persistent storage layer, data is automatically transferred by the data system 
to offline storage using bbcp and xrootd, where the data will remain on disk for 4 months post experiment. Data 
is also automatically archived to tape where data remains for 10 years. A second copy of the data is held on tape at 
NERSC. 

The types of data that are recorded vary from instrument to instrument and from experiment to experiment 
and include large imaging detectors, digitizers that produce waveforms, and point values such as temperatures, 
pressures, motor positions, etc. The dominant contribution comes from the large imaging detectors. Data is 
stored in the LCLS data format: xtc for LCLS-I and xtc2 for LCLS-II. This data format has the merit of being 
the same on the wire as it is on disk, and in the case of LCLS-II is self-describing, which means there are no 
additional encode/decode steps as the data pass through the computing layers of the data system. LCLS-II must 
accommodate variable length data that can be reduced in one of approximately10ways (lossless compression, 
binning, SZ compression, region of interest, peak finding, projections onto an axis, calculation/feature extraction, 
MPEG-style compression, and integration). 

Data Retention Policies

LCLS is committed to providing its users with their data in a timely and convenient fashion. Experiment data 
and metadata collected at LCLS may be stored at and retrieved from the tape for a period of10years. A copy of 
the data remains at SLAC and another copy is made at a remote site, such as NERSC. LCLS provides space for 
all experimental data at no cost to the user. This includes the data from the detectors as well as the data derived 
from user analysis. Raw data is available as xtc or xtc2 files. Users may translate the data from xtc/xtc2 to HDF5 
format using a utility provided by the LCLS facility. The translation is not performed automatically, but is done 
on demand at the user’s request. After 4 months, data is purged from disk but is still available on tape and may 
be retrieved by the user on demand for a period of 1 month. The time to restore files varies from a few tens of 
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minutes to a day or longer as restore requests are run with lower priority than data transfer and archival for 
operating experiments. 

Compute Resources

The computing system for LCLS-II-HE will require both access to the DOE HEC facilities for the highest 
demand experiments in the floating point operations per second (FLOPS) exascale and dedicated, local 
capabilities for storage and analysis for standard experiments. Local capabilities, used for 80% of experiments, 
will require processing resources on the order of 5 PFLOPS and storage capacities above 100 PB by 2027 (these 
numbers assume the current data retention policy and the expectation that we will reduce the data volumes on 
the fly by at least a factor of 10). 

Figure 5.4.9 The LCLS-II data system automatically transfers  data from the DAQ to the fast feedback 
storage layer (data cache) and to local or remote sites. Access to remote sites, such as NERSC, is 
via ESnet. Routine data taking and archival activities are automatic, but certain activities such as 
restoration of data from tape to disk and analysis workflows may be user directed.

HEC facilities are used for 20% of experiments with the largest computing demands. Access to remote sites is 
via ESnet. Local resources are preferred for those experiments that do not require a supercomputer due to the 
challenge of coordinating planned outages with HEC facilities across the entire year and risks related to HEC 
unplanned outages and reduce some of the complexities associated with running on a supercomputer (resource 
orchestration, user accounts and privileges, priority management, container requirements, etc.).



116Basic Energy Sciences Network Requirements Review Final Report 2022

Use Case: Remote Quasi-real-time Analysis of Large Streaming Data Sets

X-ray scattering experiments are a powerful tool to determine the molecular structure and function of unknown 
samples, such as COVID-19 viral proteins. In crystallography experiments, molecular structure is determined by 
merging the X-ray diffraction patterns from millions to billions of protein crystals exposed in random orientations. 
The near real-time interpretation of structure revealed by X-ray diffraction requires significant computational 
resources. Similarly, techniques such as ptychography, X-ray tomography, XPCS, and X-ray fluorescence generate 
data that requires significant computational resources to process and analyze.

The high repetition rate and uniform/programmable time structure of LCLS-II and LCLS-II-HE will provide a 
transformational capability to collect 108–1010 scattering patterns (or spectra) per day with sample replacement 
between pulses. By exploiting revolutionary advances in data science, developing and applying advanced 
computational algorithms to massive data sets (e.g. kinetic inference, Bayesian analysis, pattern recognition, 
manifold maps, and ML algorithms) it will become possible for the first time to characterize heterogeneous 
ensembles of particles, map stochastic dynamics, or extract new information about rare transient events from 
comprehensive data sets of X-ray scattering patterns and/or spectra. These capabilities promise to revolutionize 
the areas of chemistry and materials science. Such “big data” experiments are challenging to execute and 
often require fast turnaround between data acquisition and data analysis to enable experimenters to make 
informed decisions when driving experiments in order to make use of the limited resources of X-ray beam 
time and samples. Data collection rates are growing exponentially due to light source and detector upgrades; 
computational requirements are also growing in proportion. In order to analyze data on experiment timescales, 
LCLS is sending data to remote HPC facilities such as NERSC, the ALCF, or the OLCF. Sending data from a 
light source facility to the HPC facility requires a data path of sufficient bandwidth. 

Figure 5.4.10: The LCLS-II data systems provides the capability to trigger automatic workflows at remote 
sites. Communication between the LCLS-II data system and the remote facility proceeds along two 
paths, a data path and a control path. Reservations are made at the remote facility in advance of the 
experiment. Data is transferred to the remote facility over ESnet and results back to SLAC; the data 
transfers happen automatically once the reservations are in place and connections enabled. There is a 
control path for triggering workflows and monitoring job status.
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Use Case #2: Autonomous Experiment Steering for Scientific Discovery at LCLS

Autonomous experiment steering is an emerging mode of conducting science at LCLS. 

This capability has the promise to provide automated setup of the source and sample alignment, intelligent data 
collection, quality verification, data reduction, and coupling of experimentally derived data with information 
derived from theory, models, and simulations. Autonomous experiment steering has the potential to unlock new 
materials science knowledge to, for example, better understand failure modes in materials, enable the synthesis 
of new materials, aid in the creation of purpose-built designer materials, and assist in additive manufacturing 
processes.

Feedback must often be obtained on timescales too short for humans to react in order to plan and steer 
experiments to, for example, catch rare events or see fast processes. Due to the intrinsic capabilities of the 
current and soon to be upgraded sources, coupled with high data rate detectors that generate large volumes of 
data at increasingly higher rates, advanced computational techniques, including AI/ML, must be employed to 
realize autonomous steering of light source experiments. These methods require the utilization of considerable 
supercomputing power to process data and train AI/ML models that may then be used to make real-time 
decisions using edge or local computing systems (see Figure 5.4.11).

Use Case #3: Autonomous Experiment Steering for Scientific Discovery at LCLS

Coupling of simulations and development of “digital twins” to LCLS experiments has the potential to unlock new 
materials science knowledge to, for example, better understand failure modes in materials, enable the synthesis 
of new materials, aid in the creation of purpose-built designer materials, and assist in additive manufacturing 
processes. It will also allow for a more efficient and optimum use of beamtime at the light sources. 

The coupling of simulations with light source experiments can be split up into three main areas in the 
experimental life cycle. Firstly, before the experiment, simulations can be used to help prepare, plan, and 
determine if the experiment is even feasible. The results of these simulations may be generated and stored at a 
HEC facility. Secondly, during the allocated beam time, simulations can help guide and inform the strategy and 
guide the experiment. Finally, simulations can be used to aid in the data analysis in order to extract the  
maximum scientific information from the data. Below is a diagram that shows how a digital twin interacts with 
LCLS experiments.

Figure 5.4.11: Prototypical autonomous experiment ML data workflow. Data generated at a light source 
instrument (in this case at LCLS) is streamed directly to a supercomputing center (in this case ALCF). 
An ML model is trained on the fly. The trained model is deployed on an edge-computing device at the 
light source instrument to make experiment decisions in real time.
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Data Management Gaps and/or Network Bottlenecks

Networking must be able to robustly connect LCLS instruments to remote computing facilities with low latency. 
Terabit per second networking and beyond will be required to handle the large amounts of data expected towards 
the end of the decade. There is a need to upgrade the SLAC/LCLS ESnet connections to keep pace with the 
expected data rates of 200 Gbps in 2023 and 1 Tbps by 2028 enabling streaming data transfer from LCLS to 
ASCR computing facilities.

The large amounts of data, large number of files, heterogeneous storage systems, nationally distributed data 
centers, and a desire to organize, manage, and access data at scale from any light source or HPC facility will 
require a data management system that can transparently, and in real time, move data between storage and 
computing, and provide for open public data repositories that will enable AI/ML technologies. Methods and tools 
for moving data with high fidelity across networks and methods for parallelizing and prioritizing data movement 
to enable HPC jobs to start quickly after data acquisition are needed. Optimized methods for streaming data to 
allow parallel execution on HPC resources need to be developed.

Key elements of a future data management strategy for LCLS include a common API for accessing network and 
computing resources, parallel data transfer tools, high-fidelity data transfer, network performance monitoring, 
reservations, and dynamic network provisioning. Some thought should be given to defining a methodology for 
handling simulated and other data to enable multimodal analysis and for reporting meaningful intermediate 
analysis results back to the user without abusing the network.

The further development and application of autonomous experiment steering at LCLS requires that a number 
of gaps in capabilities and infrastructure across the light sources, Laboratories, and computing centers be filled, 
including sufficient, reliable bandwidth, sufficient and sustainable data storage resources, on-demand access 
to large-scale computing systems, transparent access to facilities and systems across the complex, including 

Figure 5.4.12: Experimental data is generated at a Light Source facility, such as LCLS (at left). While 
the data is being analyzed/interpreted and interpretation results are being produced, a series of 
simulations are spawned elsewhere using parameters that match current experimental conditions. 
These results are similarly analyzed and results are produced. The results of the simulation and the 
experimental data interpretation are used to derive the experiment to its next, optimal operating point. 
Both the experimental data analysis and the simulations may be compute intensive. The simulations 
may be launched at a different HEC site than the data interpretation jobs.
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federated identity and shared data protocols, and software tools and infrastructure to facilitate the development of 
scientific data workflows that operate across the DOE’s distributed resource landscape.

As the decade progresses, autonomous experiment steering will be crucial to experiment success, and this will 
require the use of geographically distributed computing facilities and data repositories, which in turn necessitates 
high bandwidth, low latency network connections between the LCLS and remote computing and data storage 
centers.

Coupling simulations experiment steering will become an increasingly relied upon capability at LCLS as the 
decade progresses. Since the simulations are generated at a different facility than the experimental data, there 
will be some data movement, potentially real-time if digital twins are spawned during an operating experiment, 
to collect the experimental and theoretical results for comparison. It is expected that this data transfer will be 
small, of order 1 GB/s, since the actual simulation products and raw experimental data will not be copied, only 
the results. 

5.4.2.4 Generalized Process of Science

The process of science is different for each instrument and experiment. Nevertheless, there is overlap in the 
methodologies of LCLS experiments. We have identified roughly 20 unique workflows at LCLS and will describe 
the use cases that require the most network and compute resources. All other LCLS use cases should fit within 
this envelope. 

Use Case: Serial Femtosecond X-ray Crystallography

Serial Femtosecond X-ray Crystallography (SFX) reveals the reaction mechanism by providing separate atomic 
structures for each metastable state, and several time points in between. SFX experiments offer huge benefits 
to the study of macromolecules, including the availability of femtosecond time resolution and the avoidance of 
radiation damage under operando conditions. SFX techniques will be instrumental in many experiments, ranging 
from the determination of macromolecules structure and dynamics, to the understanding and controlling of 
materials nucleation pathways, to the study of oxygenic photosynthesis.

In SFX, the structural information is derived from the diffraction data collected from a stream of individual 
crystals, with the primary feature extraction step consisting of measuring the Bragg spot intensities on each 
diffraction pattern. The main steps in the SFX algorithm are (1) identifying the Bragg diffraction spots, (2) 
deducing the geometry of the lattice repeat, (3) refining the model again and (4) summing the X-ray signal in each 
spot for further analysis. See Figure 5.4.13 for a pictorial representation of the SFX pipeline.

Figure 5.4.13: SFX Pipeline
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Based on a 10% hit rate and on the CCTBX workflow compute requirements, we project that the rate of useful 
SFX events will approach 5 kHz and the computing resources needed to reconstruct SFX data in LCLS-II will 
run routinely in the few tens of PFLOPS and some of the more demanding algorithms, like IOTA (Integration 
Optimization Triage and Analysis), will require several tens of PFLOPS.

Use Case: Heterogeneous Catalysis

A second illustrative example is in the area of heterogeneous catalysis, where functional systems are neither 
homogeneous, nor static. The evolution of atomic and electronic structure, the making and breaking of chemical 
bonds, and the exchange of vibrational energy through intermediate states ultimately determine functionality. 
These interactions further lead to dynamic restructuring of catalyst materials during reaction. Knowing the time 
evolution of the atomic and electronic structure of molecules and substrates, particularly near elusive transition 
states, is critical to developing a predictive understanding for catalysts design. Today we are unable to develop 
a complete picture of this structural evolution — neither on the ultrafast timescales relevant to atomic motion, 
nor the nsec to msec timescales characteristic of diffusion and materials evolution. LCLS has enabled the study 
of simple surface reactions, and reported the first observation of a surface transition state — based on studies of 
ideal crystals, with reactants prepared at high concentrations in vacuum. However, these studies do not address 
“working” catalysts which are typically of low dimensionality (e.g. nanoclusters of metals on an oxidic support), 
where coupled fluctuations of the electronic and atomic structure become increasingly important.

LCLS-II-HE, coupled with advanced computational approaches applied to massive data sets, will enable 
completely new approaches for simultaneously following both the atomic and electronic structure of 
heterogeneous catalysts in operation. In one such proposed approach, nanocatalysts are prepared (either 
with or without preadsorbed reactants) and interrogated pulse by pulse using a gas-phase jet, liquid particle 
injector, or translating tape. Multimodal characterization incorporates ultrafast X-ray spectroscopy (e.g. EXAFS, 
XES, or RIXS) or photoelectron spectroscopy to probes the electronic structure and chemical environment, 
while coherent X-ray scattering from the same hard X-ray pulse probes the atomic structure. Demonstration 
experiments in the soft X-ray range at FLASH and at LCLS highlight the promise of this approach for 
characterizing small heterogeneous ensembles of nanoparticles at the atomic scale using hard X-rays.

Use Case: Single-Particle Imaging (SPI)

SPI is a promising emerging technique for such applications, Here, diffraction images are collected 
from individual particles, and are used to determine molecular (or atomic) structure, even from multiple 
conformational states (or nonidentical particles) in operating conditions that are inaccessible through other 
methods. These techniques will be instrumental in many areas of science, ranging from understanding and 
controlling nanomaterials self-assembly, to the chemistry and morphology of combustion aerosols to the coupled 
electronic and nuclear dynamics in heterogeneous (nano) catalysis.

However, determining structure from these experiments is challenging, since orientations and states of imaged 
particles are unknown and images are highly contaminated with noise. Furthermore, the number of useful 
images is often limited by achievable single-particle hit rates. Advanced algorithms currently under development 
(e.g. M-TIP by the CAMERA group) introduce an iterative projection framework to simultaneously determine 
orientations, states, and molecular structure from limited single-particle data by leveraging structural constraints 
throughout the reconstruction and offer a potential pathway to increasing the amount of information that can be 
extracted from single-particle diffraction.

A fundamental challenge in SPI is that the orientation of each imaged particle is unknown and must be recovered 
to determine structural information. Additionally, many samples display conformational flexibility and may exist 
in one of many possible structural states. To account for varying structural states and avoid a loss of resolution due 
to averaging of states, the diffraction patterns may need to be classified to the correct state. Furthermore, single 
particles scatter very few photons; hence the images are heavily contaminated by shot noise, often with less than 
a photon per Shannon pixel at high scattering angles.
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5.4.2.5 Remote Science Activities

Operating experiments is the shared responsibility of beamline scientists, local staff, and on-site users. LCLS has 
web services, a data management system, and a data analysis infrastructure that allows for virtual access to all of 
the resources necessary to analyze the data taken at LCLS from a remote location. In most cases, all the same 
resources are available to users’ doing analysis at home as at SLAC. In most cases, the data remains in LCLS local 
storage and LCLS offline processing resources are used to analyze. Because of the uniqueness and changeability 
of LCLS instruments, LCLS does not envision remote operation of the instruments. 

The exascale workflow for LCLS-II-HE, illustrated in Figure 5.4.14, has the following key network/bandwidth 
requirements: 

• Ability to fully utilize terabit per second links between SLAC and HEC via ESnet in order to 
achieve full streaming bandwidth from LCLS-II-HE.

• Ability to organize data sets (images) within a deeper storage hierarchy to allow the placement 
of images on burst buffers within the supercomputer system. For some architectures this will 
require the ability to control placement based on the exascale system`s network topology and 
proximity of burst buffers to computational elements. 

• Ability to control resource allocation within the exascale system to enable on-demand job 
scheduling, which may include allocation of different resources at different times, such as burst 
buffer allocation prior to compute node allocation. 

• Ability to orchestrate resource allocation, data movement, and data analysis execution with 
predictable performance and resiliency.
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As an end-to-end challenge problem, XFEL applications require significant orchestration of compute, network, 
and storage resources and present a model use case for ESnet R&D into network operating systems [ENOS]. 

LCLS has developed a powerful data management system that handles both the automatic workflows of the data 
through the various storage layers, e.g. long-term data archival, and the users’ requests through a web portal, e.g. 
restoring data from tape. 

Some aspects of the current system, such as checksum calculations, HPSS interface, and lack of prioritization, 
will become limitations at higher data volumes and will need to be upgraded for LCLS-II-HE. The LCLS data 
management system is capable of offloading the offline processing and storage capabilities to multiple HEC 
facilities via ESnet. Users can track and manage the experimental data transparently across the different systems.

5.4.2.6 Software Infrastructure

The LCLS accelerator systems and beamline instruments use the EPICS for low-level device control. The 
Bluesky suite of tools has been adopted for high-level experiment control. As mentioned in the previous section, 
remote access tools, such as ssh, NX NoMachine, will continue to be utilized to enable remote access for LCLS 
experiments.

Figure 5.4.14: LCLS SFX/SPI example is a representative information extraction pipeline. In this example, raw data is acquired 
at the light source facility (LCLS), automatically transferred to an ASCR facility (NERSC) via ESnet, and analyzed using a scalable 
software library appropriate to the science domain. It is possible to achieve a turnaround time from data acquisition to full molecular 
reconstruction within 10 minutes. (ref arXiv.2106.11469v2). The analysis pattern is characterized by bursts of short jobs, requiring 
very short startup times. Current data collection rates are about 15 TB/day for high compute experiments. Within three to five years, 
it is expected that this rate will increase to 500 TB/day and in 5+ years to > 1 PB/day. During analysis execution at a remote HPC 
site, updates on job progress, intermediate results, and logfiles may be transferred back to the originating facility. After analysis jobs 
complete, summary results are transferred and made available to users via a web browser at LCLS. In total, this data stream from 
NERSC back to LCLS is about 1 Gb/s, but is likely to increase by at least a factor of 10x within three years as more sophisticated 
methods of visualizing intermediate results are implemented. In addition to transferring data for running experiments to NERSC for 
fast-feedback processing, LCLS also uses ESnet to archive data at NERSC. Typical transfers are 8–24 Gbps but are expected to increase 
by a factor of at least 10 within a year and a factor of 100 within three years.
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The basic software infrastructure required to support the following functions of the LCLS-II data management 
system are as follows:

1. Security — Authentication/Authorization (currently WebAuth using SLAC Lightweight Directory 
Access Protocol (LDAP), Stanford SSO)

2. Scan/run control (Bluesky, Python, EPICS, Kafka message bus, custom data acquisition software)

3. File catalog (Rucio)

4. Experiment metadata (mongoDB, Kafka)

5. Electronic Logbook (custom web application)

6. Samples (mongoDB)

7. Workflow (Kafka, job submission via LSF/SLURM, AirFlow, APIs provide feedback)

8. Feedback and reporting (custom web form)

9. Instrument operator portals (MongoDB)

In addition, LCLS-II software uses tools like Kafka, MongoDB, and Python to create a development environment 
that is scalable, reliable, and easy to modify and build on:

1. Composability/site specificity (Kafka/Websocket, custom web service)

2. Scalability/Reliability (MongoDB, Kafka)

3. Backup/restore (MongoDB: mongodump, mongorestore)

4. Scriptability (Python, Flask, Kerberos endpoint, PAM endpoint)

5. Ease of deployment/upgrades (Python+javascript application)

6. Ease of development (Conda, Kubernetes, document-based store with Python_Javascript)

7. Code repositories (git)

8. Continuous integration (Travis)

9. Code deployment via containers (Docker, Singularity)

10. Interactive analysis (Jupyter)

The LCLS-II data management system uses a message-oriented architecture using Kafka as a message bus 
where all changes of interest are published on a message bus. This enables the composability of applications. The 
ability to separate out site-specific features into serverless components that react to these messages and shape the 
business data to suit the needs of the site is also useful. 

Security — Authentication/Authorization

The LCLS facility has multiple instruments with multiple end stations; each end station is used by teams of 
users (an experiment) in a serially scheduled fashion to gather scientific data. Thus, in all the facilities, the data 
management system is a multitenancy environment. With some operational exceptions, only the collaborators of 
an experiment are allowed to read/write data belonging to the experiment. 

To use the data management system, users have to authenticate themselves. To simplify account management 
at the facilities, integration with an external user directory (LDAP) is essential. Access to scientific data must 
be restricted to collaborators of the experiments where experiments are the units of authorization. There is 
a mechanism for the PI and others that the PI nominates to control access to the science data by adding or 
removing collaborators from an experiment via the electronic logbook, or eLog. 
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Scan/Run Control

Scientific data is gathered by the LCLS Data Acquisition System (DAQ) in units called runs/scans. Each 
instrument has its own DAQ capable of starting a run, gathering scientific data and writing it into files, and 
ending a run to indicate closure of the data gathering process. A run is also the unit of analysis; metadata, files and 
other data management objects are associated with a unique (to the experiment) run number. Kafka messages are 
published at each “start run” and “end run” transition; previously configured workflows can be launched based on 
arrival of these triggers. 

File Catalog

Scientific data gathered by the DAQ is written into multiple files that are then registered with the data 
management system which associates them with the current run and places them in a file catalog. The file catalog 
is subsequently used as a reference/index for the rest of the experiment life cycle. To facilitate error detection, 
checksums and sizes are also stored with each file. 

Files with scientific data are often moved/copied/synced between locations, for example, NERSC, to allow for 
analysis of larger data sets using HPC. This location information is also kept in the file catalog. Kafka messages 
are published on file registration/file movement. 

Experiment Metadata

For each run/scan, the DAQ gathers metadata from the control system and other sources and stores it in the 
database using a web service API call. In addition, analysis of the science data can also generate new metadata, 
for example, hit counts, that can also be written to the database using the API. 

Electronic Logbook (eLog)

The application also supports an electronic logbook for each experiment where notes for the experiment can be 
maintained. Logbook entries can have multiple attachments and can also be formatted HTML content. Rich text 
search of the elog entries is supported in addition to infinite scroll for faster page rendering. Since elog entries 
are the principal means of keeping track of the progress of an experiment, automatic email notifications are 
supported. The application supports the notion of grouping runs together and associating them with a particular 
sample to make it easier for the user to analyze similar data in the same context. 

Within the eLog, the user can configure a workflow in which the arrival of data (or a begin run or an end run) 
triggers automated analysis of the scientific data at a local or remote site. In the data manager, workflows are 
triggered from Kafka messages. For example, automated data quality workflows are triggered using “end run” 
Kafka messages. Site-specific serverless components can consolidate Kafka messages into higher level messages 
that can trigger more complex workflows, for example, to trigger analysis on CORI when all files in a run are 
transferred to NERSC. Workflow definitions are scripts that are executed using the privileges of the user defining 
the workflow. The script typically uses a batch processing tool like LSF/SLURM to submit the analysis job; the 
batch jobs can then update the state of the workflow execution using web service APIs to provide feedback (for 
example, progress bars). AirFlow is used to support DAG workflows, and LCLS is exploring enhancements to this 
feature of the application. 

Finally, all user facilities have instrument support personnel responsible for the operations of the facility. The data 
manager application has an instrument operator portal with support for creating/editing experiments/instruments. 
For each hutch, there is a “current” experiment. The “current” experiment feature is also used to support operator 
accounts; these are shared user accounts specific to an instrument. Access is granted to an instrument’s operator 
account for the “current” experiment for that endstation. The instrument ops portal also has some basic OLAP 
reporting that are computed periodically using MongoDB aggregates and cached in the database. 
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Scalability/Reliability 

All participants in the data manager architecture are clustered with support for partitioning/replication. The 
backend uses MongoDB which has excellent support for sharding (partitioning) and replication. To facilitate 
multitenancy, the data manager uses a MongoDB database per experiment. This restricts most operations to 
function within the context of an experiment. In addition to security, this also reduces the query space for most 
operations which improves latency. 

Scriptability

The data manager application exposes a web service API and the UI uses this API solely for its operation. Thus, 
everything that can be done from the UI can be done from within Python/other scripting languages. To support 
automated scripting, we offer three authentication endpoints.

1. As we mentioned before, an operator account that applies only to the currently active experiment at 
an end station and is restricted at the web server to machines belonging to the end station.

2. A Kerberos endpoint that lets the user use their own credentials by getting a Kerberos token and 
then using this token to create a header for web service API calls. 

3. A PAM endpoint that lets the user use their userid/password.

The DAQ uses the same API. Other Python clients, for example, a tool that grabs screenshots, also use the same 
API to push those screenshots into the eLog with a comment and tags supplied by the user. 

Deployment

The data manager application is largely a Python+Javascript application. LCLS uses Conda for both the Python 
and Javascript components; for the Javascript libraries, node is installed as part of the Conda environment with 
the required libraries. The application then has interceptors to serve the Javascript files from within the Conda 
environment. CryoEM uses Kubernetes mounting storage from the IBM General Parallel File System (GPFS). 

Future Work

1. Federated logins: Support for users using credentials from their home institutions. 

2. Workflows: Support for more complex workflows.

5.4.2.7 Network and Data Architecture

The LCLS-II data management system and strategy to use local SLAC compute for the majority of experiments 
and DOE HEC facilities (OLCF, ALCF, and NERSC) for the most computationally demanding LCLS 
experiments has already been described above. 

Figure 5.5.15 shows a different view of the LCLS-II data system, one that includes the geographic locations 
of each of the elements of the data system. The instrumentation and sources of data are located in one of the 
10instruments in the LCLS Facility Experimental Halls. Data is transferred via a point-to-point connection 
from each instrument to an optical switch in the Near Experimental Hall Telecon room. The switch connects 
the data to the data reduction pipeline and downstream elements. After the data is reduced in volume by the 
data reduction pipeline, it is written to NVMe in the fast feedback storage layer. From there, it is transferred to 
spindle-based offline storage or transferred to NERSC via ESnet using up to 10 DTNs, each with 100 Gbps  
of bandwidth. 
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Figure 5.5.16: This plot shows the needs of the data source (LCLS), the plans for the data sink (NERSC) 
and the current projected plans for ESnet. The gray line shows what LCLS needs would be if there were 
no data reduction. LCLS-I, at 120 Hz, is the brown line. LCLS-II needs with the planned level of data 
reduction are shown in red. NERSC plans are shown in blue and anticipated ESnet plans are shown 
with the green triangle. The green line (no triangle) is the hypothetical projection of what it would 
take to satisfy LCLS-II needs if there were no data reduction pipeline . Note that the ESnet plans were 
communicated to LCLS some years ago, but are subject to change at any time. The green triangle 
projection shown here is not binding, but meant to show what would satisfy most of the anticipated 
LCLS-II requirements.

The plot below shows SLAC’s plans (yellow/orange line) for upgrading the border network to 1 Tbps. If LCLS is 
capable of producing data at 1 Tbps, then the HEC facility on the opposite end, such as NERSC, and ESnet in 
between will also need to be capable of handling 1 Tbps.

Figure 5.5.15: SLAC Network Diagram
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5.4.2.8 Cloud Services

None to report at this time. 

5.4.2.9 Data-Related Resource Constraints

None to report at this time. 

5.4.2.10 Outstanding Issues 

None to report at this time. 

5.4.2.11 Facility Profile Contributors

LCLS Representation

• Jana Thayer, SLAC National Accelerator Laboratory, jana@slac.stanford.edu 

• Apurva Mehta, SLAC National Accelerator Laboratory, mehta@slac.stanford.edu

• Leilani Conradson, SLAC National Accelerator Laboratory, leilani@slac.stanford.edu

• Wilko Kroeger, SLAC National Accelerator Laboratory, wilko@slac.stanford.edu

• Vivek Thampy, SLAC National Accelerator Laboratory, vthampy@slac.stanford.edu

• Stuart Campbell, BNL, scampbell@bnl.gov

• Nicholas Schwarz, ANL, nschwarz@anl.gov

• Alex Hexemer, LBNL, ahexemer@lbl.gov

ESCC Representation

• Mark Foster, SLAC National Accelerator Laboratory, fosterm@slac.stanford.edu
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5.5 Stanford Synchrotron Radiation Light (SSRL)
The SSRL is a national user facility dedicated to providing synchrotron radiation for scientific and technological 
research in a wide range of areas in support of users from academia, national laboratories, and industry. 

5.5.1 Discussion Summary

• The SSRL has 32 operational beamline stations on SPEAR3, of which 26 can operate 
simultaneously, and with four of them being PRT/partner stations. 

• SSRL provides facilities to approximately 1700 unique scientists per year (pre-pandemic). 

• SSRL operates as a dedicated synchrotron radiation light source for approximately 9 months 
each year (mid-October through early August). 

• Depending on the beamline and measurement, beam time may range from a few hours to more 
than a week in duration. 

• The meaning, size, processing steps, and analysis and interpretation of the scientific data vary 
depending on the beamline, the measurement technique, the detector(s) utilized. 

• SSRL data is first stored on a computer attached to the acquisition detector or beamline control 
system. Data can be transferred via shared filesystem (NFS) where it can be downloaded to an 
analysis machine. 

• SSRL has been working closely with the other four BES light source facilities, coordinated 
through the 5-way LSDCSC. This group produced a unified vision for the distributed data 
infrastructure to enable user science, the DISCUS. 

• SSRL plans to implement the Bluesky databroker/tiled software for the initial data management 
layer to enable a data acquisition system consistent with the other light sources. This has been 
developed as a collaborative open-source project. This system aims to provide a consistent “data 
API” rather than prescribe a given on-disk data format. 

• Imaging, high-energy, high-speed operando and multimodal techniques are generally the most 
computationally intensive techniques performed at the SSRL. Data reduction and analysis rely 
heavily on the use of HPC, GPUs, edge devices, and distributed computing environments to 
obtain results with near real-time completion. 

• The computing resources required by the SSRL continue to grow, and there is currently a wide 
variability in the computational requirements, use of SLAC computing resources (e.g., local, 
institutional, or edge-computing resources) offers the ability to process data quickly without the 
need for large-scale data movement. 

• To analyze data on experiment timescales, we anticipate that it will soon become necessary to 
send data to remote HPC facilities such as the Stanford Research Computing Facility (SRCF), 
SLAC Computing Services (SCS), or NERSC. Sending data from a light source facility to the 
HPC facility requires a data path of sufficient bandwidth. 

• SSRL guarantees storage space for a minimum of 24 months; the long-term management of data 
is the responsibility of the user group that collected the data. 

• In some cases, experimenters transfer the raw data to computing resources external to SLAC; 
either at their home institutions or dedicated HPC facilities. 

• SSRL users can download data at their home institutions or on their personal computers using 
FTP servers or by direct download onto portable hard drives. Users also often utilize their own 
“cloud storage” accounts (e.g., Google Drive, Dropbox, etc.) to transfer data. 
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• There is a high demand from the user community to integrate cloud services for both file 
transfer and sharing, as well as and for communication into all areas of the data lifecycle and 
compute workflows. We have seen this demand increase during the COVID-19 pandemic. 

• SSRL uses Amazon AWS and Microsoft Azure cloud platforms in the areas of  
prototyping, testing, and standing up computational/storage resources to support training  
and demonstrations. 

• SSRL, and other BES facilities, continue to evaluate the capabilities and cost-effectiveness of 
using cloud services.

• External network connectivity to SSRL consist of 2x10 Gbps uplinks provided by SLAC 
networking, which obtains its external network connectivity via 100Gb connectivity from ESnet 
and Stanford University to Internet2.

5.5.2 SSRL Facility Profile
The goal of SSRL is to enable outstanding scientific research for a broad GU community and provide excellent 
facilities and user support. The facility is well-known and recognized for pioneering contributions in new 
synchrotron methods and instrumentation and their use in enabling new science. The accelerator was completely 
replaced in 2004 by a 3rd generation, low-emittance storage ring, SPEAR3, jointly funded by the DOE and the 
NIH. SPEAR3 operates in top-off injection mode at 3 GeV and 500 mA, and at an emittance of 7 nm with a high 
degree of reliability. 

5.5.2.1 Science Background 

There are currently 32 operational beamline stations on SPEAR3, of which 26 can operate simultaneously, 
and with four of them being PRT/partner stations1. Of the 32, 23 have insertion device sources (undulator, 
wiggler) and 9 have bending magnet sources. An additional two beamline stations, on two beamlines, are in the 
commissioning stage. The majority of beam time is allocated via a GU proposal approach and the proposal review 
and beam time allocation is managed centrally for all beamlines. 

1 Stanford Synchrotron Radiation Lightsource Strategic Plan, 
https://www-ssrl.slac.stanford.edu/content/sites/default/files/documents/ssrl_strategic_plan_2021-2025.pdf

Figure 5.5.1: Aerial View of the SSRL
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The five main research areas at SSRL (Materials Science, Quantum Materials, Chemistry and Catalysis, 
Structural Molecular Biology, and Environmental/Geological Science) address three themes: Accelerating 
Materials Design, Understanding Catalytic Function and Interfacial Reactions with Atomic Precision, and 
Identifying how Collective Function Emerges from Constituent Interactions. The range of scientific research 
areas along with the varied experimental techniques used at SSRL results in huge volumes of experimental data 
of considerable complexity. 

The meaning of data, the size of data, the processing steps applied to data, and the analysis and interpretation 
of data vary depending on the beamline, the measurement technique, the detector(s) utilized, and the scientific 
goal. Raw data is generated primarily by two-dimensional (area), one-dimensional (strip), or point detectors as 

SSRL provides essential scientific facilities to ~1700 unique scientists per year (pre-pandemic operations), 
resulting in ~700 publications per year. The strong commitment to science education and mentoring is 
demonstrated by the more than ~120 theses per year citing support for work partly or fully supported at SSRL 
and enhanced by a significant training and outreach activity. Operation of SSRL is funded by the US Department 
of Energy, Office of BES, with additional support for SSRL’s structural molecular biology program from the NIH 
and the DOE Office of Biological and Environmental Research.

Figure 5.5.2: SSRL Beamline Map (2022)
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a part of scattering, imaging, or spectroscopy measurements. Raw data may represent, a scattering pattern, a 
transmission image, or spectra, for example. The size of the data may vary from a few megabytes to hundreds of 
terabytes per allocated beam time. Some form of data processing or reduction is usually performed after data is 
collected to transform the data from a technique or detector representation to the physical space of interest in an 
analyzable representation, such as a series of sinograms into a three-dimensional world-space volume, or spectra 
into elemental concentrations. 

Generally, data is first stored on a computer attached to the acquisition detector or some other local beamline 
storage system. In many cases, the data is transferred to a shared network drive (NFS), from where it can be 
downloaded to an analysis machine. Currently, SSRL guarantees storage space for a minimum of 24 months; 
the long-term management of data is the responsibility of the user group that collected the data. In some cases, 
experimenters transfer the raw data to computing resources at their home institutions for all further processing. 
The final analysis and interpretation of the data for publication is generally carried out by the experiment team at 
their home institutions, is very experiment and technique specific, and may take months to even years to perform.

5.5.2.2 Collaborators

SSRL operates as a dedicated synchrotron radiation light source for approximately 9 months each year (usually 
from mid-October through early August). The SSRL User Facility Access Policy, available on the SSRL website2, 
provides a concise overview of the access policy for SSRL’s beamlines and instrumentation. SSRL has established 
a scientific peer-review process focused on transparency, equity, and efficiency. It recognizes the needs and 
contributions of users and staff to maintain and strengthen SSRL’s position as an internationally leading photon 
science user facility. Policies that impact the user community are developed in consultation and coordination 
with external advisory committees, including the SSRL Proposal Review Panel (PRP), SSRL Users’ Executive 
Committee, and the SSRL Scientific Advisory Committee.

Access to SSRL is mainly granted through proposals that are peer reviewed and rated by the PRP. The PRP 
consists of scientific experts, all of whom are external to the SSRL facility. The PRP is organized into five 
subpanels by scientific disciplines and techniques that cover a broad range of basic and applied science as well 
as method and instrumentation development. Since submitting a proposal is the first step to access beam time at 
SSRL. New users are encouraged to contact SSRL scientists, who are available to advise and answer questions 
about the SSRL SPEAR3 accelerator, beamlines, instrumentation, capabilities, science or techniques in order 
to help users plan their experiments and proposals. Modes of accessing beam time at SSRL include GU and 
PU proposals. A small percentage of beam time is available for SSRL staff access and through the Director’s 
discretionary access. In addition, GU or PU proposals can be submitted for nonproprietary or proprietary 
research. User access types include:

• GU Access

 − Standard GU Proposals 

 − RA GU Proposals

 − Letter of Intent/Director’s Discretionary Access (LOI)

• PU Access

 − Collaborative Access Proposals (CAPs)

 − Participating Research Teams (PRTs)

Depending on the beamline and measurement, beam time may range from a few hours to more than a week 
in duration. As previously stated, SSRL users perform experiments covering many scientific fields, such as life 
sciences, quantum materials, energy storage, advanced materials science, physics, chemistry, and biology (Figure 
5.5.3). These users also span a range of expertise levels (Figure 5.5.4) and come from varied institutions  
 
2 http://www-ssrl.slac.stanford.edu/content/user-resources/user-facility-access-policy
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(Figure 5.5.5). In response to the pandemic, the deployment of remote access tools has enabled experimenters 
to run measurements remotely and has led to an increase in remote users as a fraction of total users in FY 2021. 
SSRL caters for users that come from both throughout the United States and overseas. 5.5.6 shows the total 
number of publications, theses, books and conference proceedings increasing steadily at peaking at over ~700 
per year. 

Figure 5.5.3: Breakout of requested and allocated experiments by scientific disciplines during FY-
2017FY2020, summed over all the beamlines

Figure 5.5.4: Proportions of different categories of users
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Figure 5.5.5: SSRL usage by institution type

Figure 5.5.6: Publications, Doctoral Theses and Books/Conference Proceedings attributed to SSRL
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User/
Collaborator 
and Location

Primary or 
secondary 
copy of the 

data

Data access method Avg. size of 
data set

Frequency of 
data transfer 
or download

Are data sent 
back tweo the 

source and 
method

Any known  
issues with 
data sharing

US UNIVERSITY-
BASED PIS

Both data portal, data transfer 
(sftp, cloud storage), 
portable hard drive

1 MB–10 TB Ad hoc N N/A

US NATIONAL 
LABS BASED PIS

Both data portal, data transfer 
(sftp, cloud storage), 
portable hard drive

1 MB–10 TB Ad hoc N N/A

INTERNATIONAL 
PIS

Both data portal, data transfer 
(sftp, cloud storage), 
portable hard drive

1 MB–10 TB Ad hoc N N/A

Station Technique Field of Science Instruments

BL2-1 Powder/Thin Film 
Diffraction and Reflectivity

Materials / Applied Energy Diffractometer, Scintillator and Si Drift Detector, PILATUS 
100K, Stages, Cryostat, Furnace

BL2-2 XAS / In-situ Catalysis 
XAS

Catalysis / Chemistry / 
Energy / Materials 

Si Drift Detector; Detector Arrays, Reactor Cells, Gas Feeds, 
Mass Flow Control System

BL2-3 MicroXAS Imaging Environmental / Geoscience 
/ Biology / Medical / 
Materials / Chemistry 

SIGRAY Microfocus System; Si Drift Detector 

Station Technique Field of Science Instruments

BL4-1 X-ray Absorption 
Spectroscopy

Environmental / 
Geoscience / Chemistry / 

Materials

Varies: Rails, 30-element Ge Detector Array, Ionization Chamber 
Detector, LHe and LN Cryostats, Sample Magazines and 

Automated Sample Changer 

BL4-2 Small and Wide-Angle 
X-ray Scattering

Biology Small-Angle X-ray Scattering Camera w/CCD & PAD Detectors, 
Wide-Angle X-ray Scattering Instrumentation, Stopped-Flow Mixer, 

HPLC

BL4-3 X-ray Absorption 
Spectroscopy

Chemistry / Catalysis / 
Environmental / Biology / 

Materials

Varies: Rails, Ge Detector Array, Ionization Chamber, PIPS and 
Si Drift Detectors, LHe Cryostat, Tender X-ray Instrumentation, 

Sample Magazines and Automated Sample Changer

Table 5.5.1: SSRL Collaboration Space

Table 5.5.2: Scientific Activity and Instrumentation for the Stations on Beam Line 2

Table 5.5.3: Scientific Activity and Instrumentation for the Stations on Beam Line 4

5.5.2.3 Instruments and Facilities

SSRL currently has 32 operational beamline stations on SPEAR3, of which 26 can operate simultaneously, and 
with four of them being PRT/partner stations. Of the 32, 23 have insertion device sources (undulator, wiggler) and 
9 have bending magnet sources. An additional two beamline stations, on two beamlines (BL 15-2 and BL 17-2), 
are in the commissioning stage. 

Summarized below are the experimental instruments, techniques and scientific areas for the different beamlines.
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Station Technique Field of Science Instruments

BL5-2 Ultrahigh Energy Resolution 
Photoemission, ARPES

Correlated Materials SCIENTA DA30 Analyzer, MBE Deposition System

BL5-4 Low-Energy, High-Resolution 
Photoemission, ARPES

Correlated Materials SCIENTA R4000 Analyzer, Low Energy Electron Diffraction

Station Technique Field of Science Instruments

BL8-2 Photoemission; NEXAFS;
Circular Dichroism

Material Science, 
Physics, Surface 

Science, Chemistry

100-1300 eV SGM.
Chamber 1: CMA

Chamber 2: Janis cryostat (4-350K); “ambient” pressure 
(10-4~10-11 Torr)

Station Technique Field of Science Instruments

BL9-2 Macromolecular 
Crystallography

Structural Molecular 
Biology

PILATUS 6M PAD, SSRL Single-axis micro-diffractometer, Cryostat, 
Robotic Sample Changer, UV-VIS micro-spectrophotometer

BL9-3 X-ray Absorption 
Spectroscopy

Structural Molecular 
Biology

Varies: Rails, 100-Pixel Monolithic Ge Detector, PIPS Detector, LHe 
Cryostat, Single Crystal XAS

Station Technique Field of Science Instruments

BL6-2A 
(FRONT)

Tender X-ray XES Chemistry / Materials / Biology Tender XES Instrument 

BL6-2B 
(MIDDLE)

HERFD MicroXAS 
Imaging / MicroCT 

Geology / Forensics / Materials / 
Biology / Chemistry / Catalysis 

HERFD XAS Imaging Instrument / Micro Computed 
Tomography Instrument 

BL6-2C 
(REAR)

Hard X-ray Transmission 
Microscopy

Catalysis / Materials / Chemistry / 
Geochemistry / Forensics

Zeiss Xradia Microscope with CCD detector

Station Technique Field of Science Instruments

BL10-1 Photoemission; 
NEXAFS

Materials / 
Chemistry 

TES Spectrometer, Scienta SES-100, Silicon Diode AXUV100, 
Channeltron, Manipulator (~80-1100K)

BL10-2A 
(FRONT)

X-ray Diffraction/
Scattering 

Materials Two-circle goniometer, Specialized Experimental Specific 
Instrumentation, EIGER1M Detector 

BL10-2B 
(REAR)

In situ X-ray Absorption 
Spectroscopy 

Catalysis / 
Materials

Dual Sample Stages, Ge Detector Array, Infrared Spectrometer, Compressed 
Gas and Liquid Feeds, Mass Spectrometer, Gas Chromatograph

Station Technique Field of Science Instruments

BL7-1 Macromolecular 
Crystallography

Structural Molecular Biology ADSC Q315R CCD Detector, Goniometer, Cryostat, 
Robotic Sample Changer, Rapid Freeze Quencher

BL7-2 MicroXAS Imaging Biology / Medical / Geochemistry 
/ Chemistry / Materials 

Capillary Optics and Variable Apertures, Imaging 
Instrumentation, Vortex Detectors 

BL7-3 X-ray Absorption 
Spectroscopy

Structural Molecular Biology Rails, Ge Detector Array, LHe Cryostat, PIPS Detector

Table 5.5.4: Scientific Activity and Instrumentation for the Stations on Beam Line 5

Table 5.5.6: Scientific Activity and Instrumentation for the Stations on Beam Line 7

Table 5.5.5: Scientific Activity and Instrumentation for the Stations on Beam Line 6

Table 5.5.9: Scientific Activity and Instrumentation for the Stations on Beam Line 10

Table 5.5.7: Scientific Activity and Instrumentation for the Stations on Beam Line 8

Table 5.5.8: Scientific Activity and Instrumentation for the Stations on Beam Line 9
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Station Technique Field of Science Instruments

BL11-2 X-ray Absorption 
Spectroscopy

Biogeochemical and 
Interfacial / Environmental 

/ Chemistry / Catalysis

Varies: Rails, 100-Pixel Monolithic Ge Detector, Ionization Chamber 
Detector, LHe and LN Cryostats, GIXAS, Environmental Chamber for 
Radioactive Material Handling, Sample Magazines and Automated 

Sample Changer

BL11-3 X-ray Scattering; 
Thin Film Diffraction

Materials / Environmental 
/ Polymers / Catalysis

Rayonix 225 CCD Detector, Vortex, Kappa Goniometer

Table 5.5.10: Scientific Activity and Instrumentation for the Stations on Beam Line 11

Station Technique Field of Science Instruments

BL12-1 Macromolecular 
Crystallography

Structural Molecular 
Biology

Dectris EIGER X 16M PAD Detector, Microdiffractometer, Cryostat, 
Robotic Sample Changer for Cryogenic and RT Samples

BL12-2 Macromolecular 
Crystallography

Structural Molecular 
Biology

Dectris PILATUS 6M PAD Detector, Microdiffractometer, Microcollimators, 
Cryostat, Robotic Sample Changer for Cryogenic Samples

Table 5.5.11: Scientific Activity and Instrumentation for the Stations on Beam Line 12

Station Technique Field of Science Instruments

BL13-2 Soft X-ray Absorption Spectroscopy, 
Photoemission

Catalysis / Surface 
Chemistry / Materials

Electron Analyzer X-ray Photoemission System; 
Ambient Pressure Photoemission System

BL13-3 Resonant Soft X-ray Scattering 
Resonant Inelastic X-ray Scattering
Soft X-ray Absorption Spectroscopy
X-ray Magnetic Circular Dichroism

Materials Science / 
Quantum Materials 
/ Energy Science / 
Heterostructures

Scattering Chamber incl. in-Vacuum Diffractometer, 
X-ray Spectrometer (Transition-Edge-Sensor, TES), 

In-Vacuum CCD Area Detector, Photodiodes, 
Cryostat, Sample Holder with Magnet

Table 5.5.12: Scientific Activity and Instrumentation for the Stations on Beam Line 13

Table 5.5.13: Scientific Activity and Instrumentation for the Stations on Beam Line 14

Station Technique Field of Science Instruments

BL14-1 Macromolecular 
Crystallography

Structural Molecular Biology MAR325 CCD Detector, SSRL Single-axis microdiffractometer, 
LN2 Cooler, Robotic Sample Changer

BL14-3A X-ray Absorption 
Spectroscopy

Biology / Environmental / 
Chemistry / Materials

Vortex Si Drift Detector, PIPS Detector, Inert He Atmosphere 
Sample Environment, Multisample Delivery 

BL14-3B MicroXAS Imaging Biology / Environmental / 
Biogeochemistry / Chemistry / 

Materials

SIGRAY Microfocus System; Si Drift Detector; XAS Imaging 
Instrumentation

Station Technique Field of Science Instruments

BL15-2 Inelastic Scattering / Advanced 
Spectroscopy / HERFD Spectroscopy / 

Time-resolved Spectroscopy

Chemistry / Materials / 
Biology

Advanced Spectroscopy Instrumentation
Ultrafast MHz Fiber Laser

Fast Detectors

Table 5.5.14: Scientific Activity and Instrumentation for the Stations on Beam Line 15
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Station Technique Field of Science Instruments

BL16-1 X-ray absorption, reflectivity Metrology Hutch configured for custom instrumentation

BL16-2 X-ray absorption, reflectivity Metrology Reflectometer, absorption spectrometer

Table 5.5.15: Scientific Activity and Instrumentation for the Stations on Beam Line 16

Station Technique Field of Science Instruments

BL17-2 X-ray diffraction, scattering Materials / Energy Materials diffraction and scattering instrumentation, multiple 
detector systems, operando sample environments

Table 5.5.16: Scientific Activity and Instrumentation for the Stations on Beam Line 17

Each of these beamlines has its own unique data generation characteristics. The existing beamlines continue 
to be upgraded and new beamlines developed to meet the research needs of the scientific community. SSRL 
beamlines often have many dozens of motors, readout electronics, and X-ray detectors that are controlled by 
real-time hardware devices. Many X-ray detectors have specific manufacturer-supplied interfaces. FPGA or ARM 
devices are often used for real-time coordination of devices used during measurements. To meet the demands of 
ever-increasing data rates and volumes, there have been recent upgrades to the SSRL networking. For details, 
please see Section 5.6.2.7. 

The utilization of multimodal data to answer new questions requires more complex and sophisticated data 
processing algorithms requiring increases in computing capabilities. Increases in computing power are needed 
by advanced algorithms for existing techniques that, for example, provide higher-fidelity results, and to train 
AI/ML models. The need for real-time analysis and feedback to make crucial experiment decisions and enable 
autonomous experiment steering also requires more computing cycles than have been traditionally utilized.

The computing resources required by the SSRL continue to grow as new beamlines are developed and 
existing instrumentation is upgraded to use higher speed area detectors, especially area detectors. There is 
wide variability in the computational requirements among techniques and processing approaches with those 
instruments and techniques that benefit most from high-energy, high-brightness, and cutting-edge operando/
in-situ experiments driving most requirements.

Edge computing offers the ability to process data quickly on or near detectors and experiment instrumentation 
without the need to first transfer all data to high-end computing resources. This is particularly promising for 
handling large data when coupled with machine-learning methods. Using only a subset of data, machine-learning 
models may be trained on supercomputers. The trained model is then run using edge-computing devices to 
process newly acquired data, providing fast feedback for experiment steering.

The pandemic has heightened the needs for advanced, readily available capabilities at SSRL, as well as the 
need for improved experiment infrastructure and processes to allow these capabilities to be operated and 
accessed remotely, both by staff and by the users. SSRL has been aggressively ramping up the infrastructure and 
capabilities for remote access. As the time for a single measurement decreases, the need for tools such as AI/ML 
to reduce human intervention increases. Thus, improving remote experiments capabilities are of high strategic 
importance for the future health of the facility.

5.5.2.4 Generalized Process of Science

There is great diversity in the process of science at SSRL due to the large and diverse user community.  
Multiple processes and workflows exist for each beamline, instrument, and technique, and new processes and 
workflows are continually developed and refined. Many of the processes, however, may be categorized into three 
main themes:
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Processing/Reducing/Analyzing Large Amounts of Data from Light Source Instruments

Experiments that generate complex and large data volumes are challenging to execute and often require fast 
turnaround between data acquisition and data analysis to enable experimenters to make informed decisions 
when driving experiments to make use of the limited resources of X-ray beam time and samples. Data collection 
rates are growing exponentially due to light source, instrument and detector upgrades, and computational 
requirements are also growing in proportion. To analyze data on experiment timescales, we anticipate that it will 
soon become necessary to send data to remote HPC facilities such as the SRCF, SCS, or NERSC. Sending data 
from a light source facility to the HPC facility requires a data path of sufficient bandwidth. Raw and processed 
data is often stored on a large disk system at SSRL from which users may retrieve the data or share the data 
with collaborators. Researchers may refine results and combine data collected at the SSRL with data from other 
sources, including simulations; this is usually performed outside of the facility-based workflow. Over the coming 
few years, due to increases in data volumes and complexity, SSRL anticipates leveraging computational resources 
outside of SLAC. 

Adaptive Feedback and Autonomous Experiment Steering Using Advanced Computational Techniques, 
Including AI/ML Methods

Autonomous experiment steering is an emerging mode of conducting science at the 5 US DOE-funded light 
sources. Within the light sources, this capability has the promise to provide automated setup of the source and 
sample alignment, intelligent data collection, quality verification, data reduction, and coupling of experimentally 
derived data with information derived from theory, models, and simulations345. Autonomous experiment steering 
has the potential to unlock new materials science knowledge to, for example, better understand failure modes 
in materials, enable the synthesis of new materials, aid in the creation of purpose-built designer materials, and 
assist in additive manufacturing processes. Feedback must often be obtained on timescales too short for humans 
to react to plan and steer experiments to, for example, catch rare events or see fast processes. Due to the intrinsic 
capabilities of the current and soon to be upgraded sources, coupled with high data rate detectors that generate 
large volumes of data at increasingly higher rates, advanced computational techniques, including AI/ML, must 
be employed to realize autonomous steering of light source experiments. These methods require the utilization 
of considerable supercomputing power to process data and train AI/ML models that may then be used to make 
real-time decisions using edge or local computing systems

An area of active development that will soon begin showing benefits is the use of advanced computational 
techniques, especially AI/ML, for adaptive feedback and autonomous experiment steering. In this scenario, data 
collected from a detector acquisition system is considered training data for AI/ML models. This data is sent to a 
large-scale computer where AI/ML models are trained. The training data is stored in a repository of training data 
for later use. The trained model is also stored in a repository for later use and sent to an edge-computing device 
near the detector. Subsequent data sets are processed on the edge device near the instrument generating control 
instructions sent to the instrument.

Although the data generated by individual experiments may vary greatly, over the next decade the combined 
data generation rates of the 5 US DOE-funded light sources is expected to approach the exabyte per year range. 
In order to process this data, the light sources are expected to require tens to many hundreds of PFLOPps of 
on-demand processing capacity. Networking must be able to connect light source instruments to edge, local, 
campus, and centralized computing facilities reliability, and with low latency. Terabit per second networking and 
beyond will be required to handle the large amounts of data expected in the coming years. 

3 Phillip M Maffettone et al 2021 Mach. Learn.: Sci. Technol. 2 025025
4 Campbell SI, Allan DB, Barbour AM, et al (2021) Outlook for artificial intelligence and machine learning at the NSLS-II. Machine Learn-
ing: Science and Technology 2:013001. https://doi.org/10.1088/2632-2153/abbd4e
5 D. Olds, D. B. Allan, T. A. Caswell, J. Lynch, P. M. Maffettone and S. I. Campbell, “Optimizing High- Throughput Capabilities by Lever-
aging Reinforcement Learning Methods with the Bluesky Suite,” 2021 3rd Annual Workshop on Extreme-scale Experiment-in-the-Loop 
Computing (XLOOP), 2021, pp. 36-42, doi: 10.1109/XLOOP54565.2021.00011
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Autonomous experiment steering will become an increasingly relied upon capability at the light sources as the 
decade progresses. Due to the high computational cost associated with data processing, reduction, and analysis, 
and of model training on such large data sets, the light sources will need to employ the use of geographically 
distributed computing facilities and data repositories. This necessitates high bandwidth, low latency network 
connections between the light sources and remote computing and data storage centers.

Coupling Large-scale Simulations, Digital Twins, Surrogate Models, and AI/ML With Experiment Data in 
Real Time to Drive Experiment Design and Experiment Decisions

Coupling of simulations and development of “digital twins” to light source experiments has the potential to 
unlock new materials science knowledge to, for example, better understand failure modes in materials, enable 
the synthesis of new materials, aid in the creation of purpose-built designer materials, and assist in additive 
manufacturing processes. It will also allow for a more efficient and optimum use of beamtime at the light sources. 
For a high-level flow chart of combining experiments with digital twins, see Figure 5.5.5.

The coupling of simulations with light source experiments can be split up into three main areas in the 
experimental life cycle. Firstly, before the experiment, simulations can be used to help prepare, plan, and 
determine if the experiment is even feasible. Secondly, during the allocated beam time, simulations can help 
guide and inform the strategy and guide the experiment. Finally, simulations can be used to aid in the data 
analysis to extract the maximum scientific information from the data. 

This mode of science promises to help accelerate scientific discovery, for example, by enabling faster and more 
complex materials synthesis. In this scenario a supercomputing resource is used to incorporate experimentally 
derived data into simulations, the results of which are used to guide experiments in real time and to even plan 
experiment campaigns and sample compositions. 

Coupling simulations experiment steering will become an increasingly relied upon capability at the light sources 
as the decade progresses. Due to the high computational cost associated with data processing, reduction, 
and analysis, and of model training on such large data sets, the light sources will need to employ the use of 
geographically distributed computing facilities and data repositories. This necessitates high bandwidth, low 
latency network connections between the light sources and remote computing and data storage centers.

Figure 5.5.7: Flow chart of using a digital twin with light source experiments
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Unified solutions across the light sources are required in order to leverage efficiencies of scale, and to provide 
facility users with the ability to manipulate data easily and transparently across the light sources. A shared 
computational fabric for the complex should be developed that connects light source instruments (and other 
scientific user facilities) to a multitiered, distributed computing landscape, including edge, local, campus, 
and supercomputing centers, data repositories and archives, and facility user institutions in a seamless and 
transparent manner. This necessitates the development of advanced networking capabilities and increased 
networking bandwidth, sustainable and discoverable data repositories, on-demand real-time supercomputing 
access, and workflow and orchestration tools. Also, as most light source users are not experts in using 
computational facilities, there needs to be easy access and both in terms of obtaining the resources and 
performing the calculations.

SSRL has been working closely with the other four BES light source facilities, coordinated through the 5-way 
LSDCSC. This group produced a unified vision for the distributed data infrastructure to enable user science, 
the DISCUS, and a decade long roadmap to achieve the vision (see Figure 5.1.12). This vision proposes a 
transformative computational fabric that covers the full lifecycle of data generated at the BES light sources to 
accelerate discovery and insight. This vision proposed connecting the 200+ instruments at the light sources 
to a multitiered computing landscape, including edge, local, campus, and ASCR compute resources, and 
discoverable data repositories using high-performance, robust feature-rich networks. This fabric would facilitate 
the full lifecycle of data across the complex, including theory/modeling and simulation, experiment design, 
data generation at scientific instruments within the light sources, data reduction and processing, analysis and 
interpretation, and publication and dissemination, serving the 10,000+ light sources users per year.

5.5.2.5 Remote Science Activities

There has been a trend to increase remote access to synchrotrons in recent years, thanks to the ongoing advances 
in robotic sample handling, and in automated data acquisition and data management. The current COVID-19 
restrictions have accelerated such demands. Furthermore, increasingly brighter synchrotron sources and faster 
detectors have dramatically shortened the data collection times, to the point that data collection is the least time-
consuming activity in an increasing number of experiments. 

Working with other BES light source facilities, we have formed a remote experiments task force to work on 
implementing remote access and tele-experiments at SSRL, and to look at access policies, procedures, and user 
experience. We see remote experiments as essential for SSRL to maintain leadership and attract the best science 
in an increasingly connected world.

5.5.2.6 Software Infrastructure

SSRL accelerator systems rely primarily on the EPICS for low-level device control while the beamline 
instruments rely partly on EPICS and partly on SPEC and other custom software for low-level device control. 
High-level experiment control and orchestration is implemented using SPEC and other custom control software. 
The Bluesky6 suite of tools has been used for certain high-throughput applications and is being adopted for high-
level experiment control as beamlines and instruments are upgraded. Remote access is primarily through tools 
such as Windows Remote Desktop and NoMachine. 

SSRL users can download data at their home institutions or on their personal computers using FTP servers or 
by direct download onto portable hard drives. Users also often utilize their own “cloud storage” accounts (e.g., 
Google Drive, Dropbox, etc.) to transfer data.

Going forward, the plan is to implement the Bluesky databroker/tiled software7 for the initial data management 
layer to enable a data acquisition system consistent with the other light sources. This has been developed as a  
 

6 Allan, D., Caswell, T., Campbell, S., Rakitin, M. (2019) Bluesky’s ahead: a multi-facility collaboration for an a la carte software project for 
data acquisition and management. Synch. Radiat. News 32(3), 19–22.
7 https://blueskyproject.io/tiled/
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collaborative open-source project with contributors mainly from other facilities, both within the DOE complex 
and internationally. This system aims to provide a consistent “data API” rather than prescribe a given on-disk  
data format. 

These tools will serve as the basis for enabling searchable data catalogs and adopting FAIR data practices. The 
MDF and the DOE Office of Scientific and Technical Information will serve as a DOI generating service for 
SSRL data sets. In the long term, SSRL will adopt or develop tools that provide metadata catalogs, electronic 
logbooks, and sample tracking systems.

There is a high demand from the user community to integrate cloud services for both file transfer (e.g., Dropbox, 
Google Drive, etc.) and for communication (e.g., Slack) into all areas of the data lifecycle and compute workflows. 
We have seen this demand increase during the COVID-19 pandemic. 

Imaging, high-energy, high-speed operando and multimodal techniques are generally the most computationally 
intensive techniques performed at the SSRL. Data reduction and analysis will eventually rely heavily on the 
use of HPC, utilizing appropriate technologies such as multithreading, General Purpose GPUs, edge devices, 
and distributed computing environments to obtain results with near real-time completion, so that results enable 
user-driven or even automated steering of experiments.

SSRL is focusing data analysis algorithm and software development in the areas needed to answer the novel 
scientific inquiries enabled by high-speed operando and multimodal experiments as SSRL instruments are being 
upgraded to allow these capabilities. Algorithms and software are being developed to analyze and reconstruct 
massive data volumes, bridge across length and time scales, identify and classify features and patterns, and 
provide feedback to experiments dynamically using real-time reduction and novel AI/ML approaches. Third-
party vendors such as Modelyst8 are being used to integrate multimodal data into a PostgreSQL database to 
facilitate querying, visualization and analysis of data collected using different modalities. The goal is to eventually 
integrate the methods developed here into the wider Bluesky suite to provide a consistent toolset to visualize and 
analyze data.

5.5.2.7 Network and Data Architecture

The SSRL network is composed of one data center, and it spans 20 buildings on the SLAC campus which are 
connected via a multimode and single-mode cable plant. The core and leaf infrastructure consist of mainly  
Cisco equipment. 

External network connectivity to SSRL consist of 2x10 Gbps uplinks provided by SLAC networking, which 
obtains its external network connectivity via 100Gb connectivity from ESnet and Stanford University/Internet2.

8 https://www.modelyst.com
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Primary network connectivity to SSRL is distributed between SLAC’s B050 data center and SSRL, B120. Two 
2x10 Gbps uplinks are provided over the same fiber optic trunk cable. Fiber redundancy for this interconnectivity 
between SLAC and SSRL currently does not exist. The fiber optic cable plant for SSRL starts in B120 and 
traverses ~20 buildings. Network connectivity to the SSRL enterprise and mission critical environments are 
segmented via dedicated network hardware. The network boundary for SSRL the enterprise network and mission 
critical environments consist of a Fortinet firewall. The firewall provides further segmentation for SSRL mission 
critical environments. 

SSRL has a variety of distribution layer connection speeds that support the SPEAR3 accelerator, SSRL beamline 
data acquisition, and enterprise environments. The bandwidth ranges are 1Gbps, 10 Gbps, and 100 Gbps. 
Bandwidth is provided for each application accordingly.

SLAC WAN

The SSRL WAN network connectivity is provided by SLAC. SLAC has redundant 100 Gbps connections to its 
core routers from ESnet and Stanford University/Internet2.

Figure 5.5.8: High-level Overview of SLAC Network
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SLAC Core

SSRL core enterprise network is provided by 1 Cisco 6509. The 6509 provides network connectivity for the SSRL 
enterprise environment and 1x10 Gbps downstream link to the SSRL firewall for connectivity to the SPEAR 
accelerator and beam line data acquisition environment. The Core for the SSRL mission critical environments 
consists of a Fortinet firewall for routing and a variety of a Cisco Nexus 7009 and Cisco Nexus 5548 for LAN 
connectivity.

• Present to two years:

 − Upgrade Core for SSRL enterprise networks from 1xCiso 6509 to 2xCisco Nexus9000 
C9336C-FX2 Chassis

• Two to five years:

 − Consider new modular data center for SSRL

 − Rearchitect SSRL fiber optic plant

 − Rearchitect SSRL core and switch infrastructure

• Five+ years: 

 − Replace core devices and possibly increase to terabit connectivity

SLAC LAN

SSRL LAN connectivity for the SSRL enterprise network is provided by a Cisco 6509 which consists of switch 
uplinks with speeds that vary between 2x1Gbps and 2x10 Gbps. SSRL LAN connectivity for the mission critical 
environment consists of speeds that vary between 2x10 Gbps and 2x100 Gbps for switch and server connectivity. 

• Present to two years:

 − Continual refresh of switches older than five to seven years

 − Wireless access point upgrades

• Two to five years:

 − Continual refresh of switches older than five to seven years

 − Consider new modular data center for SSRL

 − Rearchitect SSRL fiber optic plant

 − Rearchitect SSRL core and switch infrastructure

Figure 5.5.9: High-level Overview of SLAC Network
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• Five+ years: 

 − Deploy NextGen switching hardware

 − Standardize 10 Gbps environment for desktops

SLAC Data Center

SSRL has one primary data center but has multiple server rooms spanned across multiple SSRL buildings. Cisco 
Nexus core distributions switches resides within these locations and provide connectivity from 10 Gbps to 100 
Gbps for required services via ToR switches.

• Present to two years:

 − Continual refresh for ToR switches older than five to seven years

• Two to five years:

 − Consider new modular data center for SSRL

 − Upgrade fiber optic cable plant

• Five+ years: 

 − Deploy NextGen routing and switching hardware

SSRL Modular Data Center Justification

SSRL needs a modern centralized data center to house computing and networking infrastructure. Currently 
SSRL has one ~720 sq. ft. official data center. In addition, three separate rooms are used to house additional 
computing and networking equipment. This configuration poses a management challenge due to the following 
factors: cooling, power, capacity, and redundancy. Each of these locations are at 95% capacity and limit large-scale 
growth. These limitations force divisions to find one-off solutions as needed. A data center ~5,000 sq. ft. would 
suffice for current and future needs at SSRL. 

5.5.2.8 Cloud Services

Currently, we make limited use of Amazon AWS and Microsoft Azure cloud platforms in the areas of prototyping, 
testing, and standing up computational/storage resources to support training and demonstrations. There are 
several Software as a Services in production use, including Slack, Dropbox, GitHub Enterprise Cloud and  
Office 365. 

SSRL, along with the other US DOE-funded light sources, continues to evaluate the capabilities and cost-
effectiveness of using cloud services.

5.5.2.9 Data-Related Resource Constraints

SSRL is facing a multiple order-of-magnitude increase in demand for computing resources over the next decade. 
Data management and workflow tools are needed that integrate beamline instruments with computing and 
storage resources, for use during experiment, as well as facile user access for post experiment analysis. Real-
time data analysis capabilities are required to significantly reduce data volumes and provide feedback during 
experiments to improve data quality and to drive the direction of ongoing measurements; the application of 
advanced mathematical algorithms, ML, and the integration of simulations and model-based approaches will 
allow automated steering of data collection. On-demand utilization of computing environments is required to 
enable near real-time data processing. Sufficient data storage and archival resources to house the continually 
increasing amounts of valuable scientific data produced by SSRL is required. Advances in networking serve as 
the basis to realize these critical capabilities.
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5.5.2.10 Outstanding Issues 

None to report at this time. 

5.5.2.11 Facility Profile Contributors

SSRL Representation

• Paul McIntyre, SLAC National Accelerator Laboratory, pcm1@slac.stanford.edu

• Vivek Thampy, SLAC National Accelerator Laboratory, vthampy@slac.stanford.edu

• Christopher S. Ramirez, SLAC National Accelerator Laboratory, ramirez@slac.stanford.edu

• Cathy J. Knotts, SLAC National Accelerator Laboratory, knotts@slac.stanford.edu

• Jana Thayer, SLAC National Accelerator Laboratory, jana@slac.stanford.edu 

• Stuart Campbell, BNL, scampbell@bnl.gov

• Nicholas Schwarz, ANL, nschwarz@anl.gov

• Alex Hexemer, LBNL, ahexemer@lbl.gov

ESCC Representation

• Mark Foster, SLAC National Accelerator Laboratory, fosterm@slac.stanford.edu
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5.6 High Flux Isotope Reactor (HFIR) and  
Spallation Neutron Source (SNS)
The SNS and the HFIR are both DOE BES Scientific User Facilities at ORNL. These facilities are operated to 
support research using neutrons in a variety of science areas including structural biology, crystalline materials, 
polymers, magnetism and superconductivity, chemistry, and disordered materials. 

5.6.1 Discussion Summary

• The SNS and the HFIR are both DOE BES Scientific User Facilities at ORNL. 

• Between the two user facilities there are 2,000 people who wish to access data remotely per 
year, and typical beam time requests range from 2–16 days. 

• HFIR and SNS provide researchers with two suites of neutron scattering instruments and beam 
lines. The instruments are supported by a variety of sample environments and data analysis and 
visualization capabilities. Each instrument uses a common network and computing architecture. 

• A remote login infrastructure provides remote users access to both data and computing 
resources. During the pandemic, remote user capability was added to the instrument systems. 
This capability has been deployed to 24 of 32 instruments and gives remote users the ability to 
control the instrument as if they were physically located at the instrument hutch.

• Remote users login through the analysis cluster and then if they meet certain criteria, 
they can remote into beamline control computers. In order to do so users must be on the 
current experiment proposal, trained for remote experiments on the instrument, and remote 
experiments must be enabled for that beamline. 

• Data acquisition collects all aspects and metadata and stored in an HDF-5 data file using the 
NeXus data schema. A single measurement is called a “run”, and experiments are composed of 
many runs. Collections of runs may be grouped into a “reduced” data set. Stored procedures 
are executed on computing clusters at the end of every “run” such that reduced data can be 
provided to the users as soon as possible following the end of data collection. 

• SNS data sets tend to be larger than those produced at HFIR; for the SNS, “runs” range from 
tens of MBs to 4 GBs. The highest data rate SNS instruments are capable of producing data 
sets approaching 1 TB. The imaging and tomography beam lines have potential to produce even 
larger data sets, particularly at the new instrument under construction at the SNS. 

• The maximum data rate for SNS ranges from 33 KBps to 157 MBps across the instruments. The 
data flows through the cached storage and into the shared analysis file system according to the 
user’s choices on utilizing the instrument. 

• The SNS-FTS is constructing the VENUS imaging instrument. It will require 10Gb networking 
to support the expected data volumes; initial estimates are to generate 20–30 TB of raw data per 
day. Reduced data will be a fraction of that amount, but the intention is to keep all raw data.  
The next-generation detector in development (5+ years) will have approximately 16 times the 
data requirements.

• Recent upgrades to the NOMAD instrument established 10Gb networking and streamlined data 
processing software to handle the increased data rates of 200 MBps.

• The SNS STS will add a new suite of instruments to the SNS during the next 10 years. The data 
rates and storage needs are not well defined at present, but it is safe to assume that the STS will 
add another 30% to networking and storage requirements over the current FTS plus another 
VENUS-like instrument. 
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• The facility data network is internal to ORNL. Data flows from the instruments to a centralized 
data management system and is processed either locally on facility computers or on other 
ORNL computers. 

• SNS provides shared analysis computing resources for its users via a cluster of computing 
resources and software. These computing resources are available while the user is on-site 
conducting the experiment and remain available for remote login afterward. 

• Software systems enable the use of the on-premise edge computing, the Compute and Data 
Environment for Science (CADES) and the computing facilities provided by the OLCF.

• Data produced during the approved beam time for an experiment is held for an  
indeterminate time at the facility storage system. Currently, all data produced since the 
SNS was constructed has been stored. For HFIR, all data produced on instruments since 
approximately 2012 is stored. 

• Users may use scp or sftp to transfer their experiment data to their own computers for analysis 
at their convenience.

• The facilities are considering cloud resources in lieu of the tape storage system, but have not 
decided on this yet. Users may use cloud servers in their analysis workflows, but do so outside 
of the standard workflow pattern. 

• ORNL connects to ESnet via redundant border routers at 100 Gbps. The expectation is that 
these connections will soon be upgraded to 400G connections. 

• ORNL utilizes a Science DMZ architecture for high-performance data transfer. Globus is the 
approved transfer method. A border perfSONAR node is connected to the border router and 
participates in ESnet perfSONAR testing.

• To date, Science DMZ, perfSONAR and Globus have not been incorporated into the network 
and data architecture of HFIR and SNS and, because the use of CADES and OLCF machines 
are not currently part of the analysis workflow. 

5.6.2 HFIR and SNS Facility Profiles
Each facility consists of two parts: a neutron production part and an instrument part. Neutron production 
at HFIR is performed by a uranium nuclear reaction whose reactor vessel is designed for fast refueling and 
currently operates 7 fuel cycles per year. Neutron production at the SNS is performed by producing a burst of 
protons that are guided to a flowing liquid mercury target at 60Hz repetition rate; the SNS operates two cycles 
per year, allowing for maintenance activities of the neutron production part. The pulsed nature of the SNS 
allows for time-resolved measurements that provide visibility into dynamic processes within materials. The 
SNS contains 18 instruments in the user program plus a fundamental physics instrument operated by university 
collaborators. HFIR contains 12 instruments in the user program plus a development instrument and a sample 
alignment station.

5.6.2.1 Science Background 

Each instrument is constructed with a unique topology that optimizes for some aspect of the physical process that 
is to be investigated by the researchers operating it. There are spectrometers which measure composition and 
states of matter in materials, diffractometers that obtain information of the structure, spacing and organization of 
crystalline materials, and reflectometers that probe the interfaces of solid/solid, solid/liquid or free liquid layered 
materials. Experiments are typically performed by placing a representative sample of the material of interest 
within the direct neutron beam of an instrument. The neutrons interact with the sample material, and a portion of 
these neutrons is scattered and detected by the instrument detector systems. These scatter patterns are analyzed 
with an understanding of the specific geometry of the instrument, the position of the sample w/r/t the neutron 
beam and the knowledge of sample environment and the state of the instrument (slits, collimators and neutron 
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beam characteristics). The instruments are designed and optimized to statistically measure a range of size scales 
from atomic through molecular to macromolecular structures.

Data acquisition collects event data showing the position of the neutron on the detector array and its time of flight 
(energy), along with metadata for the sample’s environment (temperature, pressure, electric or magnetic field, 
etc.) and instrument configuration (neutron choppers, motion controls, etc.). The data is processed to produce 
an HDF-5 data file using the NeXus data schema9. A single measurement is called a “run,” and experiments are 
composed of many runs. The data acquisition system ensures that the data file for a run is collected concurrently 
with the experiment. Collections of runs may be grouped into a “reduced” data set. Stored procedures are 
executed on computing clusters at the end of every run such that reduced data can be provided to the users 
as soon as possible following the end of data collection. Experiment automation systems ensure that the 
instruments are configured for the next data collection state so as to maximize the active data collection time 
during an experiment. Data collected prior to reduction is cached locally on the instrument data systems to allow 
rereduction of runs if certain administrative conditions (wrong experiment or sample data entered by users, 
exceptions raised in the stored procedures for reduction or other errors) occur. SNS data sets tend to be larger 
than those produced at HFIR; for the SNS, runs range from tens of MBs to 4 GBs. The highest data rate SNS 
instruments are capable of producing data sets approaching 1 TB. The imaging and tomography beam lines have 
potential to produce even larger data sets, particularly at the new instrument under construction at the SNS. 

The facility data network is internal to ORNL. Data flows from the instruments to a centralized data management 
system and is processed either locally on SNS computers or on other ORNL computers. SNS provides a cluster 
of computing resources and software for users to process and analyze their data. These computing resources are 
available while the user is on-site conducting the experiment and remain available for remote login afterward. 
This is because the instrument scientists who serve the users collaborate with them to design the analysis 
workflows as they are highly instrument specific and dependent on the experiment that is performed.

5.6.2.2 Collaborators

Between the two user facilities there are 2,000 people who wish to access data remotely per year. That is 
2,000 unique logins to long-term data storage and/or the analysis cluster. There are approximately 16,000 user 
accounts in total. At any point in time there are approximately 250 users logged in. They come from national 
and international research facilities and they have varied computational skill sets and resources at their home 
institution. Use of the instruments is proposal-driven and governed by a Science Review Committee which 
reviews proposals in subcommittees to discuss and rank the proposals with many high-quality proposals not 
making the cutoff due to oversubscription. The figure below shows the global distribution of users. Beam time 
requests range from 2–16 days. 

9 https://www.nexusformat.org
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Data produced during the approved beam time for an experiment is held for an indeterminate time at the facility 
storage system. Currently, all data produced since the SNS was constructed has been stored. For HFIR, all 
data produced on instruments since approximately 2012 is stored. Users may use scp or sftp to transfer their 
experiment data to their own computers for analysis at their convenience.Each instrument uses a common 

Figure 5.6.1: SNS and HFIR User Map Provided by the NScD User Office

User/
Collaborator 
and Location

Primary or 
secondary copy 

of the data

Data access 
method

Avg. size of 
data set

Frequency of 
data transfer 
or download

Are data sent 
back to the 
source and 

method

Any known  
issues with 
data sharing

HFIR USERS secondary data transfer 22GB ad hoc N N/A

SNS USERS secondary data transfer 1TB ad hoc N N/A

Table 5.6.1: HFIR and SNS Collaboration Space

5.6.2.3 Instruments and Facilities

HFIR and SNS provide researchers with two complementary world-class suites of neutron scattering instruments 
and beam lines. The instruments are supported by a variety of sample environments and data analysis and 
visualization capabilities10. 

10 https://neutrons.ornl.gov/instruments
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Each instrument uses a common network and computing architecture. The network address space is ordered 
with each instrument occupying one routed class-C address space accessible from the facility network and one 
private class-C address space containing sample environment and control equipment accessible only by the 
per-beamline resources (which are further described in Section 5.6.2.7). As shown in the diagram above, data 
produced by the detectors is fused and time-ordered with the instrument slow-controls process values taken 
during the experiment. This data is stored on the Streaming Management Service computer which holds between 
20–80 TB of cached storage of prereduced data as described in Section 5.6.2.1. 

Figure 5.6.2: General Per-Beamline Computing Resource Diagram

Table 5.6.2: SNS Event Data Rate for the FY22-A RunCycle (events per sec–8 Bytes per event)
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Data rates of the SNS instruments are characterized in the Table above. The maximum data rate ranges from 
33 KBps to 157 MBps across the instruments. The data flows through the cached storage and into the shared 
analysis file system according to the user’s choices on utilizing the instrument. As described in Section 5.6.2.1, 
the conversion to the NeXus format and transfer to the analysis file system occurs concurrently with the data 
collection according to the workflow described in Section 5.6.2.4.

The SNS-FTS is constructing the VENUS imaging instrument. It will require 10Gb networking and will 
dwarf current experiment data sizes. In the initial build, it will generate 20–30 TB of raw data per day on a 
Multichannel Plate (MCP) detector comprising a 2x2 array of “Timepix3” sensors. Reduced data will be a fraction 
of that amount, but the intention is to keep all raw data initially until neutron clustering and AI reduction 
algorithms are vetted. The next-generation detector in development (in five years) will have approximately 16 
times the data requirements, as it anticipates using an 8x8 array of Timepix4 MCP sensors. Recent upgrades to 
the NOMAD instrument which fully built out the detector array have also pushed bandwidth and data processing 
capabilities. The recent upgrade to the instrument established 10 Gb networking and streamlined data processing 
software to handle the increased data rates generated by NOMAD. The desired data rate at NOMAD is sustained 
25M neutron events per second or 200 MBps. The proton power upgrade at the SNS will increase neutron event 
rate roughly 40% at all instruments and storage requirements will increase correspondingly. 

The SNS STS will add a new suite of instruments to the SNS during the next 10 years. The data rates and storage 
needs are not well defined at present. The STS will receive 25% of a 2.8MW beam or roughly 0.7MW, half of 
what current instruments receive now on SNS instruments. The numbers of instruments to be built at STS are 
in the 10–12 range with an imaging instrument in the mix. It is safe to assume that the STS will add another 30% 
(half of 60%) to networking and storage requirements over the current FTS plus another VENUS-like instrument.

HFIR plans to change out the beryllium jacket on the reactor within five years and will be refreshing the 
instrument suite with minor upgrades during this time. The instruments in the cold guide hall (See the HFIR 
Instrument Layout figure below) will be reconstructed as the hall will be expanded and made larger. A neutron 
spin-echo instrument is planned to be added. The IMAGING beamline will receive the same Timepix3 MCP 
detector as VENUS. All other instrument data rates and storage needs are well-known, our current capabilities 
meet these requirements.

SNS provides shared analysis computing resources for its users. A typical analysis cluster computer has 32 cores 
(3.4GHz) and 1 TB of RAM. A computing cluster is available for processing large data sets, we have 8 Analysis 
machines in the cluster. A typical analysis cluster computer has 32 cores (3.4GHz) and 1 TB of RAM. Some 
beamlines have their own dedicated analysis machine physically located at the beamlines. The centralized data 
storage is a Quantum Stornext File system with 2.2 PBs of data storage and a backup tape file system with 4.4 PBs 
of data storage. The tape system is designed to be big enough for 2 copies of all data, which can be maintained 
at separate geographic locations. A remote login infrastructure provides remote users access to both data and 
computing resources. During the pandemic, remote user capability was added to the instrument systems. This 
capability has been deployed to 24 of 32 instruments and gives remote users the ability to control the instrument 
as if they were physically located at the instrument hutch.
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Table 5.6.3: SNS Instrument Run Sizes

* Fundamental Physics Beamline is not managed by Neutron Sciences 
** Just recently transitioned to NScD ORNL management, Data is stored separately

SNS Average 
File Size

Number of 
Experiments

Number of 
Directories

Total Data 
set Size 

(GB)

Anticipates File Size Increase 2–5 
years roughly 40% increase in file size 
& bandwidth due to 1.4MW– 2.0MW 

Proton Power Upgrade

Strategic Planning 
(Beyond 5 years)

ARCS 65 MB 119792 316 8217.3 40% Same as 2–5 years

BASIS 43 MB 73769 182 3372.8 40% Same as 2–5 years

CNCS 32 MB 198795 334 6745.4 40% Same as 2–5 years

CORELLI 232 MB 243629 522 59338.9 40% Same as 2–5 years

EQSANS 320 MB 49626 548 16663.7 40% Same as 2–5 years

FNPB * 40% Same as 2–5 years

HYSPEC 49 MB 291353 470 15084.1 40% Same as 2–5 years

LIQREF 13 MB 56247 270 794.9 40% Same as 2–5 years

MAGREF 38 MB 11206 158 453.1 40% Same as 2–5 years

MANDI 1126 MB 2708 156 3199.8 40% Same as 2–5 years

NOMAD 3178 MB 94999 1376 316640.5 40% Same as 2–5 years

NSE ** 40% Same as 2–5 years

POWGEN 338 MB 18121 1128 6423.7 40% Same as 2–5 years

SEQUOIA 136 MB 209078 672 30021.2 40% Same as 2–5 years

SNS 
NEUTRONS 

AND 
PRESSURE 

(SNAP)

1200 MB 14937 250 18803.5 40% Same as 2–5 years

TOPAZ 1390 MB 13816 252 20146.1 40% Same as 2–5 years

USANS 59 MB 38009 220 2360.8 40% Same as 2–5 years

VENUS Currently 
being built

N/A 25 TB/Day 200 TB/Day 
Eventually

VISION 4102 MB 52824 704 227244.0 40% Same as 2–5 years

VULCAN 109 MB 67908 450 7778.0 40% Same as 2–5 years
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SNS Average 
File Size

Number of 
Experiments

Number of 
Directories

Total Data set 
Size (GB)

Anticipates File Size 
Increase 2–5 years roughly 
40% increase in file size & 
bandwidth due to 1.4MW– 

2.0MW Proton Power Upgrade

Strategic Planning 
(Beyond 5 years)

BIO-SANS 427 MB 51550 263 4499.2 No major increases 
anticipated in 2–5 years

Same as 2–5 years

CTAX 16 KB 31920 459 0.6 No major increases 
anticipated in 2–5 years

Same as 2–5 years

DEMAND 14 KB 105960 878 1.6 No major increases 
anticipated in 2–5 years

Same as 2–5 years

DEV BEAM * 6644.0 No major increases 
anticipated in 2–5 years

Same as 2–5 years

FIE-TAX 13 KB 51678 670 0.7 No major increases 
anticipated in 2–5 years

Same as 2–5 years

GP-SANS 85 MB 51550 263 4499.2 No major increases 
anticipated in 2–5 years

Same as 2–5 years

HIDRA 117 MB 3181 124 384.1 No major increases 
anticipated in 2–5 years

Same as 2–5 years

IMAGINE ** 63.0 No major increases 
anticipated in 2–5 years

Same as 2–5 years

IMAGING 60421.0 25 TB/Day Same as 2–5 years

POWDER 61 KB 16769 1028 1.1 No major increases 
anticipated in 2–5 years

Same as 2–5 years

PTAX 15 KB 49563 556 0.8 No major increases 
anticipated in 2–5 years

Same as 2–5 years

TAX 13 KB 43014 559 0.6 No major increases 
anticipated in 2–5 years

Same as 2–5 years

WAND² 12 MB 875234 446 11114.8 No major increases 
anticipated in 2–5 years

Same as 2–5 years

Table 5.6.4: HFIR Instrument Run Sizes

* Files maintained by development scientists 
** Files maintained separately, unique control system
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Figure 5.6.3: SNS Instrument Layout

Figure 5.6.4: HFIR Instrument Layout
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5.6.2.4 Generalized Process of Science

As referenced in Section 5.6.2.3, the workflow for instrument data acquisition is implemented by a software 
system named Accelerating Data Acquisition and Analysis (ADARA11) whose open-source code is distributed via 
its github portal12.

 
This workflow aggregates the detector electronics producers, fast metadata and sample-environment control data. 
Detector electronics produce tuples of (position, time) for all neutron counts. Fast metadata represents various 
processes that are sampled, time resolved, and collated into waveforms that can be understood at the same time 
scale as neutron data. Examples of this are: data from beam monitors that provide a measure of incident neutron 
flux on a sample, data from top-dead center sensors of neutron beam choppers that control the bandwidth and 
incident energy of the neutron beam, and experiment-specific signals collected by various systems such as 
potentiostat, rheometers, pulsed-magnet controllers. The experiment-specific signals allow subsequent analysis 
of the data collected to be interpreted according to the electrical, physical or magnetic conditions affecting the 
sample in a dynamic way.

In order to meaningfully use the data collected, neutron counts must be translated from instrument coordinates 
(two-dimensional detector positions) into physical coordinates (three-dimensional positions relative to the 
sample centroid) and subsequently into scientific coordinates (momentum transfer space or lattice parameters 
for example). The translation into physical coordinates is performed automatically as part of the NeXus file 
generation using Instrument Definition Files (IDF) that are produced by careful surveys of the precise physical 
location of the detector and sample positions upon instrument configuration changes. Each instrument maintains 
a revision-controlled version of the IDF files which allows retranslations to occur from the data collected 
at any time since the instrument operation started. The conversion into scientific coordinate systems and 
subsequent modeling is highly instrument and experiment specific. These are performed by users as guided 
by the instrument scientists using the analysis computational resources, taking as their inputs the experiment 
data collected. On certain instruments a framework called MANTID Workbench13 is used to provide access to 
common algorithms used at several neutron scattering facilities worldwide. This framework is used both for 

11 https://ieeexplore.ieee.org/document/6972268
12 https://github.com/ADARA-Neutrons/adara
13 https://www.mantidproject.org

Figure 5.6.5: General Data Workflow Diagram
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auto-reduction processes which execute automatically following the completion of data collection on the NeXus 
files as well as by users and instrument scientists to visualize and interpret the experiment data collected before 
performing further modeling and experiment-specific analysis.

Users will run model refinement codes iteratively to validate their models against experimental results. This 
work may occur on the facility analysis cluster close to the stored data sets, or it may be performed on users’ 
computational resources either on their own portable computers or at their home facilities.

There are current projects ongoing to study and develop enhanced automated analysis workflows. These projects 
seek to take advantage of the diverse networking and computational capabilities available at the ORNL site. The 
basic components of this effort are shown in the below diagram.

Figure 5.6.6: Future enhanced analysis workflows

Figure 5.6.7: Vision for a Neutron Data Analysis and Interpretation Capability
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The basic principle is to chain data artifacts from one stage of the workflow into the next. Each stage of the 
workflow is a plug-in containerized instance with provenance and tracking, that is ideally able to be regenerated 
as needed from software specifications (think: dockerfiles, singularity definition files, etc.). These workflows 
envision invocations of commercial software alongside open-source, facility- and user-written codes. When 
implemented in the next two to five years, these software systems will enable the use of the on-premise edge 
computing, the CADES14) and the computing facilities provided by the OLCF15).

Beyond the five-year timeframe, the next frontier is the integration of hyperconverged infrastructure electronics 
components that will allow for real-time analysis of experiments with the simultaneous comparison to the results 
of science modeling codes that are currently performed over several months after experiment data collection. 
These edge-computing resources move closer to the data sources and so have an opportunity to transform the 
nature of experiments conducted at the facilities by providing immediate visualization of experiments in the 
scientific coordinate systems in real-time as data is being collected while simultaneously rendering the results of 
the users’ computational models using the parameters extracted from the immediate analysis of the experimental 
data being collected.

 
5.6.2.5 Remote Science Activities

All users can login to the analysis cluster remotely to analyze their data. Remote experiment capability is 
available on 24 of 32 instruments. This gives the user the ability to control the instrument as if they were at the 
instrument hutch from anywhere in the world. Remote users login through the analysis cluster and then if they 
meet certain criteria, they can remote into beamline control computers. In order to do so users must be on the 
current experiment proposal, trained for remote experiments on the instrument, and remote experiments must be 
enabled for that beamline. Multifactor authentication is being rolled out this summer. 

14 https://cades.ornl.gov
15 https://www.olcf.ornl.gov

Figure 5.6.8: Vision for a Real-Time Hyperconverged Infrastructure for Knowledge Discovery
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The basic principle is the use of a browser based remote desktop software (ThinLinc16). This software is 
integrated with the LDAP17) used to authenticate users both internal and external. This software allows a remote 
user to gain access to a remote operator interface (OPI) machine. This OPI operates in parallel to the beamline 
OPI so that remote and local users see the same view of the instrument. An OPI is merely a user interface layer to 
a distributed process variable system that is described in Section 5.6.2.6. 

 
5.6.2.6 Software Infrastructure

The EPICS) is used for instrument control on 24 of the 32 instruments at the SNS and HFIR combined. EPICS 
is a toolkit that enables the creation of distributed control systems over standard networking via a process variable 
distribution protocol interconnecting many Input/Output Controllers (IOC). The IOC is the fundamental unit of 
control of hardware whose parameters are exposed as process variables. The IOCs operate independently from 
each other, and through their exchange of process variables over the network and defined 

There are 7 instruments at HFIR which run the Spectrometer Instrument Control Environment (SPICE), a 
LabVIEW-based control system. The SPICE instruments are scheduled to be converted to EPICS over the next 
several years.

The MANTID framework is used for analyzing the data, subject to the discussion and roadmap described in 
Section 5.6.2.4. 

5.6.2.7 Network and Data Architecture

ORNL WAN Networking

ORNL connects to ESnet via redundant border routers, each of which currently connects to a diverse ESnet 
router at 100G. The expectation is that these connections will soon be upgraded to 400G connections. The ORNL 
border routers connect the ORNL Enterprise network, which includes SNS, CNMS and HFIR, with the OLCF 
and ESnet. This connectivity is depicted in Figure 5.6.10. 

16 https://www.cendio.com
17 https://datatracker.ietf.org/doc/html/rfc4510

Figure 5.6.9: Overview of connections for Remote Experiments
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The Enterprise firewalls are connected to the border routers at 40G currently. Connections to the Enterprise core 
from SNS/CNMS and HFIR are also 40G currently. Upgrades to these core switches are in progress and uplinks 
from SNS/ complex materials scattering (CMS) are expected to become 100G early in FY23.

ORNL does utilize a Science DMZ architecture for high-performance data transfer. This environment connects 
to the border routers with 10/40/100G DTN connections available. Globus is the approved transfer method. A 
border perfSONAR node is connected to the border router and participates in the ESnet grid.

Figure 5.6.10: ORNL WAN Connectivity
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As referenced in Section 5.6.2.3, the instrument control network consists of two segments: the server network 
that has full access to the open research network at ORNL through core routers. Each beamline network is 
isolated by a firewall to secure the beamline computers while allowing machines on the research network 
read-only access to the instrument state. This is convenient to allow any workstation in the facility to visualize 
instrument state and perform historical queries and check alarm conditions. The network links are commonly 1G 
links, with some beamlines having 10G links between the router and the facility networking.

To date, Science DMZ, perfSONAR and Globus have not been incorporated into the network and data 
architecture because the use of CADES and OLCF machines are not part of the analysis workflow at the 
moment. As described in Section 5.6.2.6, these resources are being developed for automated analysis, and so 
these components are likely to become used in the two-to five-year timeframe.

Figure 5.6.11: EPICS Beamline Network Diagram

EPICS Networking
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5.6.2.8 Cloud Services

We are considering cloud resources in lieu of the tape storage system, but have not decided on this yet.

Users, on the other hand may use cloud servers in their analysis workflows as described in the above figure. This 
highlights the need for the automated and federated workflows described in Section 5.6.2.4. As was mentioned 
there, the first implementation of these workflows will use the internal “cloud” resources that have been 
developed at ORNL over the last several years before external clouds are considered.

The two-factor authentication implementation alluded to in Section 5.6.2.5, is planned to use the Microsoft 
Authenticator over their Azure cloud.

5.6.2.9 Data-Related Resource Constraints

The IMAGING beamlines, VENUS in particular which is being built now will stress our storage and bandwidth 
capabilities currently. The storage and bandwidth requirements for this were described in Section 5.6.2.3. 
Eventually all three facilities: SNS-FTS, HFIR and SNS-STS will have an imaging beamline producing data of 
the magnitude of VENUS so it will be a major consideration.

5.6.2.10 Outstanding Issues 

None to report at this time. 

Figure 5.6.11: EPICS Beamline Network Diagram
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5.6.2.11 Facility Profile Contributors

HFIR and SNS Representation

• Rob Knudson, ORNL, knudsoniroiv@ornl.gov

• Bogdan Vacaliuc, ORNL, vacaliucb@ornl.gov

• Rich Crompton, ORNL, cromptonra@ornl.gov

• Matt Bedynek, ORNL, bedynekmj@ornl.gov

• Jeeem Kohl, ORNL, kohlja@ornl.gov

• Steven Hartman, ORNL, hartmansm@ornl.gov

• Greg Watson, ORNL, watsongr@ornl.gov

• Jon Fortnoy, ORNL, fortneyjm@ornl.gov

• Thomas Proffen, ORNL, tproffen@ornl.gov

ESCC Representation

• Susan Hicks, ORNL, hicksse@ornl.gov
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5.7 Center for Functional Nanomaterials (CFN)
The CFN is a NSRC operated for the US DOE at BNL. As a national scientific user facility, the CFN 
provides users a research experience supported by top-caliber scientists and with access to state-of-the-art 
instrumentation.

5.7.1 Discussion Summary

• The CFN is an NSRC operated for the US DOE at BNL. Scientific projects at CFN fall under 
three nanoscience themes: nanomaterial synthesis by assembly, accelerated nanomaterial 
discovery, and nanomaterials in operando conditions. 

• CFN is not a single collaboration. The CFN facility includes advanced instrumentation in 
nanolithography, materials preparation, electron and photon probes, and computational 
resources. They all operate independently. 

• For experimental facilities, CFN is also rapidly expanding its ability to support users who are 
not physically present at the facility. This program builds on existing support for remote user 
access to computing resources. It has facilitated remote engagement of users with CFN staff, 
remote operation of instruments during experiments, a mail-in process for user sample analysis, 
and off-site access to experimental data and CFN-supported analytics software.

• CFN’s capabilities require effective utilization of high-rate data streams and real-time 
management of experimental conditions; this begins with raw data management (e.g., high rates 
and volumes from instruments), but also developing a suite of tools to optimize facility usage. 
CFN goal for continued growth in this area is to offer integrated data management, analytics, 
and simulation tightly coupled to target experimental facilities. 

• Many instruments at CFN are operated stand-alone; in some cases, the instruments do not have 
sufficient storage needs and are being incorporated into the SDCC at BNL. This has revealed 
some significant networking challenges in ensuring ample capacity and low latency. 

• The primary example for storage needs is the CFN TEM facilities which can generate 3 GBps 
data flows. To support this requirement, CFN installed fiber optic networking and purchased 1 
PB of GPFS storage integrated into SDCC operated facilities. This allowed secondary transfer, 
storage, and processing of those data bursts. 

• A planned collaboration with LBNL to operate a high frame rate camera, capable of generating 
data rates of 50 GB/s, suggests that about 1 PB per year will be generated. 

• In the next two- to five-year timeframe, additional direct detection capabilities will likely be 
added with acquisition of new STEMs which could drive the data generation rate up to as much 
as 4 PB per year. 

• Beyond the five years’ timeframe CFN will likely replace all its five (S)TEMs currently in 
operation. There will be data transfer involved between national laboratories to take advantage 
of supercomputer capabilities and data analysis tools available at any particular Laboratory. 

• CFN is investigating whether software tools developed for large-scale scientific facilities can 
be used. CFN is leveraging data-transfer and storage technologies developed for high-energy 
physics, and will investigate whether data acquisition and management tools developed for 
synchrotron facilities can be adapted to lab-based tools. In particular, the Bluesky framework 
may provide a robust way to track data and metadata in a schema-free manner.

• CFN operates a midrange HPC facility, and it is managed by the SDCC, part of the Computer 
Science Initiative (CSI) at BNL. 



164Basic Energy Sciences Network Requirements Review Final Report 2022

• Direct data transfer between the beamline workstations and the HPC at SDCC is not made 
available for security concerns. Instead, a workaround is designed to use the Amazon S3 as a 
communication intermediate, where commands are passed back and forth through the  
file system.

• The CFN’s computing facility is accessed fully remotely through SSH gateways. Data transfer is 
commonly done with Globus. 

• The physical storage and data management needs of CFN facilities located at NSLS-II will 
follow policies implemented at that facility. In the one- to three-year timeframe, the most data 
intensive facilities are expected to be X-ray scattering, with steady-state data rates approaching 
10 PB/year, and peak data rates during burst acquisition of >1 TB/hour. 

• BNL features a Tbps HTSN that serves as the primary network transport for all data intensive 
collaborations at BNL, and access to HPC and HTC resources internal and external to the lab. 

• The BNL network perimeter includes 3x100 Gbps connections to ESnet, and average 15–20 
PBs of data monthly.

• BNL will upgrade network capabilities in the one-to two-year timeframe to support 400 Gbps 
connectivity, and beyond. 

5.7.2 CFN Facility Profile
The CFN mission is advancing nanoscience, by being an essential resource for the worldwide scientific 
community and by carrying out transformative nanoscience research to support the energy, economic, and 
national security of the United States. Strategic partnerships are crucial to CFN mission success, including the 
strong synergy with the National Synchrotron Light Source II (NSLS-II), also located at BNL.

5.7.2.1 Science Background 

Scientific projects at CFN fall under three nanoscience themes: nanomaterial synthesis by assembly, accelerated 
nanomaterial discovery, and nanomaterials in operando conditions. These themes reflect the technical expertise 
of the staff and guide the development of cutting-edge facilities. The CFN facility is envisioned with the entire 
process of materials research in mind (synthesis and fabrication, advanced characterization, and understanding), 
such that users access an integrated set of tools for a complete research experience under one roof. The CFN 
operates advanced instrumentation in nanolithography, materials preparation, electron and photon probes, 
including those located at NSLS-II, and computational resources with diverse software tools for nanoscience 
theory, simulation, and data analytics. 

CFN’s in situ and operando characterization capabilities exemplify the needs of effective utilization of high-rate 
data streams and real-time management of experimental conditions. Challenges begin with the acquisition 
and management of raw data, owing to the high rates and large volumes of data generated by these leading 
scientific instruments. However, the larger challenge is to develop the suite of tools needed to optimize the 
usage of precious facility time. In practice, this means gathering the most meaningful data sets within the limited 
experimental duration that can be allocated, in service of the ultimate goals of research productivity and scientific 
impact. This brings the focus to developing not just a baseline set of tools for experimental operations and raw 
data management, but to workflow software tools that encompass database access, in situ data analytics including 
application to multimodal data, and access to on-demand computing to meet heavy data analysis needs and for 
physical simulations to be carried out during the timeframe of the experimental work at the facility.

5.7.2.2 Collaborators

CFN is not a single collaboration. The CFN facility includes advanced instrumentation in nanolithography, 
materials preparation, electron and photon probes, and computational resources. They all operate independently. 
CFN staff engage in many different collaborations with Users from around the world who come to CFN for a 
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particular instrument or a combination of instruments. CFN scientists also collaborate with colleagues from other 
DOE facilities for development of new instruments.

User/
Collaborator and 
Location

Primary or 
secondary 
copy of the 
data

Data access 
method

Avg. size of 
data set

Frequency of 
data transfer or 
download

Are data sent 
back to the 
source and 
method

Any known  
issues with 
data sharing

BNL USERS/
COLLABORATORS

Primary Data Transfer Instrument 
dependent 

Ad hoc N N/A

USERS/
COLLABORATORS 
FROM OTHER DOE 
LABS 

Primary Data Transfer Instrument 
dependent 

Ad hoc N N/A

US UNIVERSITY-
BASED PIS 

Primary Data Transfer Instrument 
dependent 

Ad hoc N N/A

INTERNATIONAL 
PIS

Primary Data Transfer Instrument 
dependent 

Ad hoc N N/A

5.7.2.3 Instruments and Facilities

Within the CFN facility set, the expanding scope of capabilities driven by in situ and operando characterization 
needs are the primary target for integrated data management and analysis. These include data acquisition modes 
in transmission electron microscopy that represent the largest raw data challenge within the CFN, several end 
stations at National Synchrotron Light Source II (NSLS-II) where CFN has partnerships, and a suite of scanning 
probe instruments. In parallel, CFN has operated a midrange HPC facility since its inception. That facility has 
been migrated to a paid-in, stakeholder share of joint facilities managed by the SDCC, part of the CSI at BNL. 
CFN internal and user science projects routinely involve collaboration between experiment and physical theory 
supported by computation. The computational demands in support of that physical theory will continue to grow 
with the complexity of the systems and measurements done in CFN facilities. Furthermore, the CFN goal for 
continued growth in this area is to offer integrated data management, analytics, and simulation tightly coupled 
to target experimental facilities. Such an offering would empower the nanoscience user community to tackle 
materials discovery problems of previously unattainable complexity.

5.7.2.4 Generalized Process of Science

Many instruments at CFN are operated stand-alone. However, in a few cases, the computers attached to  
the instruments cannot meet the computing and/or storage needs, and we have been working to incorporate  
the SDCC at BNL, which also manages our HPC, into the workflow. Here we have met significant  
networking challenges.

The primary example for storage needs is the CFN TEM facilities. The presently installed Gatan K2-IS 
camera generates ~ 3 GB of data per second. At the peak data rate, data is currently streamed for storage on an 
intermediate solid-state disk array in a vendor proprietary format that limits uninterrupted video streaming to 
15 minutes. CFN installed fiber optic networking and purchased 1 PB of GPFS storage integrated into SDCC 
operated facilities. This allowed secondary transfer, storage, and processing of those data bursts. However, the 
current configuration does not allow for the uninterrupted streaming of data from the camera to large-scale 
storage that would enable longer experimental runs. A planned collaboration with LBNL to install a ~ 90,000 
frame rate camera will generate ~ 50 GB of data per second. Once it is achieved, an estimate that includes a 

Table 5.7.1: CFN Collaboration Space
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realistic assessment of user project needs and workflows suggests that about 1 PB per year will be generated. In 
the next two- to five-year timeframe, additional direct detection capabilities will likely be added with acquisition 
of new STEMs which could drive the data generation rate up to as much as 4 PB per year. Beyond the five years’ 
timeframe CFN will likely replace all its five (S)TEMs currently in operation. All newly acquired (S)TEMs 
will have at least one fast direct electron detector installed with increased number of active pixels and higher 
frame rate in comparison with current state-of-the-art solutions. For the purpose of data analysis there will be a 
potential data transfer involved between national laboratories to take advantage of supercomputer capabilities and 
data analysis tools available at any particular Laboratory. 

As an example of computing needs by an instrument, the CFN is leading research on autonomous 
experimentation at the CMS beamline of NSLS-II. Sophisticated machine-learning models are developed to 
control the experiments. However, these compute-demanding models run too slow on local workstations and 
would cause significant waste of precious beamline time. We have been working to include the SDCC HPC 
cluster into the workflow. However, direct data transfer between the beamline workstations and the HPC at 
SDCC is not made available for security concerns. Instead, a workaround is designed to use the Amazon S3 as 
a communication intermediate, where commands are passed back and forth through the file system. Our initial 
tests were successful. We are able to control the beamline based on a model computed on the HPC. However, 
because the HPC is a shared resource managed with SLURM, we have to use ‘reservation’ to guarantee  
compute for the experiment, which requires good planning. It is still a challenge to get real-time computing 
instantly as needed.

5.7.2.5 Remote Science Activities

The CFN’s computing facility is accessed fully remotely through SSH gateways. Data transfer is commonly done 
with Globus. For experimental facilities, CFN is also rapidly expanding its ability to support users who are not 
physically present at the facility. This program builds on existing support for remote user access to computing 
resources. It has facilitated remote engagement of users with CFN staff, remote operation of instruments during 
experiments, a mail-in process for user sample analysis, and off-site access to experimental data and CFN-
supported analytics software.

5.7.2.6 Software Infrastructure

CFN is investigating whether software tools developed for large-scale scientific facilities can be used for smaller-
scale, but high data-rate, lab tools. CFN is already leveraging data-transfer and storage technologies developed 
for high-energy physics, and will investigate whether data acquisition and management tools developed for 
synchrotron facilities can be adapted to lab-based tools. In particular, the Bluesky framework in use at NSLS-II 
and being deployed at other synchrotron facilities provides a robust way to track data and metadata in a schema-
free manner.

Projects and collaborations directed to data analytics and autonomous experimentation will continue, including 
testing with users, with planned internal resources for selected goals. For example, XANES is a widely used 
technique with broad applicability. Improving methodologies for interpretation of the spectra can have an impact 
across many materials and chemical science use cases. Improving data analytics includes linking domain-specific 
tools for direct simulation of spectra to applied math tools for automated spectral comparison and ML to link 
structure descriptors to spectral descriptors. Furthermore, many user projects take advantage of multiple facilities 
to generate complementary data sets. Advanced data analytics for multimodal data sets, leveraging emerging 
applied math techniques, will also be essential. Such advances, implemented in validated software tools and 
combined with curated and extensible databases of both experimental and computational results, can significantly 
enhance scientific impact from target facilities in a three- to five-year timeframe. However, CFN does not have 
the software development staff resources needed to harden tools for robust user operations.
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5.7.2.7 Network and Data Architecture

BNL High-Throughput Science Network

BNL has implemented a vendor agnostic, resilient, scalable and modular terabit per second (Tbps) HTSN which 
serves as the primary network transport for all data intensive collaborations at BNL. It provides high-throughput 
connectivity to all HPC and HTC collaborations and supports the timely transfer of large amounts of scientific 
data via the Internet. 

The HTSN has five primary components:

• Network perimeter

 − Three diverse 100 Gbps circuits that peer with ESnet. These circuits are utilized by 
all scientific and administrative communities at BNL. All traffic to and from BNL flows 
through either of these circuits. 

 − The BNL network perimeter transfers on average 15–20 PBs of data monthly.

• Science DMZ

 − Supports open, high-speed WAN/Internet) access for all scientific collaborations 
throughout the BNL campus.

• Science Core

 − A Tbps DCI for data intensive collaborations at BNL. This network interconnect enables 
high-speed connectivity between collaborations such as ATLAS, STAR, PHENIX, CAD, 
CFN, NSLS-II, HPC Clusters and the SDCC.

 − Intelligence and routing policies are applied within the Science Core to restrict or grant 
access to specific resources within the SDCC.

• Spine

 − A Tbps network Spine that interconnects all Leaf switches. Leaf switches can consist of  
ToR or chassis-based switches that connect compute, storage or general infrastructure 
service servers.

 − The responsibility of the Spine is fast packet forwarding and flexibility, not policy insertion 
or server termination.

 − External Border Gateway Protocol (eBGP) is utilized throughout the HTSN. EBGP was 
chosen for its ability to immensely scale and to create modularity and fault domain isolation 
down to the rack level. Each Spine group shares the same ASN but does not have  
Internal BGP (iBGP) peering’s between them. Each Leaf or pairs of Leaves will require 
their own ASN. 

• Storage Core

 − A redundant terabit per second switching block that aggregates high-performance  
storage services.

BNL Next-Generation Network Perimeter

The network perimeter at BNL is a high-speed and fault-tolerant network infrastructure that provides the BNL 
site connectivity to the Internet and various scientific wide area networks. It supports numerous data intensive 
collaborations such as BES, Biological and Environmental Research, HEP, and Nuclear Physics. It also supports 
critical campus services such as workstations, phone service, security, safety and monitoring and enterprise and 
cloud computing. Since being placed into production in 2013, the network perimeter has transmitted over 100+ 
PBs of data per year to numerous scientific collaborations worldwide. 
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In 2013 the BNL network perimeter was bleeding edge 100 GbE technology. Now, the hardware has reached 
8+ years in age and it is no longer cost-effective to purchase additional hardware for these platforms. Newer 
platforms today support much greater 100 GbE interface densities along with supporting 400 GbE which will 
allow BNL to support all its data intensive collaborations well into the future. With these factors in mind, BNL 
will possibly procure a next-generation network perimeter within the next one to two years. This will prepare the 
laboratory to meet the missions needs of all the data intensive collaborations at BNL.

5.7.2.8 Cloud Services

We have limited use cases of DropBox and OneDrive.

5.7.2.9 Data-Related Resource Constraints

The physical storage and data management needs of CFN facilities located at NSLS-II will follow policies 
implemented at that facility. In the one- to three-year timeframe, the most data intensive facilities are expected 
to be X-ray scattering, with steady-state data rates approaching 10 PB/year, and peak data rates during burst 
acquisition of >1 TB/hour. 

The CFN TEM facilities are the primary challenge in data-related resource constraints. The presently installed 
Gatan K2-IS camera can generate ~ 3 GB of data per second. At the peak data rate, data is currently streamed 
for storage on an intermediate solid-state disk array in a vendor proprietary format that limits uninterrupted 
video streaming to 15 minutes. CFN installed fiber optic networking and purchased 0.6 PB of GPFS storage, 
now integrated into SDCC operated facilities to replace the 32 TB of SAN storage originally provided with the 
instrument. This allowed secondary transfer, storage, and processing of those data bursts. However, the current 
configuration does not allow for the uninterrupted streaming of data from the camera to large-scale storage that 
would enable longer experimental runs. Achieving this represents an internal project in the planning phase 
in collaboration with LBNL to install a ~ 90,000 frame rate camera which will generate ~ 50 GB of data per 
second. Once it is achieved, an estimate that includes a realistic assessment of user project needs and workflows 
suggests that about 1 PB per year will be generated. In the next two- to five-year timeframe, additional direct 
detection capabilities will likely be added with acquisition of new STEMs which could drive the data generation 
rate up to as much as 4 PB per year. Beyond the five years’ timeframe CFN will likely replace all its five (S)
TEMs currently in operation. All newly acquired (S)TEMs will have at least one fast direct electron detector 
installed with increased number of active pixels and higher frame rate in comparison with current state-of-the-
art solutions. For the purpose of data analysis there will be a potential data transfer involved between national 
laboratories to take advantage of supercomputer capabilities and data analysis tools available at any particular 
Laboratory.

5.7.2.10 Outstanding Issues 

None to report at this time. 

5.7.2.11 Facility Profile Contributors

CFN Representation

• Charles Black, BNL, ctblack@bnl.gov

• Qin Wu, BNL, qinwu@bnl.gov

• Dmitri Zakharov, BNL, dzakharov@bnl.gov

ESCC Representation

• Mark Lukasczyk, BNL, mlukasczyk@bnl.gov

• Vincent Bonafede, BNL, bonafede@bnl.gov 
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5.8 Center for Integrated Nanotechnologies (CINT)
The Center for Integrated Nanotechnologies (CINT) is a DOE Office of Science NSRC operating as a national 
user facility. As a vibrant partnership between LANL and SNL, CINT leverages the unmatched scientific and 
engineering expertise, as well as special capabilities, of our host DOE laboratories, creating a unique user facility 
environment among the NSRCs.

5.8.1 Discussion Summary

• The Center for Integrated Nanotechnologies (CINT) is a DOE Office of Science NSRC 
operating as a national user facility. As a vibrant partnership between LANL and SNL. 

• CINT has users from most US states (42) and several (26) foreign countries. In a typical pre-
COVID year, CINT would host approximately 800 users both on-site and remotely. 

• CINT is largely an experimental facility with significant theoretical expertise, where theory and 
experiment often work together collaboratively. CINT is moving towards AI/ML with a focus on 
creating and understanding nanomaterials.

• Collaborating institutions (user home institutions) are generally academic, other national 
laboratory, and some industry. CINT also has strong relationships with other user facilities 
including the four sister NSRCs, the National High Magnetic Field Laboratory, and various 
Office of Science neutron and X-ray sources. 

• Data set sizes, file types, file numbers etc. vary widely, as many capabilities are vendor based 
and proprietary. Other data sets may be generated by in-house software, e.g. LabView. Data sets 
would typically be less than 1GB.

• The generalized workflow for CINT is as follows to support experimental science:

 − Small-scale experiments involving synthesis or analysis are planned.

 − When instruments are involved, data is collected on the associated instrument computer.

 − Data is typically analyzed on the associated computer using proprietary software, if the 
instrument is proprietary.

 − Data may be analyzed on a separate workstation if the data is nonproprietary (Igor Pro, 
Origin etc.)

 − Transfer of data between computers or off-site takes place using encrypted USB or  
general network services. Methods for moving data are dictated by host laboratory IT 
security policies.

• For large-scale theory, modeling and simulation: CINT users are granted remote access to 
institutional computing resources in support of CINT-approved user projects. CINT supports 
these projects from the scientific perspective but does not support them with respect to 
infrastructure. 

• With the exception of large-scale computing that takes place on host laboratory institutional 
computers, most data collected at CINT is collected on desktop-type workstations connected 
to a large variety scientific instruments. These instruments range from vendor-provided 
(electron microscopy, s-ray diffraction, various spectrometers) to in-house built (ultrafast laser 
spectroscopy) running on LabView or similar.

• Data is collected by users and staff through either through network transfer (email, ftp) or 
encrypted USB drive as required by host lab security policies. Many instrument computers are 
not networked due to patching and reboot requirements, so data must be transferred via USB 
drive and are of size GB or less. 
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• Some collaboration and data sharing are allowed through cloud resources, primarily  
Google Drive.

• As data movement is not a major inhibitor of our work, we have no long-term (5-year) plans 
to adjust the data collection and distribution approach. Further, CINT is restricted by host 
laboratory security policies that limit our connectedness to outside entities. 

• Due to host laboratory IT security and site-security policies, remote experimental work is 
typically limited to what can be accomplished vie teleconference platforms such as Zoom. 
Collaborative writing can be performed through Google Suite. We do not allow users to 
participate remotely using telepresence tools such as augmented-reality glasses (HoloLens or 
similar) or telepresence robots. 

• Data tends to be managed locally on instrument computers, or individual laptops and desktops. 
Movement of data may occur via email, FTP, or Google Drive. 

• CINT host laboratories limit the use of off-site cloud-based computing resources per IT security 
policies. The only currently approved cloud resource is Google Suite, through LANL contract.

• Forward looking, it would be helpful to have an accessible network for the transfer of data 
within a facility, or between the two halves of CINT, that was independent of host laboratory 
networks and could therefore have a less restrictive security policy. 

• The local network architecture for the LANL CINT facility is LANL’s standard enterprise 
deployment. It features 1Gbps facility LAN capabilities, and 10 Gbps connectivity to the 
laboratory network. The laboratories are connected at 100 Gbps to ESnet. 

• The laboratory networking infrastructure features the ability to access institutional computing, 
as well as DTNs to facilitate mobility for approved users to external sites. 

• CINT’s most pressing network constraint originates in host laboratory security policy. Currently, 
CINT utilizes the host laboratory networks for connectivity of instruments and office computers. 
If an additional layer could be added which would satisfy host laboratory IT requirements 
(or not be subject to them) and allow easier movement of small data sets between the CINT 
facilities at the two host laboratories (or remote access to certain experimental tools to off-site, 
nonbadged users) then that would be a benefit to CINT.

5.8.2 CINT Facility Profile
Our users and staff conduct research projects within and across the Core Facility in Albuquerque, NM, and 
the Gateway Facility in Los Alamos, NM (Figure 5.8.1). By creating a collaborative community of diverse 
users matched to expert facility scientists with advanced capabilities, CINT fosters high-impact nanoscience 
discoveries, leads next-generation technique development, and advances the frontiers of knowledge beyond what 
is achievable by individual researchers or any single institution.

Figure 5.8.1: CINT Core Facility (left) and Gateway Facility (right)
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5.8.2.1 Science Background 

The overarching goal of CINT is to be the national resource for research expertise and advanced capabilities to 
synthesize, fabricate, characterize, understand, and integrate nanostructured materials. By developing innovative 
systems with unprecedented functionality, we aim to inspire revolutionary nano-enabled technologies.

We have world-leading scientific expertise and specialized capabilities to synthesize, fabricate, characterize, and 
understand nanomaterials in increasingly complex integrated environments. Our expertise is organized in four 
scientific thrust areas:

• Quantum Materials Systems : Understanding and designing nanomaterials to create new 
functionalities based on quantum effects that span multiple length scales (from nm to mm).

• Nanophotonics and Optical Nanomaterials: Discovery, synthesis, and integration of optical 
nanomaterials; exploitation and characterization of emergent or collective electromagnetic and 
quantum optical phenomena, from nanophotonics and metamaterials to quantum coherence.

• In-situ Characterization and Nanomechanics (ICNM): Developing and implementing world-
leading capabilities to study the dynamic response of materials and nanosystems to mechanical, 
electrical, radiation, or other stimuli.

• Soft, Biological, and Composite Nanomaterials: Solution-based materials synthesis and assembly 
of soft, composite, and artificial biomimetic nanosystems.

As a national user facility, CINT has users from most US states (42) and several (26) foreign countries. In a typical 
pre-COVID year, CINT would host approximately 800 users both on-site and remotely, who collectively have a 
few hundred active user projects. As described above, CINT is largely an experimental facility with significant 
theoretical expertise, where theory and experiment often work together collaboratively.

CINT theoretical efforts generally utilize institutional computing resources at the two host laboratories, running 
custom codes developed by CINT-supported theorists with a focus on nanomaterials science. 

Collaborating institutions (user home institutions) are generally academic, other national laboratory, and some 
industry. CINT also has strong relationships with other user facilities including the four sister NSRCs, the 
National High Magnetic Field Laboratory, and various Office of Science neutron and X-ray sources. 

While CINT is largely an experimental facility focused on smaller-scale synthesis, fabrication, analysis and 
modeling efforts, CINT is moving towards AI/ML with a focus on creating and understanding nanomaterials. 

AI/ML Science Opportunity

ML has been around since the dawn of digital computing. But recent advances in computing hardware and 
algorithm development, along with an exponential acceleration in the quantity of scientific data being collected, 
have triggered the proliferation of ML throughout all fields of science. In the rush to utilize these new tools, 
there is still much to learn regarding how to apply these methods in a way that advances our fundamental 
understanding of the physical world, and in our specific case the understanding of nanoscale phenomena. The 
most compelling applications of ML will be toward incredibly difficult problems and where the outcomes are 
not known a priori, such as materials subjected to extreme environments, autonomous optimization of synthetic 
routes for new materials discovery, and intelligent/autonomous data collection. The largest impacts will be 
from data analysis that is not tenable by human processing, either because of the needed response time or the 
enormous quantity of data.

Positional Science and Capabilities

Our current ML expertise and capabilities include automated qubit optimization, prediction of new synthesis 
routes (physical vapor deposition) for novel metastable nanostructured alloys, virtual microscopy, and acceleration 
of quantum simulations. Building upon these capabilities will allow us to make scientific advances in areas of 
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fundamental importance to CINT, such as quantum materials, materials response to extreme environments, and 
nanomaterials discovery.

Automated Qubit Optimization

Semiconductor qubit devices are becoming more complex as more qubits are added to 1D arrays and further 
extended into 2D qubit arrays. As the number of qubits increases, so do the number of controls and cross-
correlations between controls. Configuring these complex devices for qubit operation quickly becomes intractable 
for human experimenters. CINT has developed the capability to autonomously tune qubits using ML and image 
analysis techniques. This capability, which will continue to evolve, will accelerate scientific discovery through 
full, autonomous, device configuration.

Predicted Synthesis of Metastable Phases 

CINT has developed a reduced-order model for accelerated microstructure evolution predictions by utilizing 
time-series multivariate regression splines or long short-term memory deep learning algorithms within a 
phase field simulation. We demonstrated this capability to predict microstructure evolution during spinodal 
decomposition and also are applying it to mesoscale models for corrosion (atmospheric corrosion and molten salt 
corrosion). This same framework will be used to predict synthesis routes (physical vapor deposition) for novel 
metastable nanostructure alloys with properties desirable for combined extreme environment applications.

Accelerating Quantum Simulations

Quantum chemical computation is a foundation of materials science but is limited in application due to well-
known issues of high computational cost, small system sizes, and short timescales. Emerging data science 
approaches promise to break the existing scaling barriers and enable training of neural networks capable of 
quantitative predictions for much larger materials system as well as reducing the cost of these calculations to 
a level similar to classical force fields. CINT has already demonstrated this capability using a transfer learning 
algorithm, trained on 5 million highly accurate density functional theory calculations, to generate a coupled 
cluster model that retains quantitative accuracy. The resulting models will encode chemical and physical 
information that is extensible to much larger systems, and transferable to new types of processes.

5.8.2.2 Collaborators

Generally, CINT users are small-scale research groups from academia, national laboratories, and some industry 
from around the US and world. With the exception of large-scale computing that takes place on host laboratory 
institutional computers, most data collected at CINT is collected on desktop-type workstations connected to a 
large variety scientific instruments. These instruments range from vendor-provided (electron microscopy, s-ray 
diffraction, various spectrometers) to in-house built (ultrafast laser spectroscopy) running on LabView or similar.

User/
Collaborator and 
Location

Primary or 
secondary copy 
of the data

Data access 
method

Avg. size of 
data set

Frequency of 
data transfer or 
download

Are data sent 
back to the source 
and method

Any known  
issues 
with data 
sharing

WORLDWIDE Users typically 
take data with 
them, or we 
transfer via 
network services

USB drive, FTP, 
Google Drive

Gigabytes or 
less

Daily Metadata — yes  
during manuscript 
drafting.  
Original — no

No

Table 5.8.1: CINT Collaboration Space

Data is collected by users and staff through either through network transfer (email, ftp) or encrypted USB drive 
as required by host lab security policies. Many instrument computers are not networked due to patching and 
reboot requirements, so data must be transferred via USB drive.

Some collaboration and data sharing are allowed through cloud resources, primarily Google Drive.
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5.8.2.3 Instruments and Facilities

CINT hosts a collection of small-scale capabilities that include numerous materials science analytical tools, 
chemical spectroscopy, ultrafast laser spectroscopy, diffraction, imaging, micromechanical testing, as well as 
comprehensive organic synthesis, materials synthesis, and device fabrication. We also access a number of theory, 
modeling and simulation capabilities that are hosted on institutional computing resources. 

Outside of institutional computing resources, CINT capabilities generally run on small-scale desktop computers 
connected to scientific instruments. These desktop computers may or may not be networked. 

Data set sizes, file types, file numbers etc. vary widely, as many capabilities are vendor based and proprietary. 
Other data sets may be generated by in-house software, e.g. LabView. Data sets would typically be less than 1GB.

Because we are an experimental materials science facility, and data movement is not a major inhibitor of our 
work, we have no long-term (5-year) plans to adjust the data collection and distribution approach. Further, CINT 
is restricted by host laboratory security policies that limit our connectedness to outside entities. 

5.8.2.4 Generalized Process of Science

The generalized workflow for CINT experimental science is as follows:

1. Small-scale experiments involving synthesis or analysis are planned.

2. When instruments are involved, data is collected on the associated instrument computer.

3. Data is typically analyzed on the associated computer using proprietary software, if the instrument  
is proprietary.

4. Data may be analyzed on a separate workstation if the data is nonproprietary (Igor Pro, Origin etc.).

5. Transfer of data between computers or off-site takes place using encrypted USB or general network 
services. Methods for moving data are dictated by host laboratory IT security policies.

Forward looking, it would be helpful to have an accessible network for the transfer of data within a facility, or 
between the two halves of CINT, that was independent of host laboratory networks and could therefore have a 
less restrictive security policy. 

5.8.2.5 Remote Science Activities

For CINT, remote experimental work is typically limited to what can be accomplished vie teleconference 
platforms such as Zoom due to host laboratory IT security and site-security policies. Collaborative writing can 
be performed through Google Suite. We do not allow users to participate remotely using telepresence tools such 
as augmented-reality glasses (HoloLens or similar) or telepresence robots. During the pandemic, Because CINT 
approaches are host-lab policy-based, we do not anticipate changing in the near term. 

For large-scale theory, modeling and simulation: CINT users are granted remote access to institutional computing 
resources in support of CINT-approved user projects. CINT supports these projects from the scientific 
perspective but does not support them with respect to infrastructure.

5.8.2.6 Software Infrastructure

Experimental: Data tends to be managed locally on instrument computers, or individual laptops and desktops. 
Movement of data may occur via email, FTP, or Google Drive. 

Large-scale Computing: CINT Staff Have Developed and Are Developing a Number of Codes to Use to Support 
Nanomaterials Science: LLAMPS, MEXMD, LATTE, TBM3. For Applications, See Introduction Above.
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5.8.2.7 Network and Data Architecture

The following information is for the CINT Gateway at LANL. CINT Core facilities at Sandia are similar. 

The local network architecture for the LANL CINT facility is LANL’s standard enterprise deployment. It features 
the following key components:

• Gigabit Copper Ethernet Interface

• Ten Gigabit Uplinks from facility

• Shared 100 Gigabit connectivity to ESnet

• Enterprise storage networks

This local enterprise network has direct connections to LANL’s large-scale computing capabilities. The 
institutional computing program provides the following resources:

• High-speed DTN services

• 900 million CPU hours per year

• Conventional modeling and simulation

• ML

• Data analysis

• Quantum computing

5.8.2.8 Cloud Services

CINT host laboratories limit the use of off-site cloud-based computing resources per IT security policies. The 
only currently approved cloud resource is Google Suite, through LANL contract.

5.8.2.9 Data-Related Resource Constraints

CINT’s most pressing network constraint originates in host laboratory security policy. Currently, CINT utilizes 
the host laboratory networks for connectivity of instruments and office computers. If an additional layer could 
be added which would satisfy host laboratory IT requirements (or not be subject to them) and allow easier 
movement of small data sets between the CINT facilities at the two host laboratories (or remote access to certain 
experimental tools to off-site, nonbadged users) then that would be a benefit to CINT.

5.8.2.10 Outstanding Issues 

None to report at this time. 

5.8.2.11 Facility Profile Contributors

CINT Representation

• Adam Rondinone, LANL, rondinoneaj@lanl.gov

ESCC Representation

• Dylan Merrigan, LANL, dylan@lanl.gov
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5.9 Center for Nanoscale Materials (CNM)
The CNM at ANL is one of five NSRCs operated by the DOE Office of Science as a user facility providing 
expertise, instrumentation, and infrastructure for interdisciplinary nanoscience and nanotechnology research. 
Academic, industrial, and international researchers can access the center through its user program for both 
nonproprietary and proprietary research.

5.9.1 Discussion Summary

• The CNM at ANL is one of five Nanoscale Science Research Centers (NSRCs) operated by the 
DOE Office of Science.

• During FY21, the CNM hosted 349 on-site and 353 remote user researchers from academia, 
national laboratories and industry. 

• CNM research activities span the fields of optical and electron microscopy, optical 
microspectroscopy, laboratory source X-ray diffraction, scanning tunneling microscopy 
and spectroscopy, high-magnetic-field optical spectroscopy and microscopy, as well as the 
production of simulations. 

• The CNM also houses a comprehensive suite of theory and modeling tools, an HPC cluster, and 
various software and modeling/simulation tools. 

• The CNM HPC Cluster (Carbon) provides GPUs and edge-computing capabilities.

• The experimental and computational data created on-site is stored in the CNM data repository 
for two to five years as space permits. User generated data has the user as the primary custodian 
with the laboratory as secondary custodian following the institutional user agreements in place 
for site access.

• The experimental and computational data created on-site is transferred to external users 
through the Globus platform, physical hard drives, ftp/scp, or the ANL BOX system, and further 
analysis is typically performed locally post transfer. 

• Remote science is enabled via telepresence engagement of the staff researcher or remote 
operation directly by the user through network access to control screens, or through remote 
access to Carbon cluster. Experimental work is remotely driven through a Bomgar Remote 
Access Server providing secure visualization of process control screens and on-site analytical 
tools to remote clients, data transfer using Globus is typically done at the conclusion of the 
experiment or synchronously throughout the experimental time, allowing for iteration or 
externally hosted analysis. 

• Remote analytical tools for simulation such as ALCF resources for AI/ML training (Cerebrus/
Polaris) are also used. Computations are routinely performed remotely by the CNM staff across 
different computing clusters and facilities within Argonne (Bebop, LCRC, Blues and Theta) as 
well as other DOE supercomputing facilities (NERSC).

• In the next two to five years, CNM plans to release custom research data management systems 
(RDMS) to aid in the data curation, analysis, and publication of scientific data produce at CNM. 
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• There is a need for common standards and shared workflows for data across the NSRCs which 
will not only provide an effective data solution, but will also enable cross-center data sharing, 
augmentation, and manipulation. NSRCs have different schemes and different levels of 
implementation for acquiring, labeling, storing, and providing access to the heterogeneous data 
generated. The lack of data pipeline standards causes issues, such as differences in metadata 
associated with different data types and different levels of data manipulation. Top address this, 
many levels of technical details need to be worked out:

 − data formats.

 − software development framework.

 − sample tracking.

 − metadata capturing.

 − labeling.

 − data sets from correlated measurements, and the corresponding simulations, need to be 
handled in a coordinated manner to extract synergistic information. 

• CNM data sets range in size from MB to GB per entry, and up to 1000s of entries per year; 
requiring data storage to support TB scale data over time. Emerging and planned instruments 
can stream data at higher rates (e.g., TB scale) and will require faster and more plentiful storage 
options provided by ANL or through collaboration with ALCF. 

• During the experimental time, characterization, synthesis, or fabrication data is locally  
analyzed as it is being acquired at sufficient fidelity to enable on the fly decision-making on 
experimental process. 

• The ANL Self Driving Lab Initiative creates a local control of experimental process based 
on data recognition which requires transfer of data to HPC resources for external training of 
algorithmic approaches that are then locally deployed. 

• In the next two to five years, we are working towards integrating experimental synthesis, 
microscopy and spectroscopy characterization, and AI inference from experimental data on the 
same compute and data platform. 

• Our vision beyond five years is to realize fully automated workflows that will allow for seamless 
sharing of experimental and simulation data sets amongst the users and allow them to perform 
multiple types of analysis (including AI/ML). 

• We also envision setting up of digital twins in the 5–10 year timeframe, that will mimic our 
experimental synthesis and characterization platforms and facilitate virtual experiments allowing 
users to map experimental controls to the intended outputs and exhaustively perform synthetic 
experiments before the actual ones.

• The CNM does not presently utilize cloud services for its scientific data infrastructure or for 
computations/data analysis. Cost-effectiveness was a major factor hindering the use of cloud 
computing services for CNM users. We do not have any immediate plans to utilize cloud 
services for our need. 

• The Argonne WAN network connectivity is provided by ESnet and MREN (Internet2 gateway, 
Peer Exchange (I2PX)) ESnet has optical and routing gear on the Argonne campus.

• The current ANL network supports 10 Gbps, 40 Gbps, 100 Gbps, and 400 Gbps for WAN and 
LAN uses, and features a Science DMZ to support ANL facility use. 
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• The Argonne Science DMZ is connected directly to the Argonne border routers with redundant 
2x100GE links. The Science DMZ provides high-speed connectivity between scientific 
organizations for the exchange of data without taking the traditional path through a firewall.

• Connections in to the Science DMZ are a minimum of 100GE with most facilities connecting at 
2x100G. This allows collaborators to exchange data in a high-speed environment that does not 
affect commodity network connectivity.

5.9.2 CNM Facility Profile
As a DOE-funded research center, the CNM is at the forefront of discovery science that addresses national 
grand challenges encompassing the topics of energy, information, materials and the environment. The scientific 
strategy of the CNM is consolidated under the following three crosscutting and interdependent scientific 
themes: (a) Quantum materials and sensing; (b) Manipulating nanoscale interactions; and (c) Nanoscale dynamics. 
Collectively, they aim at the discovery and hierarchical integration of materials across different length scales, and 
at the extremes of temporal, spatial, and energy resolutions.

5.9.2.1 Science Background 

The CNM provides world-leading expertise and tools to its users. Some of the distinguishing capabilities 
available at the CNM include the Ultrafast Electron Microscope (UEM), the Hard X-ray Nanoprobe operated 
in partnership with the APS, novel scanning tunneling microscopes, ultrafast optical spectroscopy techniques 
over a broad ultraviolet to terahertz spectral range, quantum optics characterization capabilities with single 
nanoparticle magneto-photoluminescence spectroscopy, nanomechanical and plasmonic structure fabrication, an 
ultralow temperature (10 mK) quantum research laboratory, a superlubricity laboratory, a chromatic aberration 
corrected TEM, nanofabrication at the largest research clean room in the Midwest, and the Carbon HPC cluster. 
The CNM currently employs 69 employees, who contribute to world-leading scientific programs in addition to 
supporting the users of the facility. During FY21, the CNM hosted 349 on-site and 353 remote user researchers 
from academia, national laboratories and industry. The experimental and computational data created on-site is 
transferred to external users through the Globus platform, physical hard drives, ftp/scp, or the ANL BOX system, 
and further analysis is typically performed locally post transfer. This data is additionally stored in the CNM data 
repository or in the case of beamline data using the APS Nautilus server for two to five years as space permits. 
User generated data has the user as the primary custodian with the laboratory as secondary custodian following 
the institutional user agreements in place for site access.

5.9.2.2 Collaborators

The CNM user base is distributed nationwide with regional collaborators spanning the Midwest, California and 
the east coast of the United States. We also cater to international users (13% of our users located internationally) 
from European, Pacific and South American origin. The primary need for data transfer is from the CNM facility 
to researchers in US academia and other US national laboratories. Data directionality is primarily outward 
facing, with data generated at the CNM being transferred to user groups and external collaborators. We partner 
with several Energy Frontier Research Centers, Multi-University Research Institutes and NSF research centers 
through PU agreements, most recently with the Q-Next National Quantum Information Science Research Center 
led by ANL and SLAC which will ramp up research operations over the next five years.
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User/
Collaborator and 
Location

Primary or 
secondary 
copy of the 
data

Data access 
method

Avg. size of 
data set

Frequency of 
data transfer or 
download

Are data sent 
back to the 
source and 
method

Any known  
issues with 
data sharing

ANL PSE, CELS, 
QNEXT, JCESR

Secondary GLOBUS, ANL 
BOX

~100GB Ad hoc (per 
experiment/
simulation)

N Access to 
proprietary 
analytical 
software

US AND 
INTERNATIONAL 
ACADEMIC 
INSTITUTIONS

Secondary GLOBUS, 
portable hard 
drives, scp

~100GB Ad hoc (per 
experiment/
simulation)

N Coordination 
of posttransfer 
analysis, transfer 
speed, data 
synchronization 
across different 
computational 
clusters

INDUSTRIAL USERS Secondary GLOBUS, BOX, 
Hard Drives

~50GB Ad hoc (per 
experiment/
simulation)

N Coordination 
of posttransfer 
analysis, transfer 
speed, data 
synchronization 
across different 
computational 
clusters

5.9.2.3 Instruments and Facilities

Argonne’s CNM offers a wide range of capabilities designed to enhance the study and creation of nanomaterials. 
From X-ray microscopy that uses the power of Argonne’s APS to clean room–based nanofabrication techniques, 
the CNM provides its staff and users with a broad combination of scientific resources involving data entries that 
vary in size from kilobytes to terabytes at collection speeds spanning from weeks to microseconds. 

Table 5.9.1: CNM Collaboration Space

Figure 5.9.1: Geographical distribution and statistics of CNM user program
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We pioneer new clean room–based nanofabrication techniques to integrate novel materials into unique structures 
and devices to realize nanofabricated structures for the transduction of mechanical, optical, and electrical 
signals. Data generated from these activities is primarily surface optical and electron microscopy, optical 
microspectroscopy and laboratory source X-ray diffraction from the nanoscale to wafer-scale characterization. 
Our low temperature Quantum Laboratory characterizes superconducting quantum devices with DC transport 
conductance measurements, RF/microwave transmission and reflection spectra (typically ~10 MB per entry, 
~1000 entries per yr).

Our toolbox of synthesis techniques includes chemical and nanoparticle synthesis methods, various gas- and 
liquid-phase deposition methods, general wet-lab and air-free chemistry techniques, and methods for the 
preparation of samples as films and surfaces. Nano-bio hybrid materials and biological assembly efforts center 
on nature-inspired materials that potentially can support energy conversion and energy transport, as well 
as understanding biosensing mechanisms in cell-like environments that are functionalized with engineered 
nanomaterials. We are able to hybridize metals, organics, semiconductors, and dielectrics with biomaterials to 
create nanobio metamaterials with unique properties. Data generated from these activities is primarily optical 
microscopy, electrical characterization and conventional and ultrafast optical spectroscopy (typically ~1GB/entry 
~10entries/year). Our recent development of autonomous synthesis within the ANL Self Driving Lab Initiative 
creates a local control of experimental process based on data recognition which requires transfer of data to HPC 
resources for external training of algorithmic approaches that are then locally deployed. 

In addition, we seek to engineer defects with atomic precision in nanoparticles and two-dimensional 
nanomaterials with a view to understanding their role in charge and energy transfer as well as their prospects for 
quantum science. Because defects play a critical role in the properties and behavior of nanostructures due to their 
small size, a detailed understanding of their influence is critical to nanoscience and developing nanotechnologies. 
Data generated from these activities is primarily scanning tunneling microscopy and spectroscopy as well as high-
magnetic-field optical spectroscopy and microscopy (typically ~30 MB per entry, ~200 entries per yr).

Figure 5.9.2: Examples of data types generated at CNM
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We provide a wide range of capabilities and expertise to help elucidate structural, structure-property and 
functional information from nanoscale particles, assemblies, devices and systems. The methods span numerous 
aspects of magnetic/electrical measurements, metrology, microscopy, spectroscopy, quantum science and wear/
friction measurements. Instruments range from those commonly found in research laboratories, such as scanning 
electron microscopy and powder diffraction, to specialized and unique capabilities such as UEM and the 
Hard X-Ray Nanoprobe at the APS. Our electron microscopy data flow includes structure and spectroscopy of 
materials using imaging, diffraction and energy loss spectroscopy (typically ~20 MB/entry, ~500k entries per yr). 
Recently installed high-speed electron microscopy leveraging a K2 detector (~103 frames per second) generates 
significantly higher data volume and velocity, at 5 MB/entry and up to 720k entries/hour. Our X-ray microscopy 
capabilities include nano-focused coherent Bragg diffraction imaging and X-ray fluorescence spectroscopy 
(~0.1TB per entry, ~36 entries per yr) — these are expected to have 100x data rate increase due to the APS 
diffraction-limited source upgrade with first light in 2024 making full use of our EIGER2-X1M (1028x1062x32bit 
2000fps) collection bandwidth — the planned approach for data collection depends on high-throughput 
ptychography recently demonstrated with locally deployed edge computing delivering real-time imaging that 
is continuously improved with HPC live-training algorithmic recognition (fig 3). Our electron microscopy 
capabilities are also planned for significant upgrades with installation of two new microscopes with high dynamic 
range electron microscope pixel array detectors (128x128x32bit 1100fps) demanding high throughput (up to 
7 million entries/hour) data management compatible with external transfer, inference with AI workflow, and 
additional postanalysis.

The CNM also houses a comprehensive suite of theory and modeling tools, an HPC cluster, and various software 
and modeling/simulation tools. The theory, modeling, and simulation methods include numerous density 
functional theory packages, molecular dynamics, Monte Carlo, genetic algorithm, finite difference time domain, 
and AI/ML. The CNM HPC Cluster (Carbon) provides GPUs and edge-computing capabilities. A recent upgrade 
of 22 nodes each with 2 NVIDIA TESLA V100 GPUs is geared towards AI workflows, including training of 

Figure 5.9.3: Demonstration of edge computing in development for high bandwidth microscopy experiments
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neural network models for image analysis and performing inference from high-speed electron microscopy data. 
Software and modeling/simulation tools include BLAST (Bridging Length/Timescales via Atomistic Simulation 
Toolkit), FANTASTX (Fully Automated Nanoscale to Atomistic Structure from Theory and eXperiment), 
computational electrodynamics (e.g., Lumerical, MEEP), and other specialized analysis software and  
modeling expertise. 

In the next two to five years, we are working towards integrating experimental synthesis, microscopy and 
spectroscopy characterization, and AI inference from experimental data on the same compute and data platform. 
Our vision beyond five years is to realize fully automated workflows that will allow for seamless sharing of 
experimental and simulation data sets amongst the users and allow them to perform multiple types of analysis 
(including AI/ML). We also envision setting up of digital twins in the 5–10 year timeframe, that will mimic our 
experimental synthesis and characterization platforms and facilitate virtual experiments allowing users to map 
experimental controls to the intended outputs and exhaustively perform synthetic experiments before the  
actual ones.

5.9.2.4 Generalized Process of Science

The mission of the NSRCs is twofold: to enable the external scientific community to carry out high-impact 
nanoscience projects through an open, peer-reviewed user program, and to conduct in-house research to 
discover, understand, and exploit functional nanomaterials for society’s benefit. We conduct three calls for user 
proposals a year — these remain active for one year with possible extension to two, resulting in approximately 
250 active proposals per year. During the experimental time, characterization, synthesis, or fabrication data is 
locally analyzed as it is being acquired at sufficient fidelity to enable on the fly decision-making on experimental 
process. This analysis is typically improved upon post acquisition either through data transfer to remote 
institutions or remote access to on-site analytical tools, and then integrated with simulation data prior to 
publication and contributed to external data repositories.

It is a two- to five-year developmental goal of the CNM to expand and integrate this process into a coordinated 
data platform to allow the development of common data schemas as well as interconnected software tools and 
workflows to allow users and staff to acquire, annotate, access and analyze or apply AI/ML tools to complex and 
often correlated scientific data produced.

Figure 5.9.4: Example of data workflow at CNM
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5.9.2.5 Remote Science Activities

The CNM has over 30 capabilities currently available remotely spanning synthesis, lithography, spectroscopy, 
electron / X-ray microscopy, and modeling and simulations. Remote science is enabled via telepresence 
engagement of the staff researcher or remote operation directly by the user through network access to control 
screens, or through remote access to Carbon cluster. Experimental work is remotely driven through a Bomgar 
Remote Access Server providing secure visualization of process control screens and on-site analytical tools to 
remote clients, data transfer using Globus is typically done at the conclusion of the experiment or synchronously 
throughout the experimental time, allowing for iteration or externally hosted analysis. Remote analytical tools 
for simulation such as ALCF resources for AI/ML training (Cerebrus/Polaris) are also used. Computations are 
routinely performed remotely by the CNM staff across different computing clusters and facilities within Argonne 
(Bebop, LCRC, Blues and Theta) as well as other DOE supercomputing facilities (NERSC).

5.9.2.6 Software Infrastructure

The CNM primarily utilizes two storage technologies, block and object storage. The software solution for block 
storage access is Luster, and DataCore Swarm for object storage. Both storage solutions utilize the Globus data 
platform services to share and transfer data with remote users or facilities. In addition, DataCore Swarm provides 
an S3 API to access, transfer, and share data. In the next two to five years, CNM plans to release custom RDMS 
to aid in the data curation, analysis, and publication of scientific data produce at CNM. 

5.9.2.7 Network and Data Architecture

The Argonne campus network connects 100 buildings and 12 data centers in a multivendor switching and  
routing network. The campus has a new robust single-mode fiber cable plant that has plenty of capacity and 
ability to be expanded.

External network connectivity is provided by ESnet, MREN, Internet2, and Internet2 Peering Exchange (I2PX). 
ESnet recently migrated Argonne to the new ESnet6 network and has redundant optical transport and routers 
deployed on the Argonne campus in a redundant configuration supporting up to 400GE connections.

There are two primary networking node locations distributed between the north (Building 221) and south 
(Building 541B) sides of the campus to provide network redundancy. Generally, all buildings and data centers 
have connections to each of these networking nodes. The fiber used to connect to off-site providers is diverse and 
exits on the east and west sides of the campus.

The Argonne networks supports many connection speeds. The WAN supports 10GE, 40GE, 100GE, and 400GE. 
The campus core network support speeds of 1GE, 10GE, 40GE, and 100GE. Building connections are generally 
multiple 10GE with some 40GE. Data centers 10GE, 40GE, and 100GE. LAN connections within buildings are 
generally 1GE and 10GE.

ANL WAN

The Argonne WAN network connectivity is provided by ESnet and MREN (Internet2 gateway, Peer Exchange 
(I2PX)) ESnet has optical and routing gear on the Argonne campus. Argonne has two Juniper MX960 border 
routers that are split between buildings 221 and 541B for redundancy and diversity.

Argonne uses ESnet OSCARS virtual circuits. (On-Demand Secure Circuits and Advance Reservation System)

The Argonne connections to ESnet are 2x100GE. The connections to MREN are 3x10GE. The border routers are 
connected to each other with 2x100GE connections. The connections to the campus Core network are 2x40GE 
and 40GE to the perimeter firewall.

Argonne has one perfSONAR connected to the border at 40GE.

Argonne deploys cyber security at the border with blackhole routing and network traffic capture taps for traffic 
collection and intrusion detection.
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Present to two years

• 400 GE upgrade expected in FY22

Two to five years

• Upgrade border routers

• Multiple 400 GE

Five + years

• Terabit WAN connections

ANL Science DMZ

The Argonne ScienceDMZ is composed of Juniper QFX series equipment that is connected directly to the 
Argonne border routers with redundant 2x100 GE links. The ScienceDMZ provides high-speed connectivity 
between scientific organizations for the exchange of data without taking the traditional path through a firewall.

Connections in to the Science DMZ are a minimum of 100 GE with most facilities connecting at 2x100 G. This 
allows collaborators to exchange data in a high-speed environment that does not affect commodity network 
connectivity.

Present to two years

• 400GE connectivity

Two to five years

• Hardware upgrade

Five+ years

• Terabit connectivity

ANL Core

The Argonne core network is provided by 2 Cisco Nexus 7710s spread across buildings 221 and 541B for 
redundancy. These switches offer network speeds at 1GE, 10GE, 40GE, and 100GE. The Core provide 
connections to the buildings and many of the data centers on the Argonne campus.

Present to two years

• No changes

Two to five years

• Replace core devices to NextGen

Five+ years

• Terabit connectivity

ANL LAN

The Argonne LAN consists of the building access and aggregation switches. The Laboratory has standardized on 
Cisco and Aruba switches in the LAN. There is a combination of 1GE, 10GE, and 40GE network speeds in the 
LAN. Desktops are connected at 1GE.

Present to two years

• Continual refresh of switches older than five to seven years

• Wireless access point upgrades
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Two to five years

• Consider an overlay network topology

• Ongoing switch refreshes

• Zero-trust networking

Five+ years

• Next-Gen

• 10GE to the desktop

ANL Data Centers

The primary data center at Argonne consists of Cisco Nexus equipment in an ACI fabric. It connects to the 
Argonne core network at 4x40GE and offers 2x40GE connectivity to every ToR switch. There is a combination of 
1GE, 10GE, 25GE, and 40GE to host in this space.

Present to two years

• Hardware refresh for ToR switches

Two to five years

• Spine switch replacement

Five+ years

• Terabit connectivity

Figure 5.9.5: ANL Network Diagram



185Basic Energy Sciences Network Requirements Review Final Report 2022

5.9.2.8 Cloud Services

The CNM does not presently utilize cloud services for its scientific data infrastructure or for computations/data 
analysis. Cost-effectiveness was a major factor hindering the use of cloud computing services for CNM users. We 
do not have any immediate plans to utilize cloud services for our need. CNM along with the other NSRC’s will 
continue to evaluate the capabilities and cost-effectiveness of using cloud services in the near term.

5.9.2.9 Data-Related Resource Constraints

In addition to the need for high-bandwidth physical infrastructure at the present time the different NSRCs, 
and different facilities within each, have different schemes and different levels of implementation for acquiring, 
labeling, storing, and providing access to the heterogeneous data generated. The lack of data pipeline standards 
causes issues, such as differences in metadata associated with different data types and different levels of data 
manipulation. To capture and curate data from the NSRCs, many levels of technical details need to be worked 
out, such as data formats, software development framework, sample tracking, metadata capturing, and labeling. 
In addition, data sets from correlated measurements, and the corresponding simulations, need to be handled 
in a coordinated manner to extract synergistic information. These issues hamper the efficient use of NSRC 
data for scientific discovery. There is a need for common standards and shared workflows for data across the 
NSRCs which will not only provide an effective data solution, but will also enable cross-center data sharing, 
augmentation, and manipulation.

5.9.2.10 Outstanding Issues 

None to report at this time. 

5.9.2.11 Facility Profile Contributors

CNM Representation

• Martin Holt, ANL, mvholt@anl.gov

• Anthony Avarca, ANL, aavarca@anl.gov

• Maria Chan, ANL, mchan@anl.gov

• Subramanian Sankaranarayanan, ANL, skrssank@anl.gov

ESCC Representation

• Linda Winkler, ANL, winkler@mcs.anl.gov

• Corey Hall, ANL, chall@anl.gov
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5.10 Center for Nanophase Materials Sciences (CNMS)
CNMS offers world-class capabilities and expertise for the synthesis, fabrication, characterization, and theoretical 
understanding of a wide variety of nanomaterials and nanostructures. Specific facilities at CNMS include 
laboratories for macromolecular synthesis including selective deuteration, laser synthesis of 2D materials, carbon 
nanostructures, layered materials, and a broad range of general-purpose laboratories. A 10,000 square foot 
clean room houses a complete suite of fabrication and lithography (optical and e-beam) instrumentation, as well 
as specialized approaches for direct-write nanofabrication using electron and ion beams as well as optical 3D 
patterning. Functional and structural characterization of materials is achieved by optical spectroscopies, nuclear 
magnetic resonance, X-ray diffraction; electrical, optoelectronic, and magnetic properties can be studied using a 
broad range of instruments. Quantitative functional measurements are also obtained in a spatially resolved matter 
using the broad range of imaging tools: a heavy emphasis is placed on cutting-edge scanning probe microscopies, 
state-of-the-art atomic-scale characterization using scanning transmission electron microscopy and electron 
microscopy using specific sample holders for in-situ and operando imaging, three-dimensional reconstruction 
using atom-probe tomography, and combinations of imaging and patterning using helium ion microscopy. 

5.10.1 Discussion Summary

• The CNMS is a nanoscience user facility that provides services to users in areas of 
nanofabrication, synthesis, theory, and characterization. 

• The CNMS serves over 600 unique users/year, In FY2021 70% of our users were nonlocal,  
with 120 US institutions from 36 states and territories, and 43 foreign institutions from 24 
foreign countries.

• Users are assigned hours to work on the instruments, but no explicit computational or storage is 
provided. As such, users are given access to their data when on site, and encouraged to take it 
with them. 

• Experimental data reduction is achieved at the source during the experiment with simple 
techniques such as signal averaging. Reduced experimental data is usually stored on local  
drives and then given to the user, through USB keys or other media. Most of the data resides 
 in separate storage boxes that are unlinked. In five years, it is expected this will no longer be  
the case.

• The data from microscopy experiments is typically stored immediately on a network attached 
storage (NAS) device, and then transferred to dedicated storage for longer term (typically about 
five years). Data from simulations is typically handled differently, and stored locally on storage 
for a few years before going to tape storage for long-term archival.

• Substantial bottlenecks exist in terms of the analysis of the data streams emanating from 
scanning probe and electron microscopy instruments, as well as integrating feedback from 
theoretical/simulation insights. CNMS is working to directly couple the microscope data to 
simulations in real-time to assist the experimenter is of crucial importance in the quest towards 
automation and autonomous materials/physics discovery platforms.

• CNMS is currently trialing the use of DataFed, an ORNL-developed federated data 
management system for keeping track of both simulation and experimental data sets. DataFed is 
a software solution that links together geographically diverse file storage systems and makes all 
of them available through the same utility. DataFed can work with Globus and other tools.

• CNMS is trialing the use of a gateway device to transfer files from the instruments to the data 
storage system, with the files automatically ingested by DataFed so that the relevant metadata 
is also captured, thus enabling keyword searches by metadata fields. The data storage is local 
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to ORNL. Any remote data sets can be accessed through collaborators through either Globus 
endpoints or through scp/ftp, or through the DataFed interface. 

• CNMS requires more access to computation, which is particularly limited for the theory 
groups, and the changing nature of the HPC platforms which make older code quickly obsolete, 
requiring significant rewriting to accommodate new hardware upgrades. 

• Networking is critical to achieve autonomous and “smart” characterization tools, and for 
physics discovery. Data captured at synthesis and characterization tools can be processed and 
the experimental conditions updated. A sufficient amount of computational and networking 
resources to keep up with experiment flow are required to achieve this vision. 

• Most microscopy data set collections are in the 1–10GB range, with more for electron 
microscopy (can be >10GB for a single data set in that instance). The difficulty usually lies not 
in storage but in analysis, so that there is enough feedback for how to optimize measurement 
parameters before the user departs. For large files, data transfer can be an issue if the 
institutions involved do not possess Globus endpoints.

• STEM devices typically have data rates of approximately 100Mbps, and 4D-STEM can increase 
this to greater than 100Gbs. Data reduction using edge processing is critical to handle the 
volumes of the later. 

• CNMS data is being transitioned to a large 2 PB storage server housed in the SNS. CNMS also 
runs a local server with about 100 TB of storage which is a windows file system that our staff can 
access to back up their data. 

• The CNMS currently has 2 GPU systems for dedicated model training and deployment at  
the edge. 

• For running simulations, current compute capacity is operated by CADES on dedicated  
CNMS resources. 

• ORNL-provided virtual machines to run Jupyter notebooks on the CADES OpenStack cloud 
compute are available to facilitate computing. These resources are not always sufficient and 
some users opt out and process the data locally on their own laptops, or on more dedicated 
hardware available to them from their own institutions. 

• Most of the data that is captured at the Center for user projects is passed back to the user in the 
form of hard drives or uploaded and then downloaded by the user onto their home institution 
devices. For the theory collaborations, Globus endpoints can be used for transfer of simulation 
data files.

• Significant computational needs beyond edge compute will be required, including GPUs for 
tasks such as model training, running molecular dynamics codes, or cluster compute for first 
principles approaches such as density functional theory. 

• A dedicated pipeline with fast data-transfer rates connecting edge computers that are close to 
experiments, with such midcapacity and HPC infrastructure in national labs is required to drive 
specific simulations on the fly to both guide experimental investigation, as well as accelerate 
materials as well as fundamental physics discoveries. 

• Most of the remote resources used are computational in nature, e.g., utilizing compute clusters 
at NERSC.

• For most of the facility, the data storage and transfer speeds are currently sufficient, and are not 
expected to be significant concerns in the next two years. 
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• Currently the CNMS makes limited use of cloud services. Our cloud service is a locally 
run OpenStack run by CADES, which provides small virtual machines to staff and users at 
the CNMS on an as-needed basis. These VMs can, and are, used for data processing and 
occasionally some more heavy parallel computation jobs. Many users utilize Colab, for access to 
a GPU for training, and demand for this will increase in the coming years, forcing investigation 
into other commercial or DOE-provided resources. 

• Most of the instruments at CNMS are off-network. This presents significant challenges, and 
the lab has started an initiative termed INTERSECT that aims to create tools to better connect 
instruments to computational facilities. 

• From the networking point of view, there are challenges in security data transfer rates, and 
physical cabling required for this to be achieved. This is because not all buildings have the same 
level of network speeds (ranges from 1 GBps to 10 Gbps). 

• For transfer of large files, Globus is the preferred utility.

• ORNL connects to ESnet via redundant border routers at 100 Gbps. The expectation is that 
these connections will soon be upgraded to 400 G connections. 

• ORNL utilizes a Science DMZ architecture for high-performance data transfer. Globus is the 
approved transfer method. A border perfSONAR node is connected to the border router and 
participates in ESnet perfSONAR testing.

5.10.2 CNMS Facility Profile
The CNMS is a nanoscience user facility that provides services to users in areas of nanofabrication, synthesis, 
theory, and characterization. Since the science is highly varied across the Center, we instead focus on one 
example here that links multiple groups together, from the materials synthesis to the characterization to 
computational and theory. Specifically, one major focus is on understanding and predicting defects in 2D 
and layered materials, with synthetic approaches to create and introduce defects, microscopy approaches to 
characterize and manipulate defects at the atomic scale, and theoretical approaches to model the observed 
behavior and use this knowledge for feedback to either synthesis, or to microscopy to direct atomic fabrication.

5.10.2.1 Science Background 

Consider that scientific characterization tools, and in particular forms of scanning probe and electron microscopy, 
have been pivotal to increasing our understanding of nanoscience by enabling functional properties to me 
correlated with microstructural and atomic features of samples. Despite the proliferation of such tools, substantial 
bottlenecks exist in terms of the analysis of the data streams emanating from these tools, and the (much longer 
time) feedback from theoretical/simulation insights that can provide knowledge about the physical mechanisms 
underpinning the observed relationships and phenomena. Directly coupling the microscope data to simulations 
in real time to assist the experimenter is of crucial importance in the quest towards automation and autonomous 
materials/physics discovery platforms. A simple example of such a workflow is shown in Figure 5.10.1.
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The data rates on traditional STEM are lower (~20 MBps), but the same can be applicable to 4D-STEM which 
can provide data rates of >100 Gbitps and which will need reduction at the edge before further processing can 
be accomplished. At the same time, significant computational needs beyond edge compute will be required, 
including GPUs for tasks such as model training (step a in Figure 5.10.1), and to run molecular dynamics codes, 
or cluster compute for first principles approaches such as density functional theory. These calculations can range 
from 1 to 10s of nodes, taking advantage of both midcapacity computing as well as DOEs HPC capabilities, 
including the hybrid CPU/GPU architecture available in the latter. Such calculations generate 0.5–5 GBs of 
data per calculation, that can quickly add up to few TBs of data with concurrent embarrassingly parallel high-
throughput screening approaches. A dedicated pipeline with fast data-transfer rates connecting edge computers 
that are close to experiments, with such midcapacity and HPC infrastructure in national labs has the much 
needed, yet untapped potential, to drive specific simulations on the fly to both guide experimental investigation, 
as well as accelerate materials as well as fundamental physics discoveries. 

The data from microscopy experiments is typically stored immediately on a NAS device, and then transferred 
to dedicated storage for longer term (typically about five years). Data from simulations is typically handled 
differently, and stored locally on storage for a few years before going to tape storage for long-term archival.

5.10.2.2 Collaborators

Collaborations for microscopy projects are typically those where the user/collaborator provide the sample to 
be investigated. Alternatively, the samples could be synthesized in house, and some characterization that is not 
available at CNMS may be performed externally at other facilities (for example, at a synchrotron such as APS for 
quantitative measurements of composition and structure of oxide films). Most of the data from such collaborations 
is first reduced before it is shared over cloud storage such as Dropbox, although in the case of large simulation 
files, Globus is often used to transfer files to local storage, if for example this is required to run analysis on HPC 
systems.

The CNMS serves over 600 unique users per year, and it would be impossible to list all collaborations here. That 
said, many of our users are local (coming from East TN, typically University of Tennessee, Knoxville), and then 
there are significant national and international collaborators from countries including Taiwan, UK, Germany, 
Spain, Australia, and many others. See Figures 5.10.2 and 5.10.3 for maps of the CNMS user community. 

Figure 5.10.1: From Ghosh et al., npj Comp. Mater. 8, 74 (2022). (a) Deep learning models take input 
images and convert them into atomic coordinates. These are then used as input for simulations, which 
can then be run to provide insight into the physics and relevant chemistry, energetics of the different 
structures observed, and also provide guidance towards feedback to manipulate the structures observed 
towards predefined targets.
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In FY2021 70% of our users were nonlocal, with 120 US institutions from 36 states and territories, and 43 foreign 
institutions from 24 foreign countries.

Most of the data that is captured at the Center for user projects is passed back to the user in the form of hard 
drives or uploaded and then downloaded by the user onto their home institution devices. For the theory 
collaborations, Globus endpoints can be used for transfer of simulation data files. We do not currently have any 
knowledge on the frequency of this process, or the average size of the data sets, given each type of instrument 
and experiment generates a different type of data set. However, in microscopy at least, most data set collections 
are in the 1–10GB range, with more for electron microscopy (can be >10GB for a single data set in that instance). 
The difficulty usually lies not in storage but in analysis, so that there is enough feedback for how to optimize 
measurement parameters before the user departs. For large files, data transfer can be an issue if the institutions 
involved do not possess Globus endpoints. In lieu of the table, we can produce the following information 
regarding our existing 

While we do not expect significant increases in users in upcoming years (Center is essentially working at 
capacity), the volume of data is expected to increase.

Figure 5.10.2: CNMS Users from North America 

Figure 5.10.3: CNMS Users Worldwide
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User/
Collaborator 
and Location

Primary or 
secondary 
copy of the 

data

Data access 
method

Avg. size of 
data set

Frequency 
of data 

transfer or 
download

Are data 
sent back 

to the 
source and 

method

Any known  
issues with data sharing

DREXEL 
(EXAMPLE OF 

ADVANCED 
MICROSCOPY 

USER)

Secondary Data transfer 
is through 

Globus to home 
institution

~100GB for 
one visit

Ad hoc N Getting data from instrument to 
the storage has been a challenge

HELMHOLTZ 
BERLIN 

(EXAMPLE 
OF TYPICAL 

MICROSCOPY 
USER)

Secondary Dropbox ~20GB Ad hoc N Can be slow

THEORY USER 
(TYPICAL) / 

FROM AROUND 
USA OR GLOBAL

Secondary Globus from 
NERSC/OLCF 

or data-transfer 
nodes from 

ORNL-cluster 
to home 

institution,

~100s GB to 
~1 TB

Ad hoc N Archival storage has limits for 
high-throughput DFT, or time-

dependent dynamics simulations 
(e.g. ‘many’ large wave function 

files or refined molecular dynamics 
(MD) trajectories take up space) 
and archived data from tape can 

be slow to transfer or get corrupted 
over time.

Table 5.10.1: CNMS Collaboration Space

5.10.2.3 Instruments and Facilities

Theoretical research centers on understanding complex nanoscale materials spanning the full breadth of CNMS 
research and utilizes leadership computing as well as in-house multiteraflop compute clusters. Soon, cryo-
electron microscopy capabilities will be serviced through 300kV Cryo-S/TEM (FEI Titan Krios G4) and a 120kV 
Cryo-TEM (FEI Talos L120C). 

CNMS has a dedicated Nanophase server that is periodically backed up, but this is of limited size (10 TB). 
Additionally, CNMS has recently acquired a “Black pearl” storage system with 2 PB of storage and is housed 
in the SNS. The CNMS currently has 2 GPU systems (one Lambda server with 8 GPUs, and one DGX-2 with 
16 GPUs) for dedicated model training and deployment at the edge. For running simulations, current compute 
capacity includes an 896 core AMD/Interlagos cluster on the OIC ORNL system and a Cray CS400 1216 core 
Intel Haswell cluster on the CADES Condo system. Soon, we expect an upgrade to a 24 node AMD system with 
~3000 CPU cores.

For experiments, users are assigned hours to work on the instrument, but no explicit computational or storage 
is provided. As such, users are given access to their data when on-site, and encouraged to take it with them. For 
computing, we may also provide ORNL-provided virtual machines to run Jupyter notebooks on the CADES 
OpenStack cloud compute. These are small VMs that are typically 1 or 2 cores with 8GB RAM, although they can 
be expanded if needed. Given the small nature of the VM, most users still opt to process the data locally on their 
own laptops, or on more dedicated hardware available to them from their own institutions. 

In the next two to five years, we expect that there will be more GPU-capable VMs that we can deploy for users 
(through services such as Jupyter Hub). Moreover, we expect more edge compute, in the form of FPGA devices, 
smaller-scale GPUs for low power inference (such as Jetson Nanos), and more clusters/cloud service offerings 
in terms of available memory, CPU core numbers, and storage. Beyond five years, our vision is more aligned 
with workflows for automated materials discovery, autonomous synthesis and characterization, and feedback to 
theory for physics discovery. Such workflows will tie together all levels of compute, require significant resource 
management, and are predicted to be largely autonomous.
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5.10.2.4 Generalized Process of Science

Networking is critical to achieve autonomous and “smart” characterization tools, and for physics discovery, 
as shown in Figure 1. Essentially, data captured at synthesis and characterization tools can be processed and 
the experimental conditions updated, via suitable algorithms such as Bayesian optimization. However, such 
algorithms are compute hungry and therefore, data needs to be transferred from the instrument to the GPU 
cluster for computation, and then fed back to the instrument as directions for adjusting the instrument parameters 
to achieve optimal sampling and autonomous data capture. 

Simulations that can guide and explain the observations encountered in the experiment are also critical. At 
this point, most simulations are performed either before or after the experiment is completed, and little to no 
feedback is available, either to experiment or theory. Recently we have begun exploring methods to launch jobs 
based on direct model inference at the characterization tool. This requires the necessary networking connections 
between HPC/cluster compute and the instruments themselves. 

With respect to data analysis and reduction, in many instances, data reduction is achieved at the source during 
the experiment, i.e. with simple techniques such as signal averaging. This (reduced) data is usually stored on 
local drives and then given to the user, through USB keys or other media. Experimental and simulation data 
is not shared immediately and usually there is a considerable time lag; we do envision (as in Figure 1) that this 
paradigm is rapidly changing. Although standardized file structures are available for much of the simulation data, 
this is not universal, and the problem is exacerbated on the experimental side where every vendor chooses their 
own (often proprietary) standard. This makes data sharing more difficult, leading to the need to write ‘converters’ 
to a common file format, such as hdf5. Much of this work has been completed in the past few years. The future 
will revolve around (a) automating the pipelines for translation of the file to the standard selected, automating 
data processing based on the files generated, automating the theory-experiment matching, and then presenting 
visualization to the user so they can better understand the differences between the experiment and the simulated 
results, for immediate feedback to both domains. At this point, most of the data resides in separate storage boxes 
that are unlinked. In five years it is expected this will no longer be the case.

5.10.2.5 Remote Science Activities

Most of the remote resources used are computational in nature, e.g., utilizing compute clusters at NERSC. We 
are not aware of other (noncomputational) remote resources being utilized other than for storage (Google Drive 
and Dropbox). 

5.10.2.6 Software Infrastructure

CNMS data is being transitioned to a large PB storage server. CNMS also runs a local server with about 100 
TB of storage which is a windows file system that our staff can access to back up their data. CNMS is currently 
trialing the use of DataFed, an ORNL-developed federated data management system for keeping track of both 
simulation and experimental data sets. DataFed is a software solution that links together geographically diverse 
file storage systems and makes all of them available through the same utility. It offers considerable features 
relevant for scientific information flow data provenance tracking, metadata searches and includes a Python API 
for automating routines. DataFed can work with Globus and other tools.

We also publish data sets through ORNL’s constellation application, which provides a quick interface for hosting 
the file, and providing a DOI. It is envisioned that this will be integrated into DataFed in the future.

For the experimental side, we are trialing the use of a gateway device to transfer files from the instruments to 
the data storage system, with the files automatically ingested by DataFed so that the relevant metadata is also 
captured, thus enabling keyword searches by metadata fields. The data storage is local to ORNL. Any remote data 
sets can be accessed through collaborators through either Globus endpoints or through scp/ftp, or through the 
DataFed interface (if the collaborator also utilizes DataFed).
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For analysis of spectral and imaging data sets, the CNMS, with partners, developed the pycroscopy ecosystem 
of packages (github.com/pycroscopy). This software effort has amassed over 200k downloads in five years, and 
now consists of ~ a dozen important packages for different types of data analysis. All the packages are written in 
Python and are open-sourced. This ecosystem is divided primarily into three distinct areas, (1) Data input/output 
and utilities, (2) Generic imaging and spectroscopy analysis, and (3) More focused and domain-specific packages, 
as shown in Figure 1. The general feature of the ecosystem is a common ‘currency’ of data object (the sidpy data 
set object) that enables efficient processing, storage and visualization. 

5.10.2.7 Network and Data Architecture

ORNL connects to ESnet via redundant border routers, each of which currently connects to a diverse ESnet 
router at 100G. The expectation is that these connections will soon be upgraded to 400G connections. The ORNL 
border routers connect the ORNL Enterprise network, which includes SNS, CNMS and HFIR, with the OLCF 
and ESnet. This connectivity is depicted in Figure 5.10.4. 

Figure 5.10.4: Flow chart of using a digital twin with light source experiments
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The Enterprise firewalls are connected to the border routers at 40G currently. Connections to the Enterprise core 
from SNS/CNMS and HFIR are also 40G currently. Upgrades to these core switches are in progress and uplinks 
from SNS/CMS are expected to become 100G early FY23.

ORNL does utilize a Science DMZ architecture for high-performance data transfer. This environment connects 
to the border routers with 10/40/100G DTN connections available. Globus is the approved transfer method. A 
border perfSONAR node is connected to the border router and participates in the ESnet grid.

Most of the instruments at CNMS are off-network. This presents significant challenges, and the lab has started an 
initiative termed INTERSECT that aims to create tools to better connect instruments to computational facilities 
to enable “smart” instruments, labs of the future, etc. From the networking point of view, there are challenges in 
security data transfer rates (especially for advanced electron microscopy with fast camera detectors), and physical 
cabling required for this to be achieved. This is because not all buildings have the same level of network speeds 

5.10.2.8 Cloud Services

Currently the CNMS makes limited use of cloud services, but this is expected to change. Our cloud service is 
a locally run OpenStack run by CADES, which provides small virtual machines to staff and users at the CNMS 
on an as-needed basis. These VMs can, and are, used for data processing and occasionally some more heavy 
parallel computation jobs (e.g., those requiring ~64 CPU cores), for special requests. Many of our users also 
utilize Colab, for access to a GPU for training. It is expected that as GPU usage continues to increase, either our 
local cloud compute capabilities will grow to accommodate this demand, or our users will shift to external cloud 
services such as AWS or Azure. This may run into the dozens of instances/year level. The CNMS is procuring two 
cloud infrastructure nodes FY22 to begin to address this need.

Figure 5.10.5: ORNL Network Diagram
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5.10.2.9 Data-Related Resource Constraints

For most of the facility, the data storage and transfer speeds are currently sufficient, and are not expected to 
be significant concerns in the next two years (perhaps with the exception of very particular experiments, such 
as 4D STEM). The main constraints are with the access to computation, which is particularly limited for the 
theory groups, and the changing nature of the HPC platforms which make older code quickly obsolete, requiring 
significant rewriting to accommodate new hardware upgrades. These are perhaps the most significant issues.

5.10.2.10 Outstanding Issues 

None to report at this time. 

5.10.2.11 Facility Profile Contributors

CNMS Representation

• Rama Vasudevan, ORNL, vasudevanrk@ornl.gov

• Panchapakesan Ganesh, ORNL, ganeshp@ornl.gov

• Bobby Sumpter, ORNL, sumpterbg@ornl.gov

ESCC Representation

• Susan Hicks, ORNL, hicksse@ornl.gov
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5.11 The Molecular Foundry (TMF) 
Supported by the DOE Office of BES through their NSRC program, TMF is one of five national User Facilities 
for nanoscale science that serves roughly 1000 academic, industrial and government scientists around the world 
each year. Users come to TMF to perform multidisciplinary research beyond the reach of their own laboratory. By 
taking advantage of TMF’s broad spectrum of core capabilities and expertise, users increase the scope, technical 
depth, and impact of their research. Moreover, while at TMF, users’ access LBNL’s diverse scientific community 
that includes other user facilities.

5.11.1 Discussion Summary

• TMF is one of five national User Facilities for nanoscale science that serves roughly 1000 
academic, industrial and government scientists around the world each year. Users come to TMF 
to perform multidisciplinary research beyond the reach of their own laboratory. 

• TMF included 28 independent researchers, 18 technical staff. 

• There are seven facilities at TMF:

 − Imaging and Manipulation of Nanostructures

 − Nanofabrication Facility 

 − Theory of Nanostructured Materials Facility

 − Inorganic Nanostructures Facility

 − Biological Nanostructures Facility 

 − Organic and Macromolecular Synthesis Facility

 − NCEM

• COVID 19 has greatly sped up our remote activities. Tools like VNC and Microsoft Remote 
Desktop are used to remotely log into the control PCs that power microscopes. Due to the 
inherent latency of remote use, this makes operating the microscope remotely challenging. 
Remote cameras and telepresence robots are also available remotely, and have been  
successfully used. 

• TMF has users from around the world who come and generate data at our facility:

 − Most data is stored at the facility for least five years (and best effort beyond)

 − There are no facility-wide network drives or cloud-based systems to remotely access or 
back up data

 − Each user is encouraged to take a copy of their data; most do via the use of cloud storage or 
external media transfer 

 − There is no general data access method: some use removable media, others store data at the 
facility and operate on it remotely, and some may use the local computing cluster

 − Data size can range from kilobyte text files to 700 GB raw binary files

• The data lifecycle heavily depends on the facility and equipment:

 ° Facilities that focus on synthesis generate information about reactions and reactants.

 ° Facilities such as NCEM and the Imaging floor generate many terabytes of data from 
detectors for imaging, diffraction and spectroscopy.
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• NCEM has 9 electron microscopes of which four are large data generators:

 − TEAM I generates data sets that range in size from 10–50 GB over the course of 10 
minutes, and several can be generated per day. 

 − TEAM 0.5 generates data at 480 Gbit/s, with maximum data sets being 700 GB over a 15 
seconds run. To support this use case the data must either be reduced locally, or transferred 
directly to NERSC (via dedicated 100 Gbps campus networking). It can produce 20 data 
sets (14 TBs) per day, but this is currently limited by the data reduction time more than 
the ability to use the instrument. Data generation will increase by 25% in the one-year 
timeframe, after an upgrade. 

 − TitanX generates data in the 100 MB–2 GB range. Several of these can be acquired per day.

 − Themis generates data sets in the range of 10–50 GB in a few minutes. Several of these are 
acquired per day.

 − A new TEM, similar to TEAM I will arrive in one to two years.

 − A new TEM, similar to TEAM 0.5, will arrive in three+ years. 

• Other parts of TMF generate GB to TB of data per year, and feature heterogeneous methods for 
data storage, sharing, and processing. 

• Access to data generated by BES user facilities is typically governed by the user agreement, a 
legally binding document. In many (most) cases, the data is owned by the users, not the facility. 
In some instances, data is open and available, given there are no restrictions on the collected 
data beyond understanding how it was taken and managed.

• We utilize local computers with VNC or RDP access for some data analysis. Utilization of 
clusters and HPC is just starting and will become more important, but this is hampered by our 
ability to get data to these facilities off-site. It is also hampered by a lack of expertise in data 
processing in the user community.

• Data analysis happens using proprietary (graphical based) software and Jupyter. TMF provides 
access to proprietary software through dedicated computers, with remote access. Python 
analysis is done on the users’ own computers or our computers using open-source software and 
algorithms developed at our facility or within the field of TEM.

• Remote data analysis is also a place for great improvement. Inspired by Jupyter@NERSC, 
TMF has deployed a couple of local machines for JupyterLab remote processing of data. 
This is very likely to be an important capability going forward as data analysis is an important 
bottleneck in our workflows.

• Simulations are sometimes done, but this is not common. TMF would like to make this easier 
and more common. Simulations are largely compute dependent with very small input values 
and are now GPU accelerated.

• NCEM microscopes are connected to local NAS with ~450 TB of capacity, using an internal 
1Gbps LAN. Workstations use direct file mounts for data mobility. LAN network capacity is 
expandable to support 10 Gbps and 40 Gbps networking in the future. 

• Some parts of TMF have semicentralized data storage (e.g., NAS for workstations, or 
institutional cloud resources at Google) which can be used temporarily. This allows the usage 
of TMF computational and software resources locally and remotely. Others may have access to 
“support PCs” that link instruments and have limited resources that can facilitate data taking, 
sharing, and temporary storage.  
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• TMF would like to provide facility-wide compute and storage resources, but this has been cost 
prohibitive both from a capital and operating expense perspective. 

• TMF users sometimes have DOE HPC allocations. Data transfer between TMF’s internal 
compute resources (managed by the High-Performance Computing Services (HPCS) group at 
LBNL) and DOE HPC centers, such as NERSC, is frequently required. 

• Data sharing is extremely difficult. Many users come through the facility, and keeping track of 
whose data is where is far too time consuming. None of this has been automated, as it takes a 
dedicated team of professionals to keep such a system running.

• The center does not use any official cloud services. Users are known to use Google Drive (and 
other similar services) to store and move data.

• A Globus server with Science VM service that features 10 TB storage has been allocated to 
facilitate sharing data between TMF, ALS and JBEI.

• For large data sets, data storage and movement are bottlenecks in our current workflows. 

• The local NAS at NCEM is ~450 TB and 90% full at all times with older data being manually 
deleted as needed.

• There is currently no standard back-up management system for TMF or for the data generated 
with our compute resources, nor IT staff with this as part of their remit. 

• TMF is mostly networked with 1Gbps LAN networks, with some 10 Gbps connections 
to support point-to-point connections with larger data rates. There is a special 100 Gbps 
connection to NERSC to support the NCEM TEAM 0.5 instrument. 

• In late 2022 TMF will commission a building-wide fiber network with 10, 40, 100 Gbit 
connections for each microscope and detector. The building has a 40 Gbit uplink that can 
be expanded. Data generation and movement will continue to grow exponentially as new 
microscopes and detectors with large data outputs are installed.

5.11.2 TMF Facility Profile
TMF features world-class scientists with expertise across a broad range of disciplines and state-of-the-art, 
often one-of-a-kind, instrumentation. TMF staff have developed new materials, tools, techniques, codes, and 
fundamental understanding across all fields of science, and their expertise is highly sought out by the scientific 
community. One strength is TMF’s suite of custom automated synthesis robots, which are a pillar of TMF’s 
efforts towards accelerated materials discovery, particularly in the synthesis of colloidal nanocrystals and bio-
inspired peptoid polymers. TMF is also home to the TEAM microscopes, two of the most powerful electron 
microscopes in the world, which have been the platform for revolutionary advances in electron detectors, as well 
as other new developments and characterization techniques. Additionally, TMF has long been a leader in sub-10 
nm fabrication, and the simulation and interpretation of X-ray spectroscopy experiments. 

5.11.2.1 Science Background 

TMF staff spend at least half their time working with outside users that are selected through an external, 
peer-review process. Staff then devote the remainder of their time to internal research activities, which can be 
augmented with postdoctoral fellows hired using internal or external grant support. Internal research programs 
advance the frontiers of nanoscale science by developing new capabilities that are made available to users. 
These advances are often inspired and supported by partnership with the user community at TMF and its fellow 
NSRCs and serve to attract new user groups once established: many new TMF capabilities arise out of synergistic 
projects with users. 
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Organized into seven interdependent research facilities that support crosscutting scientific themes, TMF 
provides access to state-of-the-art instrumentation, unique scientific expertise, and specialized techniques to 
help users address myriad challenges in nanoscience and nanotechnology. At the start of FY22, TMF included 28 
independent researchers, 18 technical staff. 

Imaging and Manipulation of Nanostructures

This facility develops and provides access to state-of-the-art characterization and manipulation of nanostructured 
materials — from “hard” to very “soft” matter — including electron, optical, and scanning probe microscopies. 

Nanofabrication Facility 

This facility focuses on understanding and applying advanced lithographies, thin film deposition, and 
characterization, emphasizing integration of inorganic, organic, and biological nanosystems with the potential for 
nanoelectronic, nanophotonic, and energy applications. 

Theory of Nanostructured Materials Facility

This facility expands understanding of material systems and phenomena from molecules to nanoscale assemblies 
through the development and application of theories and computational methods that describe: energy and 
information management; pattern formation and nonequilibrium dynamics; and the interpretation and prediction 
of experimental observables in complex nanostructured systems. 

Inorganic Nanostructures Facility

This facility is devoted to the science of semiconductor, carbon and hybrid nanostructures—including design, 
synthesis, and accelerated discovery of nanocrystals, nanowires, and nanotubes and their self-assembly into 3D 
mesoscale functional materials for use-inspired energy applications. 

Biological Nanostructures Facility 

This facility designs and synthesizes new materials based on the self-assembly of biopolymers and bio-inspired 
polymers, creates new nanocrystal probes for bioimaging, and develops synthetic biology techniques to 
reengineer organisms and create hybrid biomolecules to interface with a variety of applications. 

Organic and Macromolecular Synthesis Facility

This facility studies “soft” materials, including the synthesis of organic molecules, macromolecules, polymers and 
their assemblies, with access to functional systems, photoactive materials, organic-inorganic hybrid structures, 
and porous materials. 

NCEM

A world-renowned center for microscopy since 1983, and integrated into TMF in 2014, this facility features 
cutting-edge instrumentation, techniques and expertise required for exceptionally high-resolution imaging and 
analytical characterization of a broad array of materials. 

The data lifecycle at TMF heavily depends on the facility and equipment that was used to acquire/generate 
the data. Facilities that focus on synthesis generate information about reactions and reactants which are being 
augmented with robots capable of running hundreds of reactions at one time. Other facilities such as NCEM 
and the Imaging floor generate many terabytes of data from detectors for imaging, diffraction and spectroscopy. 
Thus, we would have interest in the storage and retrieval of a wide range of types of data. No chain of custody or 
ownership is currently applied to these data sets. For example, at the NCEM facility all data is open to all users 
who can access the storage computers. This has not been a problem because without intimate knowledge of how 
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the data was taken and the sample it was taken from it is essentially useless. This points towards the ability to 
capture, store and catalog metadata as an extremely important part of the future of science at TMF.

TMF’s Theory Facility has its own computing resources and pay per use resources managed by Berkeley Lab’s 
IT Division and makes use of national resources such as NERSC. Users and Staff of the Theory Facility generate 
simulated data on these computing resources over a wide spectrum of rates/sizes — up to TBs per simulation. We 
make use of storage attached to our supercomputing resources and permit users to download their data to home 
institutions as they wish. User data is privately maintained according to UNIX permissions, with some users 
providing open access to their data to facilitate assistance with analysis by TMF Staff.

Compute Resources at TMF 

TMF Compute Cluster resources include: 

• ETNA: a 184-node cluster connected through a high-performance Mellanox 56 Gbps FDR 
Infiniband fabric. Etna nodes predominantly comprise 24-core (2x12) 2.3GHz Intel Xeon 
processors with 2.67GB per core, with an additional 3 Xeon Phi nodes, and 9 GPU nodes with 4 
Tesla K80 GPUs each. The cluster nodes have access to a high speed 169.8 TB LUSTRE parallel 
file system. Etna has a theoretical performance of 158.7Tflops and was purchased by TMF using 
recapitalization funds in October 2016.

• VULCAN: a 278-node cluster with a QLogic 40 Gbps QDR Infiniband interconnect connected 
to a 41.3 TB LUSTRE parallel file system. Vulcan nodes come in two types: predominantly 
(242-nodes) those with two 2.4GHz Intel Xeon E5530 Quad-core Nehalem processors with 3 
GB RAM per core; (4-nodes) 16-core Intel Xeon with 4 Tesla Nvidia GPUs per node; (24-nodes) 
20-core Intel Xeon. Vulcan is also connected to an additional 57.0 TB BlueArc NFS file system. 
Theoretical performance is 18.1TFLOPS with 5.7 TB of total memory. Vulcan was provided to 
TMF by American Recovery and Reinvestment Act funds in Jan, 2010. 

• NANO: 232-core Intel Xeon processor machine networked with high-speed, low-latency 
Infiniband interconnects; it has 455 GB of total memory and uses a 10.1 TB Panasas parallel file 
system. Nano was provided to TMF at its inception and expanded regularly during its first three 
years of operation.

Etna, Vulcan, and Nano are used exclusively by Theory Facility Staff and Users. Ideal for exploratory research, 
they provide the Theory Facility with the flexibility to address exciting new problems as they arise, permit fast 
turnaround for development projects, and are scalable for future expansion.

All of these computing resources are housed, installed, administered and maintained by the HPCS group within 
the IT Division at LBNL. 

TMF users sometimes have additional NERSC energy research computing allocations process allocations for 
HPC tasks, which can also contribute to the aims and objectives of the facilities and the user communities. These 
allocations are handled by a separate peer-reviewed process by NERSC. Data transfer between TMF’s internal 
compute resources (managed by the HPCS group at LBNL) and NERSC is frequently required.

5.11.2.2 Collaborators

TMF has users from around the world who come and generate data at our facility:

• In general, most data is stored at the facility with the understanding that we make the best effort 
to retain data for at least five years.

• We currently have no facility-wide network drives or cloud-based systems to remotely access or 
back up data, and we are not actively planning to implement such a system.
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• We highly encourage each user to take a copy of their data and almost all do using Cloud storage 
or personal hard disk drives (HDDs).

• We have no general data access method and many different ways of doing it. Some take data 
home on HDDs, some store them at our facility to operate on remotely, some store data on 
TMF cluster. It is a wide range.

• Data size can range from kilobyte text files to 700 GB raw binary files. Many files are 
proprietary and generated by detectors with company software and formats.

• Data sharing is extremely difficult. We have many users come through the facility and keeping 
track of whose data is where is far too time consuming. None of this has been automated as it 
takes a dedicated team of professionals to keep such a system running.

The Theory Facility has centralized data resources defined by storage collocated with supercomputing 
resources, NAS for workstations, and (recently, provided by institutional subscription) Google Drive. Users and 
collaborators typically leave their raw data on these “local” resources for easier access to further calculation or 
TMF postprocessing tools. Generally, to complete publications, a minimal projection of this data is required for 
download to the user/collaborator home institution. The Theory Facility aims to facilitate and reinforce this model 
by providing Jupyter notebooks to access and process locally stored data and convert it to publishable figures.

Within NCEM, all data resides on “support PCs” which can be connected to the Internet and also on a local 
~140 TB NAS administered by our staff. Most users take their data with them on hard drives but some leave very 
large data sets on the NAS to be analyzed later (locally or remotely). We would like to get away from this, but any 
solution considered and proposed has been significantly more expensive (5–10x) than having us locally install, 
maintain, and administer it.

User/
Collaborator 
and Location

Primary or 
secondary 
copy of the 

data

Data access 
method

Avg. size of 
data set

Frequency of 
data transfer or 

download

Are data sent 
back to the 
source and 

method

Any known  
issues with data 

sharing

INTERNATIONAL Primary ssh terminal, 
OpenOnDemand, 

Jupyter

1kB–1TB very small data 
transfer weekly, 
very large rarely

not offten collaboration on 
data limited due to 
UNIX permissions 

defaults

Table 5.11.1: TMF Collaboration Space

5.11.2.3 Instruments and Facilities

The equipment and requirements are different for each facility. Here is a short breakdown of the largest  
data generators.

NCEM

• 9 electron microscopes, of which 4 are large data generators.

• TEAM I has a detector that generates data sets on the scale of 10–50 GB which can be acquired 
in tens of minutes each. Several will be acquired in a day.

• TEAM 0.5 has a detector that generates data at 480 Gbitps. Maximum data sets are 700 GB 
acquired in 15 seconds. This data is reduced locally (10 minutes) or pulled to NERSC via 
dedicated 100 Gbit fiber (~3 GBps real world maximum) and reduced in < 5 minutes. The 
detector currently generates about 20 data sets (14 TBs) per day which is currently limited by 
the data reduction time (i.e. users would take more data if possible).

 − This detector will increase in data generation by 25% in the 1 year timeframe
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• TitanX has a detector that generates data in and 100 MB–2 GB range. Several of these can be 
acquired per day.

• Themis has two detectors that can generate data sets in the range of 10–50 GB in a few minutes. 
Several of these are acquired per day.

• All microscopes are connected to a local NAS with ~450 TB of storage over internal 1 Gbit 
connections. We mount the drives using samba to copy data. 2 workstations are connected to the 
NAS by 10 Gbit links for local processing.

• A new TEM will soon be acquired (one- to two-year timeframe) which will have similar output 
to the TEAM I above.

• Internal network: all microscopes have recently been connected to a fiber network for internal 
data movement. This is still being built out but should provide > 10 Gbit links for all equipment 
with a >= 40 Gbit uplink to LBNLnet in the works.

• A second large data generating detector (> 480 Gbitps) is being built and should be operational 
in the coming three-year timeframe.

Imaging and Manipulation

• Diverse set of microscopes and other instruments from commercial and custom built with 
Windows based PC control.

• Locally generated data is saved to a network backup disk.

• Generation of tens of TB yearly, but expected to grow.

• Some data is proprietary but others produce HDF5.

Nanofabrication

• Many instruments. Very little data is generated or stored.

Biological Nanostructures

• 3 x optical microscopes and 3 x mass spectrometers which generate 1 Gigabyte.

• These generate Gigabytes per experiment which last about a day.

• Very similar to TEM data generation (single images and movies).

• Largest data generator is the superresolution microscope. One user has a 1 TB folder.

• A couple of computers connected by 10 Gbit for data movement and storage and analysis.

• Recently implemented a Globus server with Science VM service with 10 TB storage sharing 
data between TMF, ALS and JBEI.

Inorganic Nanostructures

• Five synthesis and characterization robots. 

• >20 characterization tools, including spectrometers, diffractometers, microscopes, electrical 
testing setups, elemental analysis tools, fume hoods for synthesis.

• Data is stored locally or in online databases (Symyx lab execution and analysis (LEA) server, 
ESCALATE).

• Robots generate more data like spectra, X-ray diffraction patterns, images, recipes in  
XML files, etc. 

• About 1–10 TB / year in total for robots.
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Theory

• This facility maintains a cluster for simulations by staff and users. It is described previously and 
managed by IT.

Organic

• ~ 16 instruments in total running on Windows. 1/3 are Windows 7 or earlier

• All data stored locally on computers that generate the data

5.11.2.4 Generalized Process of Science

NCEM

In general, experiments have the goal of understanding the atomic structure, electronic structure, or composition 
of materials. We have two ways that users typically use our facility. Local long-term users and users who travel 
to the site from out of town/state/country. Every user brings their own samples which range very widely in their 
type. This makes it hard to generalize our workflows since each sample and experiment is different. Further, 
transmission electron microscopes are highly configurable which means data can be generated in many different 
ways such as imaging, diffraction and spectroscopy. Microscope experiments are generally booked on the half day 
or full day depending on the complexity. 

Data analysis happens using proprietary (graphical based) software and Jupyter. We provide access to proprietary 
software through about 5 Windows computers now with remote access. Python analysis is done on the users’ own 
computers or our computers using open-source software and algorithms developed at our facility or within the 
field of TEM.

Simulations are also sometimes done, but this is not common. We would like to make this easier and more 
common. Simulations are largely compute dependent with very small input values and are now GPU accelerated.

All data resides on “support PCs” which can be connected to the Internet and also on a local ~140 TB NAS 
administered by our staff. Most users take their data with them on hard drives but some leave very large data 
sets on the NAS to be analyzed later (locally or remotely). We would like to get away from this, but any solution 
considered and proposed has been significantly more expensive (5–10x) than having us locally install, maintain, 
and administer it.

Our recent network upgrade (> 10 Gbit) for all microscopes will improve our ability to move data around and 
out of the facility. This will likely push us to adopt newer technologies for data maintenance and lead to the 
generation of even more data.

Bio / Organic / Inorganic

Data is processed locally proprietary software on Windows computers, with final results including graphs and 
images and model fitting. Materials that are synthesized are documented in lab notebooks with the addition of 
some small analytical files like pictures or metadata. Most data that is generated is done during postanalysis. 
There is generally a need for centralized data storage linked to a user account and/or proposal.

Inorganic

The Inorganic Nanostructures Facility offers facilities for the manual and automated synthesis and 
characterization of novel inorganic materials, including colloidal nanoparticles, two-dimensional materials, and 
hybrid inorganic-organic frameworks. 
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Data generated in this facility includes: 

1. synthetic recipes and process observations recorded in physical laboratory notebooks; 

2. raw characterization data such as spectra, images generated by optical/Raman/and electron 
microscopes, X-ray diffraction patterns, and electrical measurement data.

Data is predominantly stored on local instrument computers; raw simulation data; and processed data stored 
on staff computers. In some cases, this data is stored in more centralized electronic repositories, including: 
electronic laboratory notebooks, e.g., Evernote and OneNote; personal and shared cloud folders, e.g., Google 
Drive; ScopeFoundry, as noted in the Imaging Facility plan, and local and remote servers for Python  
Jupyter notebooks. 

In other instances, data is stored in centralized databases, such as ESCALATE and a commercial Laboratory 
Information Management System (LIMS) called Laboratory Execution and Analysis for generating, capturing, 
and storing data associated with two of its robotic synthesis platforms, HERMAN and WANDA. LEA has 
a modular architecture that stores data in a centralized LBNL Oracle database mediated by a TMF-based 
midlevel application server that mediates the transfer of data and metadata from client (robot) computers. 
Experimental designs are automatically stored in the central database, along with process logs and, in some 
cases, characterization data. A strength of this system is its Library Studio software that allows for complex 
chemical recipes to be designed and encoded (in XML) by users unfamiliar with automation. This robust platform 
is proprietary. Since this closed system does not have API’s for open-source programming environments, it is 
difficult to integrate with ML algorithms and autonomous systems. 

Centralization of the databases frees staff from having to maintain complex data architectures, but the 
disadvantage is that user data is at the mercy of policies outside of the control of scientific staff.

Theory

Very similar to other HPC cluster needs for materials physics simulations

Imaging

Every user brings their own samples which range very widely in their type. This makes it hard to generalize the 
workflows since each sample and experiment is different. Further, our microscopes are highly configurable which 
means data can be generated in many different ways such as imaging, spectroscopy, or hyperspectral images. 
Most microscopes use a custom ScopeFoundry instrument control code which outputs HDF5 data sets that 
include microscope metadata.

Data analysis happens using proprietary (graphical based) software and Jupyter. We provide access to proprietary 
software through about 5 Windows computers now with remote access. Python analysis is done on the users’ own 
computers or our computers using open-source software.

5.11.2.5 Remote Science Activities

COVID 19 has greatly sped up our remote activities. We are using VNC type technologies to remotely log into 
microscopes. For Electron microscopes running a microscope remotely like this is very hard though. The most 
useful outcome is likely the ability to screen share an experiment session with remote collaborators (i.e., synthesis 
experts or data analysis experts or the project PI) to collaboratively work on an experiment together.

• For example, having more than 2 people in a microscope room is “too many cooks in  
the kitchen.”

• For other microscopes (e.g., Optical spectroscopy) users often will setup their sample and 
do final alignments in person, then remotely control microscope for the duration of their 
experiment (1 hour– 3 days).
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Microsoft Remote Desktop is also used to log into remote instruments to control experiments and analyze/
extract data. Remote cameras and telepresence robots are used to monitor instruments. Remote data analysis is 
also a place for great improvement. Inspired by Jupyter@NERSC we have deployed a couple of local machines 
for JupyterLab remote processing of data. This is very likely to be an important capability going forward as data 
analysis is an important bottleneck in our workflows. Most users take their data home with them to analyze 
separately.

5.11.2.6 Software Infrastructure

• We commonly use proprietary software installed on Windows computers and allow for remote 
access to these machines (RDP and VNC). We are starting to use open-source software and 
algorithms based on Python, Numpy, and Jupyter. 

• Theory mostly uses DFT and MD simulation software (both open-source and commercial) 
installed on the TMF clusters. Globus is often used to transfer large amounts of data. 

5.11.2.7 Network and Data Architecture

TMF in building 67 is wired with 1 Gbit. Some dedicated 10 GBE lines have been run for specific point-to-point 
connections.

At NCEM in building 72: prior to 2022 almost all data movement has been at 1Gbit speeds. Exceptions are 1 
microscope with a direct 10Gbit connection to a local NAS and 1 detector has a direct 100 Gbit connection to 
NERSC. In summer 2022 we will commission a building-wide fiber network with 10, 40, 100 Gbit connections 
for each microscope and detector. The building has a 40 Gbit uplink and this might also be expanded. We expect 
data generation and movement to continue to grow exponentially as new microscopes and detectors with large 
data outputs are installed.

5.11.2.8 Cloud Services

The center does not use any official cloud services. Users are known to use Google Drive (and other similar 
services) to store and move data. Druva is a common PC backup service used at the center.

5.11.2.9 Data-Related Resource Constraints

• In general users transport large amounts of data on personal HDDs is the current  
operational mode. We are interested in a more centralized location like a NAS with high- 
speed network connectivity.

• Science is also usually only captured in handwritten notebooks. A digital lab notebook would 
be an obvious next step. This will be hard to get users to adopt since they come from many 
different institutions and might have their own preferred software.

• For large data sets, data storage and movement are bottlenecks in our current workflows. 

• We utilize local computers with VNC or RDP access for some data analysis. Utilization of 
clusters and HPC is just starting and will become more important, but this is hampered by our 
ability to get data to these facilities off-site. It is also hampered by a lack of expertise in data 
processing in the user community.

• The local NAS at NCEM is ~450 TB and 90% full at all times with older data being manually 
deleted as needed.

• There is currently no standard back-up management system for TMF or for the data generated 
with our compute resources, nor IT staff with this as part of their remit.

5.11.2.10 Outstanding Issues 

None to report at this time. 
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5.11.2.11 Facility Profile Contributors

TMF Representation

• Kristin Persson, LBNL, kapersson@lbl.gov

• Peter Ercius, LBNL, percius@lbl.gov

• Emory Chan, LBNL, emchan@lbl.gov

• David Prendergast, LBNL, dgprendergast@lbl.gov

• Edward Barnard, LBNL, ESBarnard@lbl.gov

• Sinead Griffin, LBNL, SGriffin@lbl.gov

ESCC Representation

• Rune Stromsness, LBNL, rstrom@lbl.gov

• Richard Simon, LBNL, rsimon@lbl.gov
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5.12 Autonomous Experiment Steering for BES Facilities
The autonomous experiment steering case study brings together BES community representatives from X-ray 
light sources, neutron scattering facilities, NSRCs, and independent researchers, to discuss this emerging area 
of scientific investigation. The case study profiles the overall concept, some early results, and a discussion about 
what the future will hold. 

5.12.1 Discussion Summary

• Experimental facilities have a challenging task: equipment is advanced and acquisition rates are 
increasing, yet the complexity of scientific questions is also increasing meaning that it becomes 
less possible to address questions without parallel advances in experimental design.

• Modern scientific instruments, combined with the use of robotics and high-throughput 
workflows for sample preparation/loading, can acquire measurements at ever-increasing rates 
and resolutions. Autonomous experiment steering leverages these advantages by addressing 
the bottlenecks associated with data processing and automatic decision-making, thus enabling 
closed-loop experiments through efficient data analytics and advanced AI/ML approaches.

• Autonomous and automated experiments will become heavily adopted in the coming years, due 
to increases in efficiency, elimination of analysis and decision-making bottlenecks. This will 
enable physics discovery in materials design, synthesis, and characterization loops.

• In typical closed-loop experiments, raw data is collected, handled, and stored at the location 
they are generated using instruments maintained by the experimental teams at their home 
institutions. Depending on the computational power required for data analysis, preprocessed 
data is either analyzed locally or shared across divisions/facilities that might be physically 
located at great distances. Data from multiple sources might need to be gathered at a 
centralized location for multimodal analysis, and transferred to facilitate AI/ML based decision-
making. This data is also archived for long-term access at database facilities, which ideally 
should provide data access control management.

• Along with the ongoing development of digital twins, it is expected that HPC systems will be 
one of the major data sources for future experimentation. Simulations are used in autonomous 
experiments for synthetic data generation to supplement experimental data. Distributed 
experiments have been proposed which leverage simulations using HPC infrastructure and 
parallel data acquisition at multiple facilities internationally. 

• Autonomous intelligent decision-making (instead of automated decision-making) will be  
the one limiting factor of future self-driving labs. Most successful approaches are based on  
HPC-driven UQ, this will require readily accessible allocation of HPC resources and 
communication infrastructure.

5.12.2 Autonomous Experiment Steering for BES Facilities Case Study 
Modern scientific instruments combined with the use of robotics and high-throughput workflows for sample 
preparation/loading can acquire measurements at ever-increasing rates and resolutions. Autonomous experiment 
steering leverages these advantages by addressing the bottlenecks associated with data processing and informed/
automatic decision-making, thus enabling closed-loop experiments through efficient data analytics and advanced 
AI and ML approaches. Autonomous experiments will revolutionize traditional scientific methods and accelerate 
scientific discoveries orders of magnitude. When real-time data analysis can be performed, some intelligent 
decision can be made that shorten the overall experimental time by choosing the most impactful/important data 
to collect.
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5.12.2.1 Science Background 

In typical closed-loop experiments, raw data is collected using different scientific instruments maintained by 
the experimental teams at their home institutions. The rate and duration at which data is collected is highly 
dependent on the type of instruments and nature of the experiments, which can range from 10s to 10,000s of 
samples in hours to weeks. These experiments might be performed in parallel, or they might exhibit complex 
dependencies that require specific execution orders. The raw data is usually handled and stored locally at 
the location where they are generated. Depending on the computational power required for data analysis, 
preprocessed data is either analyzed locally or shared across divisions/facilities that might be physically located 
at great distances. Data from multiple sources might need to be gathered at a centralized location for multimodal 
analysis, and data might be transformed into various forms, as objective scores, images, trends/patterns, surrogate 
models to facilitate AI/ML based decision-making. Knowledge such as reaction mechanisms, materials properties, 
structure/morphologies are extracted from these experiments and are used for publication. This data is also 
archived for long-term access at database facilities, which ideally should provide data access control management.

Along with the ongoing development of digital twins, it is expected that HPC systems will be one of the 
data sources. Simulations are used in autonomous experiments for synthetic data generation to supplement 
experimental data. Experimental runs can also be used to tune and modify simulations to provide more 
meaningful results, and further the experimental design optimization process or shorten the experimental  
time by acquiring “intelligent” data. Distributed experiments have been proposed which leverage simulations 
using HPC infrastructure and parallel data acquisition at multiple facilities internationally. We expect that 
autonomous and automated experiments will become heavily adopted in the coming five years, due to increases 
in acquisition efficiency and quality, capability to perform new science that was previously infeasible due to 
analysis and decision-making bottlenecks, and enable physics discovery in materials design, synthesis and 
characterization loops.

Experimental facilities around the globe are facing a challenging task: while equipment is becoming increasingly 
advanced, leading to a steady rise in data acquisition rates, facilities are still outpaced by the increase in 
complexity of scientific questions and therefore unable to reliably answer them without parallel advances in 
experiment design and adequate computing infrastructure. The rise in complexity leads to high-dimensional 
parameter spaces, spanned by the parameters describing the sample, the instrument, and the data acquisition 
protocol, embracing the full range of synthesis, processing, and environmental parameters that describe the 
sample and its characterization throughout the design-experiment loop. These parameter spaces have to be 
explored efficiently in search of new scientific discoveries. Traditional methods address the rise in dimensionality 
by checking more and more possible configurations, counting on an increase in data-acquisition rates. This 
“brute-force” approach takes full advantage of advanced computing facilities for computation, storage, and novel 
detector technology with higher speed and dimensions (i.e., several millions of pixels). In a standard approach, 
a Cartesian grid is often defined, which is then used to automatically control and schedule measurements. 
This approach is often referred to as scanning or raster scanning. Since little information about the model is 
known beforehand, the grid is often defined to be very fine, which leads to long periods of data collection, and 
a significant amount of redundant data is often collected, processed, and stored. Another approach is to perform 
a coarse-grid scan first and then, based on the practitioner’s input, focus on subregions of the parameter space 
using a fine-grid scan. This method needs human intervention and potentially leads to bias, lost information, 
and overly redundant data. As the dimensionality of the parameter space increases, grid-based approaches 
become increasingly impractical, since the number of grid points scales with the power of the dimension of 
the space — even a “simple” problem inhabiting a ten-dimensional parameter space is prohibitively expensive 
under such a brute-force approach. In the case of high-dimensional parameter spaces, practitioners often change 
their approach to an intuition-based technique, in which, after just a few measurements are acquired, the user 
attempts to make out patterns and trends in the data, which will then be used to steer the experiment. While data 
is collected more deliberately, this approach leads to highly trained scientists micromanaging the experiment, 
while choosing measurements suboptimally; after all, human brains are not well-equipped for pattern recognition 
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and decision-making in high-dimensional spaces. This results in the need for constant vigilance and attention 
from the experiment designer, as well as the expectation that the user will be able to interpret and integrate the 
current results on the basis of all the previous measurements. Additionally, user bias can creep in, in which the 
expectation that results should look a certain way, or that unexplored regions probably will not be interesting, can 
skew the investigation. 

Autonomous intelligent decision-making (instead of automated decision-making) will be the one limiting factor of 
future self-driving laboratories and user facilities. Most successful approaches are based on HPC-driven UQ that 
can approximate functions in extremely data-sparse scenarios. This will require readily accessible allocation of 
HPC resources and communication infrastructure.

5.12.2.2 Collaborators

Complex scientific questions often require participation of researchers from several different institutions. This 
section highlights a few of such collaborative efforts. 

The Center for Advanced Mathematics for Energy Research Application’s (CAMERA) autonomous-
experimentation algorithms are multi-institutional and facility endeavors with collaborators and user spread 
across the globe. The close collaborators consist of circa 25 groups in 5 countries. Raw data is rarely shared 
among these groups, it is much more common that algorithms are shared if the license permits it. 

HYPERCT’s autonomous hyperspectral (and multimodal) computed tomography is a project that spans across 
ORNL SNS and Brookhaven National Laboratory’s (BNL)s National Synchrotron Light Source II (NSLS-II), 
utilizing both neutron and X-ray imaging beamlines to provide multimodal imaging capabilities for the GU 
community. The overarching goal of the scientific research associated with energy materials is to better 
understand electrochemical energy conversion, which is central to the performance and lifetime of energy storage 
devices. In a battery, irreversible processes happen across broad time and length scales, from the atomic level 
to the electrode level (cm), and from ms to days. Multiple imaging modalities are necessary to encompass the 
scales required to understand the changes in chemistry, crystal structure and electrode morphology of a battery 
during operation. These modalities often exist at more than one DOE BES Scientific User Facility (SUF), and the 
associated collection processes can vary widely by modality. These considerations necessitate careful planning for 
the efficient collection of informative data, data sharing across large-scale facilities, academia and/or industry, and 
state-of-the-art analysis and inference from the collected data.

Multimodal imaging is a technique that is increasingly data heavy due to advances in X-ray and neutron source 
brightness (leading to faster image acquisition) and improvements in detector technology such as larger detector 
areas, smaller pixel size, and the ability to measure events (leading to larger data sets). Advances in imaging 
algorithms make better use of all of this data but lead to additional computational expense. The computing power 
needed to reduce, process, analyze and visualize data, let alone combine different modalities together, often 
reside at national laboratories, again requiring close communication and coordination across facilities but are 
often distributed across various physical locations. 

Data acquisition of complex system energy systems spawn across several DOE BES SUFs. In this case study,  
we utilize imaging capabilities at the SNS, at ORNL, and NSLS-II, at BNL. We combine this with image 
processing methods developed at Purdue University and ORNL and implemented on ORNL and BNL 
computational facilities. 



210Basic Energy Sciences Network Requirements Review Final Report 2022

User/
Collaborator 
and Location

Primary or 
secondary 

copy of 
the data

Data access 
method

Avg. size of 
data set

Frequency of 
data transfer 
or download

Are data sent 
back to the 
source and 

method

Any known  
issues with data sharing

LBNL primary & 
secondary

cloud service, 
local database. 

Globus 
occasionally.

100 MB-
100 GB per 
experiment 

or simulation. 
1-10 TB/year

ad hoc, 
approx. daily

Y, through 
data mining, 

web

Access to proprietary 
software. Slow transfer of 

large data sets, esp. between 
data storage & computational 

resources. Lack of 
standardization. Scientific 
users not comfortable with 

databases. Compatibility with 
legacy equipment/software.

ANL/CNM 
(ALSO ANL/
LCRC, ANL/

ALCF)

primary Data transfer 
using Globus, 
ANL BOX, NST 

server

GB range for 
experiments, 

GB-TB for 
simulations

ad hoc N Access to proprietary 
analytical software

BNL primary 
(secondary 
at NSLS2)

Data transfer 
using Globus, 
S3, or cloud 

service. Users 
have access 

to NSLS2 data 
via Tiled and 
Jupyter Hub.

100 MB-
10 Tb per 

experiment

ad hoc Y, through 
messaging 

protocol

Network access routes are 
never simple. Lack of a single 
standard/convention used by 

all parties.

ORNL primary Data transfer 
with Globus, 

locally through 
gateway 
devices 

to brigde 
networks, 

data portals 
at neutron 

sources

MB-GB variable Y, through 
gateway 
devices

Networking from instruments 
can be challenging, data 
transfer workflow still in 
development at neutron 

sources

INTERNATIONAL 
UNIVERSITY 

LABORATORIES

primary Kafka, Cloud 
services, e.g. 

AWS

100 MB-10 
GB

Seconds to 
minutes for 
messages, 
weekly for 
large data 
transfer

Y secure access

Figure 5.12.1: Autonomous Experiment Steering Collaboration Space
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• Robotic solution-processing platform: Pipetting system for solution transfer, liquid  
handling system, substrate handling system, blade coating station for film deposition,  
heating stage for film annealing, sample storage plate, and an enclosed frame for controlled 
experimental environment.

• Chemspeed synthesis robot platform: Liquid and powder handling system, reactor  
arrays, filtration system, chemical storage systems, and an enclosed frame for controlled 
experimental environment.

• Mobile robot: MIR200 wheel robot, UR5e robot arm with finger and vacuum grippers.

• Automated Characterization tools:

 − Imaging system: optical image characterization.

 − UV-vis/fluorescence spectroscopy : (polarized) absorption spectrum, fluorescent spectrum.

• Electrical characterization system: automated probe station and Keithley 4200 electrical 
characterization system.

• Mechanical characterization: automated sample loading stage and iNano indentation tester.

• Electrochemical characterization system: automated sampling and Gamry potentiostat.

• HPC: The Carbon computing cluster provides job scheduler, software for materials modeling 
across scales, and proprietary analytical software

ORNL

The CNMS currently has capabilities in automated synthesis and characterization:

• AutoFlow(s) system: Autonomous Continuous Flow reactor synthesis system with scalability, 
that consists of automated pumps, reactors and valves connected to characterization tools such 
as high-pressure liquid chromatography to enable optimization of reactions to produce polymers 
for sustainability applications. This system is fully configurable and addressable, with each 

5.12.2.3 Use of Instruments and Facilities

ANL 

Figure 5.6.10: ORNL WAN Connectivity
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individual component networked to a main server in the lab through Wi-Fi on a local network, 
and an API for running autonomous synthesis routines with custom optimization.

• Microscopy automation: We currently have developed in-house tools for low-level control 
of scanning probe microscopy instruments (scanning tunneling microscopy and atomic force 
microscopy), utilizing FPGA cards and Python to develop abstractions and enable efficient 
programming for autonomous imaging and spectral capture. We have also developed the same 
types of platforms for control over the scanning beam in electron microscopy, enabling sparse 
sampling, atomic matter fabrication, feedback-governed crystallization, and for studying beam-
matter interactions more generally.

HyperCT at the SNAP and NSLS-II Submicron Resolution X-ray Spectroscopy (SRX) Beamlines

For the purpose of this document, the focus remains imaging data sets, as they tend to generate very large data 
sets. The SNS SNAP high-pressure diffractometer is used to perform hyperspectral imaging experiments while 
the dedicated VENUS imaging beamline is being built. At SNAP, spatial resolution of ~ 100 mm is achieved 
with wavelength resolution varying from 120 ns to 5 ms. The SNS beamline network is composed of a SNS 
imaging GPU computer (has access to archived data), SNS computer controls of beamline, edge node (has access 
to archived data). The SNS open research network is accessible by facility users from their home institution and 
is the central SNS data storage server, SNS translation node (for auto-reduction) and computational resources. 
One hyperspectral neutron computed tomogram, which is a fraction of an experiment, can contain ~ 100,000 
to 300,000 files. A tomogram data set is composed of tens of radiographic projections. Each hyperspectral 
radiographic projection is saved in a unique directory (associated to a unique run number which is associated 
with the measurement metadata). One hyperspectral neutron computed tomogram is approximately ~ 100 GB 
(with the current detector technology).

The NSLS-II SRX is a micro/nano probe utilizing a high brilliance in-vacuum undulator at the NSLS-II. With 
two sets of focusing optics, X-rays are focused down to 200 nm to 2 μm spot for high-resolution imaging and 
spectroscopy experiments. The NSLS-II beamline network: is made of at acquisition and controls systems. The 
open research network is named the NSLS-II Science Network and Data Storage but also has computational 
resources, and connections to BNL HTSN. One hyperspectral X-ray fluorescence tomogram contain thousands of 
files. Depending on the imaging size, tens to hundreds of hyperspectral fluorescence images, or radiographs, are 
measured. For each radiograph, raw data is stored for each detector, line-by-line, as a separate file on the network 
storage. A scan database records the file names and locations, as well as the associated scan metadata. Secondary 
processing is done by collecting these raw files together to visualize the elemental composition for each 
radiograph into a single file. To calculate the 3D volume, these hyperspectral radiographs are reconstructed for 
each element of interest to visualize the volume. Files are typically stored in Hierarchical Data Format 5 (HDF5) 
format with compression enabled to save disk space. For a given hyperspectral tomography, we can expect to 
create 1,000 to 100,000 files and occupy 100 MB to 1 GB of disk space. 

LBNL

The ALS is in the process of developing autonomous data collection in close collaboration with CAMERA. 
The first project is in collaboration with the Berkeley Synchrotron Infrared Structural Biology and focused on 
accelerating infrared spectroscopy. A second project applies the autonomous CAMERA algorithms to the optical 
beamline alignment of XPCS COSMIC. 
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Infrared Spectral Microscopy at the ALS

The Berkeley Synchrotron Infrared Structural Biology group at ALS, together with CAMERA has developed 
production-ready tools for users to perform their IR-Spectroscopy experiments autonomously. The intelligent 
decision-making has two main components:

• A Matrix factorization (most often PCA) for automated data analysis. Base-spectra are 
recomputed repeatedly on the current data set.

• UQ in combination with function optimization used for prediction and steering. The projections 
onto the first few base-spectra are approximated across the domain. That approximation and its 
UQ dictated the next measurement location. 

XPCS Beamline Optics

CAMERA in collaboration with the beamline scientist are using Gaussian-process regression to efficiently align 
the optical elements of the XPCS beamline. 

BNL

Autonomous X-ray Mapping at NSLS-II

In landmark experiments at BNL, the decision-making algorithm Gaussian-process (gpCAM) by CAMERA was 
deployed to control X-ray scattering imaging experiments. These studies were performed through a collaboration 
between BNL’s National Synchrotron Light Source II (NSLS-II), the CFN and LBNL’s CAMERA. Autonomous 
imaging was applied to a variety of heterogeneous materials problems, including polymer crystallization, 
nanoparticle film formation, electrospray deposition of polymer films [43], and additive manufacturing (3D 
printing). The same methodology can be applied to explore physical parameter spaces if one manufactures a 
sample library. Specialized synthesis methods enable the fabrication of one-dimensional or two-dimensional 
gradients of material properties, which thus enables the creation of combinatorial sample libraries. For instance, 
one can use thermal gradients to generate continuous libraries of annealing temperature, flow-coating for 
thickness or composition gradients, chemical gradients for libraries of surface chemistry, or electrospray 
deposition to generate arbitrary patterns of film composition and thickness. Gradient methods can frequently 
be combined to generate two-dimensional libraries where material parameters are varied continuously; the final 
sample thus represents an exhaustive slice through the high-dimensional space describing material synthesis/
processing conditions. The outstanding challenge — to efficiently explore that slice — can be addressed using 
autonomous methods.

Robotic Synthesis at TMF 

The Inorganic Nanostructures Facility offers facilities for automated synthesis and characterization of novel 
inorganic materials, including colloidal nanoparticles, two-dimensional materials, and hybrid inorganic-organic 
frameworks. Data generated in this facility includes: (1) synthetic recipes; (2) raw characterization data such as 
spectra, images generated by optical/Raman/and electron microscopes, X-ray diffraction patterns, and electrical 
measurement data, predominantly stored on local instrument computers; (3) raw simulation data; and (4) 
processed data stored on local computers and in more centralized electronic repositories, including: (1) electronic 
laboratory notebooks, e.g. Evernote and OneNote; (2) personal and shared cloud folders, e.g. Google Drive; 
(3) ScopeFoundry, as noted in the Imaging Facility plan, and (4) local and remote servers for Python Jupyter 
notebooks, and (5) centralized databases. For example, the Nimbus robots utilize the ESCALATE pipeline 
(MRS Communications 9, 846–859(2019), https://doi.org/10.1557/mrc.2019.72) for generating and capturing 
high-throughput perovskite synthesis data. Finally, TMF operates a commercial LIMS called Laboratory 
Execution and Analysis (Symyx/Unchained Labs) for generating, capturing, and storing data associated with two 
of its robotic synthesis platforms, HERMAN and WANDA. LEA has a modular architecture that stores data in 
a centralized LBNL Oracle database mediated by a TMF-based midlevel application server that mediates the 
transfer of data and metadata from client (robot) computers. Experimental designs are automatically stored in 
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the central database, along with process logs and, in some cases, characterization data. A strength of this system 
is its Library Studio software that allows for complex chemical recipes to be designed and encoded (in XML) by 
users unfamiliar with automation. Since this closed system does not have API’s for open-source programming 
environments, it is difficult to integrate with ML algorithms and autonomous systems.

NSLS2

Today, the central Lustre file system is used for all experiments at the facility. The synchrotron light source has 28 
beamlines in operation and 4 under construction. Staff and users have a home directory available everywhere—
including workstations, data analysis servers, and Python Jupyter — so that configuration, conveniences, and 
access keys are naturally available wherever they work. The “original” copy of raw data is stored in a protected, 
internal system where it cannot be accidentally modified or deleted. This data is stored in a document model, 
with different experiments taking different approaches to document organization (i.e. number of files/documents 
per experiment). The documents will also reference external data that is too large to reasonably fit in the 
document, enabling rapid flow of information. The meaning of data, the size of data, the processing steps applied 
to data, and the analysis and interpretation of data vary depending on the beamline, the measurement technique, 
the detector(s) utilized, and the scientific goal. Raw data is generated primarily by two-dimensional (area), one-
dimensional (strip), or point detectors as a part of scattering, imaging, or spectroscopy measurements. The data 
from all these detectors either takes the form of an image or histogram, or as a stream of time stamped photon 
detection events. Raw data may represent a scattering pattern, a transmission image, or spectra, for example. The 
size of the data may vary from a few megabytes to hundreds of terabytes per allocated beam time. Some form of 
data processing or reduction is usually performed after data is collected to transform the data from a technique 
or detector representation to an analyzable representation, such as a series of sinograms into a three-dimensional 
world-space volume, or spectra into elemental concentrations. 

All the facility’s raw data is available via HTTP(S) and Python Application Programming Interfaces (APIs) to 
support data portals and data science workflows. On a beamline by beamline basis, reduced data may be available 
through these same APIs. On a beamline by beamline basis, raw and/or reduced data may be made available in a 
traditional directory, with formats and naming conventions suitable for the beamline and user group. Data access, 
whether via APIs or filesystems, is granted on the basis of a proposal and a beamline. Beamline staff can access 
all the data on their beamline. Users can access data related to a proposal that they are listed on. Users can be 
added and removed from a proposal in the PASS, and their data access is updated accordingly. The facility has 
committed to storing data and to making it available to users for at least one year after the experiments and best 
effort beyond that. Our current plan is that 3.2 PBs will be commissioned in FY22.

To achieve the facility vision in the next several years, a complete suite of tools and capabilities in data 
infrastructure and computing need to be created and developed (see Figure 5.12.2). In addition to experimental 
control and data acquisition, these tools and capabilities include algorithms and AI/ML, scalable software 
libraries, workflow and orchestration tools, seamless real-time on-demand computing, network improvements, 
and discoverable data repositories.
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In the longer term, NSLS-II has identified 22 new beamlines to be developed to balance the beamlines portfolio 
and provide additional capabilities to meet the research needs of the broad scientific community. These include 
12 enterprise beamlines based on mature techniques, 7 high-performance beamlines with additional cutting-edge 
capabilities, and 3 mission-specific beamlines to meet the needs of the targeted research communities.  
Together these new beamlines will support multimodal research and enhance the overall impact and productivity 
of the facility. 

5.12.2.4 Process of Science

ANL

Figure 5.12.2: Autonomous Steering Vision

Figure 5.12.3: Polybot data pipeline at ANL/CNM

The Polybot platform consists of synthesis, processing, and characterization modules. The platform is designed 
to run closed-loop experiments and efficiently explore parameter space related to the synthesizability, processing 
conditions, and materials properties. Raw data is first stored locally on the computers that execute the 
experimental workflows. Filtering of faulty data is handled on the same computers. Preprocessed data is sent to 
computing clusters (e.g. the Carbon cluster), cloud storages, or other facilities via the network (communicated via 
RESTful APIs). Smaller data is typically sent as individual JavaScript Object Notation files whereas larger data is 
packaged and sent using data platform such as Globus.
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In this example, images are taken at the instrument, and then converted into atomic types and coordinates 
via an ensemble of models trained on simulated data. These are then fed into atomistic simulations for better 
understanding material properties and dynamics, and facilitating physics discovery. Here, data comes from both 
instrument and compute clusters, and training occurs on a GPU server. Inference occurs at the edge, on the 
instrument. As such, all levels of compute and data need to be accessible in real time. 

Experiment and Instrument-Agnostic Autonomous-Experimentation Algorithms

It is CAMERA’s goal to look at a host of scientific processes and abstract away details, to allow for agnostic tools 
to be developed. To make the tools fit into a variety of experimental frameworks, APIs have to be designed very 
flexibly to achieve generality but maintain user friendliness. 

SNS at ORNL

Imaging capabilities can offer scale-bridging capabilities in energy materials that will advance the boundaries of 
knowledge in energy storage. SNS and NSLS-II will be used to study changes in chemistry, crystal structure and 
electrode morphology of a battery during operation. Performing characterization across multiple length and time 
scales is necessary to study the complex energy systems.

Networking between experts in energy storage materials, in X-ray, neutron and data processing/analysis experts 
is critical to understanding and mitigating degradation processes in electrochemical cells. However, networking 
is difficult due to the lack of central platform where data can be shared among collaborators on a same project, 
hindering scientific progress. An easily accessible platform that allows sharing and visualization, at a minimum, of 
processed data is needed. This is especially critical for imaging data as it tends to be very large.

ORNL are currently working on the development of intelligent acquisition and reconstruction of hyperspectral 
computed tomography at both SNS and NSLS-II called HyperCT. The principal goal of this research is to 
combine physics-based modeling with AI and ML algorithms to enable dramatic improvements in the throughput 
and performance of hyperspectral (i.e. multiple energies) computed tomography (HSCT) beamlines at DOE  
BES SUFs. 

HyperCT’s workflow involves a data measurement process that is initiated, the measured data is streamed and 
archived, and advanced reconstruction algorithms are implemented on a multi-GPU node that has access to 
the archive, giving a glimpse of the images from partial measurements. Such a streaming system is critical for 

ORNL

Figure 5.12.4: Example automated workflow from electron microscopy at the CNMS/ORNL
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neutron tomography because it can take of the order of days for a complete measurement. Using this workflow, 
we recently completed an autonomous hyperspectral neutron computed tomography experiment at the SNS 
SNAP beamline and are using this data to develop and refine robust and efficient ML-informed reconstruction 
algorithms for sparse and low signal-to-noise data, which is a typical acquisition strategy at neutron sources (due 
to lower brightness than X-ray sources). 

BNL

Autonomous Experimentation at NSLS2 Using Distributed Instruments

The scientific use cases present at NSLS2 are too diverse to specify here, albeit an effort has been made to 
specifics regarding software and networking advancements.

Present: AI/ML solutions are deployed using custom Pytorch, Tensorflow, JAX, or scikit-learn implementations 
for on the fly data analysis. These approaches include phase or property prediction, unsupervised data set 
decomposition and visualization, and anomaly detection for experimental aberrations. Adaptive experiments are 
performed at many beamlines across the facility using software tools in the Python ecosystem for reinforcement 
learning or Bayesian optimization. For example, spectroscopy experiments for searching samples of energy 
materials for maximal information gain or property optimization are performed combining measurement 
automation using Bluesky, Bayesian optimization using Gaussian processes at NIST (Gaithersburg, MD), 
and visualization remotely across the eastern seaboard. Data for such experiments is served using Tiled and 
experimental orchestration using a Kafka message bus. 

Next: There is increasing demand for multimodal analysis that leverages multiple beamlines at NSLS2 and/
or measurements at other central facilities. These will require edge compute for analysis at the individual 
measurements, secure data transfer to distributed experimental orchestration, and remote access for users not 
at any facility. Simulation data to support experiments—by query of databases or on-demand computation—will 
be required at the time of measurements. Furthermore there are anticipated efforts in building more effective 
ways to engage the “human in the loop” through human–AI–facility interfaces. These will require case by case 
interfaces (graphical or otherwise), and secure access if used remotely. 

Beyond: Scientific workflows are expected to be fully distributed across user facilities and laboratories. The 
measurement capabilities of beamlines and facilities are unique and scientific discovery often requires multiple 
types of analysis. It should be tractable for a user to synthesize a sample using standard techniques (e.g. Polybot) 
and trigger a sister synthesis engine to prepare an identical sample for measurement at multiple facilities, as well 
as robotic transport for the sample within a facility. This will fully leverage the diverse excellence at the many 
facilities in ESnet and maximize scientific output. 

5.12.2.5 Remote Science Activities

Dashboard type web applications will be used for monitoring status of the instruments and for browsing.

BNL

NSLS2 at BNL

Present: Remote data processing using BNL networked compute, serving data analysis to remote users. This 
occurs using Guacamole (less frequently No Machine) for local monitoring or a JupyterHub for distributed 
monitoring and analysis. 

Next: Remote data processing using deep learning with HPC or GPU clusters will need to send raw or 
preprocessed data to servers and which will reply with analysis results. These results can be communicated to 
on-site or remote users using similar technology as present. Autonomous platforms will need to communicate via 
messages both domestically and internationally, and potentially send raw data. Mail-in experiments programs will 
grow, where facility users are mailing samples to the facility for automatic or routine analysis.
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Beyond: Enterprise beamlines with little to no direct interaction will be developed. These will expand the 
capacity for mail-in programs, leveraging autonomous analysis, reporting, and distributed compute. 

ORNL

SNS

Today, the ORNL neutron facilities currently provide remote access to the beamlines as either viewer or  
as editor of an experiment. Users can set experiment parameters remotely, can start and visualize the progress  
of a measurement. 

The next step involves the implementation of ML algorithms to users so they can make “intelligent” decisions 
based on data previously collected. 

Beyond this goal, enabling live video feed and real-time data streaming and processing with high-rate detectors  
is envisioned.

5.12.2.6 Software Requirements

ANL

ANL/CNM primarily utilizes two storage technologies, block and object storage. The software solution for block 
storage access is Luster, and DataCoreSwarm for object storage. Both storage solutions utilize the Globus data 
platform services to share and transfer data with remote users or facilities. In addition, DataCore Swarm provides 
an S3 API to access, transfer, and share data. In the next two to five years, CNM plans to release custom RDMS 
to aid in the data curation, analysis, and publication of scientific data produce at CNM.

ORNL

At CNMS, we utilize local storage on a 1 PB system with file transfers through ftp/scp/Globus, as well as a smaller 
windows-based file server for backups of experimental data. We are trialing the use of DataFed as a federated 
data storage management solution. This is developed in-house and enables sharing of data with collaborators, as 
well as key features such as metadata queries and data provenance tracking.

At SNS, locally and remotely data resources management is already implemented. Data storage servers can be 
accessed data via SFTP. A suite of Python-based scripts based on Jupyter notebooks is also available on the data 
servers to help with data processing and analysis. Some of the experimental planning tools, such as optimization 
of sample composition and thickness, are also available as a web interface. 

Within the envelope of our HyperCT project, we are presently developing tools to provide data processing 
and analysis for our imaging users at both SNS and NSLS-II. We utilize AVIZO/AMIRA (commercial software 
packages) for data 3-dimensional data visualization and some of the analysis for 3D data sets.

Over the next two to five years, most of the imaging software tools will need to be parallelized and it is anticipated 
having an edge node capability dedicated to imaging at both SNS and NSLS-II will be required since the data 
rate and size will only increase with time due to improvement in both facility beam flux and detector technology.

The ultimate goal is to provide users with publishable data, i.e., semi-automate data processing and analysis  
using ML methods that can be accessed from their institutions. Ideally, both codes and data would reside in the 
same location.

Center for Advanced Energy Research Applications

gpCAM (gpcam.lbl.gov) is used at ALS, NSLS2, SLAC, APS, TMF, and the Joint Genome Institute for intelligent 
decision-making. 
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BNL

NSLS2 at BNL

Central data storage of more than 3 PB annually is stored via Bluesky Databroker and accessed via the Tiled 
data access service. All the facility’s raw data is available via HTTP(S) and Python APIs to support data portals 
and data science workflows. Data is stored immutably in a document model from the measurements with rich 
metadata. Tools for storing versioned analysis data, or processing pipelines are in development. On-site compute 
is available at the SDCC using a JupyterHub. This enables a scratch space for data analysis with access to central 
storage. The Bluesky experimental orchestration software enables AI/ML models to be linked into experiments. 
This can be done in-process using call-backs or out-of-process using message buses and a queue server. A specific 
tool of merit is Bluesky Adaptive. Integrally, this approach is agnostic to how the model is developed, enabling 
different users and groups to develop their tools specifically to their experimental needs with the software of their 
choice. Tiled takes this a step further by enabling on the fly data access with languages other than Python.

The Data Science and Systems Integration group at NSLS2 will continue to develop open-source software 
tools in the Bluesky project for data acquisition, management, and analysis. Enhanced data science capabilities 
will require a robust and rich sample database for historical data that maintains references to raw data, 
versioned analysis, and access rights for groups. A continued collaboration with SDCC will enable data science 
advancements using the internal network at BNL. 

The software tools and programming languages that users will be using beyond the predictable horizon are not 
guaranteed. There is no expectation that data will commonly be processed using Python, Tensorflow, or Pytorch. 
Infrastructure that is developed for long-term support—especially at a user facility—should be capable of 
interfacing with presently nonexistent software.

5.12.2.7 Additional Network and Data Architecture

ORNL

At SNS and for the HyperCT project, sharing data between facilities is key in solving “big” science questions, and 
most importantly merge 3 or 4D imaging data between instruments located on the same site (i.e., imaging at the 
HFIR and at the SNS), or between facilities located on different sites (SNS and NSLS-II).

5.12.2.8 Use of Cloud Services

Cloud services (e.g., Box, Google Drive) will be mostly used for file sharing. For example, external collaborators 
who wish to access a subset of the data but do not have accounts at the institution where that data is stored. These 
services make it easy to set up sharing and automatically notifying the collaborators of any file updates.

However, cloud services tend to be slow at retrieving data and are rather expensive. Until prices are more 
competitive and data can be retrieved fast, there is no clear path forward to use these services for large data sets.

5.12.2.9 Data-Related Resource Constraints

None to report at this time. 

5.12.2.10 Outstanding Issues 

None to report at this time. 
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5.13 BES Design and Development of Digital Twin Strategies
The digital twins case study brings together BES community representatives from X-ray light sources, neutron 
scattering facilities, NSRCs, and independent researchers, to discuss this emerging area of scientific investigation. 
The case study profiles the overall concept, some early results, and a discussion about what the future will hold. 

5.13.1 Discussion Summary

• The rapid advancement in AI/ML algorithms, improved shared workflows, and the advent 
of exascale computational resources, make it possible to create a physically informed virtual 
platform to perform experimentation: digital twins. 

• Digital twins represent physically accurate computational environments of experiments will 
help to guide in-silico experiments from conception to synthesis and measurements. Digital 
twins aim to enable offline design and optimization of all elements of the scientific process, from 
hypothesis to discovery, in situ or mainly prior to actual physical experiments. 

• Digital twins:

 − Facilitate the creation of a virtual environment to exhaustively explore  
experimental controls 

 − Import experimental read-outs at any time to provide instant synthetic read-outs

 − Create data that can iteratively be used as training for model improvements

 − Allow for a small subset of simulated experiments to be explored in actual experiments  
at the SUFs. 

• The further development and application of digital twin simulations supporting experimental 
design and operation requires that a number of gaps in capabilities and infrastructure be 
filled, including sufficient and reliable networks, data storage resources, computing systems, 
transparent access to facilities via federated identity and shared data protocols, and software 
tools to operate across the DOE’s distributed resource landscape.

• Data movement and data processing are critical for scientists and researchers, particularly once 
they have performed their experiments or simulations. Steps include: 

 − Data acquisition via computational simulations or experiments

 − Data movement, cataloging, and archiving

 − Data analysis and visualization

 − Fitting to models and analysis of the processed data for structure, function or dynamics 
information 

• Computational resources are ephemeral, and data is enduring, requiring long-lived allocations 
of storage resources. Public policy is further motivating this demand, requiring open access to 
data generated as part of federally funded research.

• The goal of a digital twin is to seamlessly extract information from the experimental data sets 
and use them as either input to dynamical simulations or as training data to improve models. 

• The use of digital twins will increase the efficiency of the user experience at the SUFs by 
providing prior and concurrent guidance to users to run the most precise experiments. 

• It is expected that as GPU usage continues to increase, either local cloud compute capabilities 
will grow to accommodate this demand, or our users will shift to external cloud services such as 
AWS or Azure. This may run into the dozens of instances/year level.
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• For most of the facility, the data storage and transfer speeds are currently sufficient, and are 
not expected to be significant concerns in the next two years. The main constraints are with the 
access to computation, which is particularly limited for the theory groups, and the changing 
nature of the HPC platforms which make older code quickly obsolete, requiring significant 
rewriting to accommodate new hardware upgrades. 

• The lack of a uniform data pipeline standard that span facilities causes issues, such as 
differences in metadata associated with different data types and different levels of data 
manipulation. To reach a stable and universal environment standard data formats, software 
development framework, sample tracking, metadata capturing, and labeling are required. 

• Coupling digital twin simulations with experimental steering will become an increasingly relied 
upon capability at the light sources as the decade progresses. Due to the high computational 
cost associated with data processing, reduction, and analysis, and of model training on such 
large data sets, the light sources will need to employ the use of geographically distributed 
computing facilities and data repositories. This necessitates high bandwidth, low latency 
network connections between the light sources, and remote computing and data storage centers.

5.13.2 BES Design and Development of Digital Twin Strategies Case Study 
Viable frameworks to perform and test a complete experiments on a computer, versus using a physical scientific 
facility, are an emerging area of research. Termed “digital twins”, these concepts represent physically accurate 
computational environments of experiments will help to guide in-silico experiments from conception to synthesis 
and measurements. This includes shared workflows and continuous updates from real experiments that facilitate 
the design of new experimental capabilities and execution of optimal experimental strategies to drive physics/
chemistry knowledge acquisition.

5.13.2.1 Science Background 

Understanding the structural and dynamical evolution of materials is central to a plethora of energy applications. 
There is a large fraction of the approximately 16,000 users at DOE’s SUFs who are interested in accessing world-
class spatiotemporally resolved characterization modalities and performing experiments to explore structural 
evolution as well as energy and mass transport (electrons, phonons, atoms, and ions) across material interfaces. 
This translates into an intense competition for instrument time amongst the users, meaning that each user can 
only perform a small number of actual spatiotemporally resolved experiments. The need for a physically informed 
strategy for offline design and optimization of these experiments is emerging as a grand challenge for SUFs. The 
rapid advancement in AI/ML algorithms, improved shared workflows and the advent of exascale computational 
resources now make it possible to create a physically informed virtual platform to augment and guide 
spatiotemporal experimental trials. Moreover, due to a confluence of compute capacity, data veracity/volume, and 
new algorithms, materials and chemical simulations are bridging the gap in matching experiments by providing 
viable frameworks to perform/test complete experiments on a computer, e.g., digital twins. 

Digital twins aim to enable offline design and optimization of all elements of the scientific process, from 
hypothesis to discovery, in situ or mainly prior to actual physical experiments, thus greatly accelerating achieving 
scientific goals. This includes research and results on physically accurate surrogate models for traditional 
first principles modeling and simulation (e.g., fast approximants for first principles simulations, for materials 
interaction potentials, for efficient sampling, etc.), methods for efficient and accurate data inference and reduction 
(e.g., data fusion, compression, Bayesian inference, causal approaches, etc.), and approaches to match/register 
simulation data with experiments. For example, one envisioned utility of digital twins is to reduce the time to 
synthesis of materials/chemicals with desired properties. Assuming that a target structure is predicted from a 
first principles model, a series of syntheses could be carried out within a virtual environment, with a small subset 
of real experiments serving to ground and tune the synthesis models. Subsequently, optimal characterization 
schemes could also be found within a digital twin to isolate whether the structure of interest was generated; 
ideally, the analysis routines could be self-generated within the digital twin to further accelerate time-to-solution. 
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The latter is a particularly important aspect of facility and experimental design that enables both to be optimized 
in the same step. 

Such digital twins are expected to have a profound impact on both the user experience and productivity as users 
will be better informed about the impact of their experimental controls on the expected read-outs. This will allow 
them to take maximum advantage of the allocated time for experimentation, thus accelerating scientific discovery.

5.13.2.2 Collaborators

Figure 5.13.1: A typical example of a digital twin illustrating the various stages and facilities where 
experimental and synthetic data sets are expected to be created, shared, computed and stored

The digital twin shown in Figure 5.13.1 will facilitate the creation of a virtual environment by leveraging physical 
models with AI/ML algorithms and shared workflows to allow users to exhaustively explore experimental controls 
on high-performance computers (HPCs), import experimental read-outs at any time instant, perform inversion on 
them to provide starting configurations for simulations on supercomputing resources and obtain synthetic read-
outs. A small subset that displays the most interesting phenomena can then be explored in actual experiments 
at the SUFs. These experiments can iteratively be used as training data for model improvement in the digital 
twin environment to close the loop. The success of such digital twin platforms hinge on seamless information 
extraction from experimental data sets that serve as inputs to physically accurate yet efficient dynamical models 
running on HPC and exascale machines. The digital twin allows users to exhaustively explore experimental 
controls and obtain read-outs — a small subset of the data that displays the most interesting physics and/or 
phenomena can be explored in actual experiments. The data from these experiments can iteratively be used as 
training data for model improvement to close the loop.
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User/
Collaborator 
and Location

Primary or 
secondary 

copy of 
the data

Data access 
method

Avg. size of 
data set

Frequency 
of data 

transfer or 
download

Are data 
sent back 

to the 
source and 

method

Any known  
issues with data sharing

CNM primary data transfer via 
Globus, ANL Box, 

NST Server

GB-TB daily N access to proprietary analytical 
software

CNMS primary data transfer via 
Globus

GB-TB daily N Growing toward instrument control, 
will need access to proprietary 

software

CFN primary data transfer 
Globus, cloud 

storage, ad hoc 
methods

GB-TB on demand N Data organization (format, 
metadata) needs to be defined/

agreed on a per-case basis

CINT primary cloud services, 
portable hard 

drive,

100GB-
100TB

ad hoc N Data rates/volumes, network 
access

APS primary large disk system 
at the APS using 

the APS Data 
Management 
System, data 

transfer
Globus, ANL Box

GB-TB daily N access to proprietary analytical 
software

ALS primary & 
secondary

cloud service, local 
database. Globus 

occasionally.

100 MB-100 
GB per 

experiment 
or 

simulation. 
1-10 TB/year

ad hoc, 
approx. 
daily

Y, through 
data 

mining, 
web

Access to proprietary software. 
Slow transfer of large data sets, 

esp. between data storage & 
computational resources. Lack of 
standardization. Scientific users 
not comfortable with databases. 

Compatibility with legacy 
equipment/software.

SNS/HFIR primary data transfer via 
Globus

GB-TB daily N Ok for small size data transfers

LCLS (SLAC) both 
primary 

and 
secondary

data portal, data 
transfer, and 

remote analysis 
on clusters at 

SLAC

~100 TB Continuous N large data files and complex 
structured data make data sharing 

challenging

Table 5.13.1: Digital Twins Collaboration Space

The NSRCs benefit from an intrinsically strong interaction with their associated National Laboratory signature 
strengths in multiple areas and takes advantage of the distinctive capabilities of other DOE user facilities at, 
including the OLCF, the ALCF, NERSC, the SNS and the HFIR, the APS, the ALS, the National Synchrotron 
Light Source II (NSLS-II), LCLS-II, and SSRL. In particular, the CNMS emphasizes a strong link to neutron 
sciences, providing an environment for researchers to integrate neutron studies into nanoscience efforts. The 
CNMS uses its expertise in materials sciences (including polymer synthesis) and computational sciences towards 
the incorporation and development of materials-by-design approaches, and seeks new advances in imaging 
sciences that build on ORNL’s demonstrated leadership in scanning probes, scanning transmission electron 
microscopy, He-ion microscopy, and atom-probe tomography.

Each year the NSRC supports approximately several hundred (~400-700 users annually per NSRC) and ~6,000 
annually for APS from more than 100 different institutions spanning academia to industry, and from around 
the world. The user community is diverse, ranging from students who work closely with NSRC staff, learning 
unique skills from experts and gaining access to cutting-edge instrumentation as they advance their research, 
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to “PUs” who collaborate with staff to develop new capabilities and instruments that are then made available to 
the broad NSRC user community. About 10% of all users are theory users, who work with the staff of the CNMS 
Nanomaterials Theory Institute to gain access to expertise and computational resources. About 40% perform 
synthesis and/or nanofabrication and typically use a broad range of characterization tools to verify the quality of 
the synthesized materials or to investigate their novel properties. The remaining 50% of the users come to the 
NSRCs specifically for characterization, using a broad range of experimental tools.

5.13.2.3 Use of Instruments and Facilities

The NSRC’s offer a wide range of capabilities designed to enhance the study and creation of nanomaterials. 
From X-rays, neutron scattering, microscopy, spectroscopy, to clean room–based nanofabrication techniques, the 
NSRC’s provide its staff and users with a broad combination of scientific resources involving data entries that 
vary in size from kilobytes to terabytes at collection speeds spanning from weeks to microseconds to nanoseconds. 
Data generated from these activities covers a broad range from surface optical and electron microscopy, optical 
microspectroscopy and laboratory source X-ray diffraction from the nanoscale to wafer-scale characterization to 
name a few. Our electron microscopy data flow includes structure and spectroscopy of materials using imaging, 
diffraction and energy loss spectroscopy (typically ~20 MB per entry, ~500k entries per yr). Recently installed 
high-speed electron microscopy leveraging a K2 detector (~103 frames per second) generates significantly higher 

Figure 5.13.2: Geographical distribution and statistics of CNM user program. Other NSRC’s have similar user statistics and 
geographical distribution.

Figure 5.13.3: Total number of APS users
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data volume and velocity, at 5 MB/entry and up to 720k entries/hour. Our X-ray microscopy capabilities include 
nano-focused coherent Bragg diffraction imaging and X-ray fluorescence spectroscopy (~0.1TB per entry, ~36 
entries per yr) — these are expected to have 100x data rate increase due to the APS diffraction-limited source 
upgrade with first light in 2024 making full use of our EIGER2-X1M (1028x1062x32bit 2000fps) collection 
bandwidth — the planned approach for data collection depends on high-throughput ptychography recently 
demonstrated with locally deployed edge computing delivering real-time imaging that is continuously improved 
with HPC live-training algorithmic recognition.

The NSRC’s also have significant focus on nanoscale synthesis. Our toolbox of synthesis techniques include 
chemical and nanoparticle synthesis methods, various gas- and liquid-phase deposition methods, general wet-lab 
and air-free chemistry techniques, and methods for the preparation of samples as films and surfaces. Nano-
bio hybrid materials and biological assembly efforts center on nature-inspired materials that potentially can 
support energy conversion and energy transport, as well as understanding biosensing mechanisms in cell-like 
environments that are functionalized with engineered nanomaterials. We are able to hybridize metals, organics, 
semiconductors, and dielectrics with biomaterials to create nanobio metamaterials with unique properties. Data 
generated from these activities are primarily optical microscopy, electrical characterization and conventional and 
ultrafast optical spectroscopy (typically ~1GB/entry ~10entries/year). Our recent development of autonomous 
synthesis within the ANL Self Driving Lab Initiative creates a local control of an experimental process based on 
data recognition which requires transfer of data to HPC resources for external training of algorithmic approaches 
that are then locally deployed. These are covered in more detail as part of other facility reports and case studies. 
From a digital twins perspective, the goal is to develop complementary simulation methods and techniques that 
allow for synthetic extraction of characterization and synthesis information.

The NSRCs have numerous remote users in addition to on-site users who also utilize the above capabilities 
and the computational clusters. These users are primarily cyber-based and connect to the internal compute 
capabilities or leadership computing facilities using ssh combined with a SecurID and a PIN. Each user has 
an account on one of the compute systems and accesses the compiled codes, data archives, and necessary math 
libraries directly. Data from the calculations is typically analyzed and stored on the local compute systems, often 
for the duration of the project, and then transferred to the user’s home. The size of the data/results collected 
varies from project to project and the compute system (100s GB to 100s TB). Online data analysis and reduction 
are important after which GridFTP can be effective for much of the needed data movement between computing 
resources.

The NSRC’s also are home to a comprehensive suite of theory and modeling tools, a HPC cluster, and various 
software and modeling/simulation tools. The theory, modeling, and simulation methods include numerous density 
functional theory packages, molecular dynamics, Monte Carlo, genetic algorithm, finite difference time domain, 
and AI/ML. The High-Performance Computing Clusters (e.g. Carbon at CNM) provides GPUs and edge-
computing capabilities. A recent upgrade of 22 nodes each with 2 NVIDIA TESLA V100 GPUs is geared towards 
AI workflows, including training of neural network models for image analysis and performing inference from 
high-speed electron microscopy data. Software and modeling/simulation tools include BLAST, FANTASTX (Fully 
Automated Nanoscale to Atomistic Structure from Theory and eXperiment), computational electrodynamics (e.g., 
Lumerical, MEEP), and other specialized analysis software and modeling expertise. 

In addition to the NSRC’s, there are experiments at DOE synchrotron sources which can also benefit from 
digital twins. For example, at the LCLS at SLAC, there are 8 different instruments that all collect large amounts 
of data for both online analysis, quick analysis but after data is stored locally, and long-term analysis. Data 
needs to be transferred to high performance computing facilities in some cases. In all cases, users logon to the 
machines at SLAC to perform analysis and/or transfer data. All experiments vary, but can be as much as 100Tb 
per experiment. Each file contains a number of device data in different forms per event (in this case, each X-ray 
pulse), such as million pixel images, intensity values, spectra, text files, voltages, pressures, etc. In the next few 
years, with the delivery of high-repetition-rate capability, the current repetition rate (120Hz) will advance to 
1MHz for a 10,000x-fold increase in data, making use of high performance facilities critical. 
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The further development and application of using digital twins and simulation with experiments at the light 
sources requires that a number of gaps in capabilities and infrastructure across the light sources, Laboratories, 
and computing centers be filled, including sufficient, reliable bandwidth, sufficient and sustainable data storage 
resources, on-demand access to large-scale computing systems, transparent access to facilities and systems 
across the complex, including federated identity and shared data protocols, and software tools and infrastructure 
to facilitate the development of scientific computational and data workflows that operate across the DOE’s 
distributed resource landscape.

The digital twin effort plans to leverage the collective expertise of dedicated theory groups at NSRCs and light 
sources and bring together the software codes and frameworks developed by them to realize the digital twins. 
In the next two to five years, we are working towards integrating physical models, AI-based inversion tools 
and shared workflows to develop digital twins for select experimental synthesis, microscopy, X-ray and neutron 
characterization studies. Our vision beyond five years is to realize fully automated workflows that will allow 
for seamless sharing of experimental and simulation data sets amongst the users and allow them to perform 
multiple types of analysis (including AI/ML) in a digital twin environment. In the 5-10 yr timeframe, we envision 
extending the digital twins to several other spectroscopic and X-ray modalities (e.g. XPCS) to facilitate virtual 
experiments that allows users to map experimental controls to the intended outputs and exhaustively perform 
synthetic experiments before the actual ones.

5.13.2.4 Process of Science

Scientific understanding enabled through the careful design of experiments or computational simulations for 
the collection and analysis of key data, is one of the primary products of user facilities. A digital twin framework 
takes advantage of the fact that many experimental capabilities at SUFs (NSRC’s and light/neutron sources) 
characterize either time-dependent atomic positions and/or time-dependent structure factors (is the scattering 
vector, is atom i’s form factor, and , its position at time t). The read-outs can be predicted from dynamical 
simulations if the underlying models are physically accurate on time and length scales comparable to the ones 
probed in experiment. Due to experimental resolution limits, those observables have to be reconstructed from 
coarsened and incomplete real and/or reciprocal space information, necessitating advanced techniques, such as 
phase reconstruction algorithms to be informed by atomistic methods. In this context, AI/ML tools and powerful 
workflows can provide a good solution to the inverse problem of obtaining atomic positions from experimental 
observables by augmenting the incomplete experimental data with atomistic simulations of the energy landscape. 
Furthermore, AI/ML assisted multifidelity scale bridging allows users to perform dynamical simulations on a 
“reconstructed” or “inverted” user-defined sample and exhaustively explore experimental controls and expected 
read-outs in a virtual environment.
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Data movement and data processing are critical for scientists and researchers, particularly once they have 
performed their experiments or simulations. Experimentally measuring and computationally simulating materials 
provide the major means for collecting scientific data and is the primary activity of users working at or with the 
NSRC’s – the measurement techniques vary widely across the suite of instruments and theoretical/computational 
approaches, but they have some common steps involving data acquisition and analysis as listed below:

 − Data acquisition via computational simulations or experiments

 − Data movement, cataloging, and archiving

 − Data analysis and visualization

 − Fitting to models and analysis of the processed data for structure, function or  
dynamics information 

The computational resources, on the other hand, are ephemeral, data is enduring, requiring long-lived allocations 
of storage resources. Public policy is further motivating this demand, requiring open access to data generated as 
part of federally funded research.

The goal of a digital twin is to seamlessly extract information from the experimental data sets and use them as 
either input to dynamical simulations or as training data to improve models. In the spatiotemporal domain, there 
are a variety of microscopy, spectroscopy and scattering techniques for gathering spatiotemporally resolved 
information at varying resolutions (Fig. 4). Recent SUF efforts have achieved ultrahigh temporal resolution down 
to attosecond scales, providing unprecedented precision in visualizing processes at the levels of electrons and 
atoms. In the spatial domain, likewise, a variety of tools allow for imaging at length scales ranging from atomic 
to mesoscale resolution. Real-space imaging modalities include transmission electron microscopy (TEM) and 
nonscanning probes that utilize the coherence of radiation to reconstruct the real-space density distribution, 
e.g., CDI. Combining time and space domain techniques, innovative spatiotemporal imaging tools such as UEM 
propel material characterization into a new era. On the other hand, physically accurate and efficient models are 
critical for digital twin’s success. Each NSRC has a theory group with staff expertise in techniques spanning the 

Figure 5.13.4:  An example of the “digital twin” workflow being developed by NSRC staff
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various different modeling and simulation scales. In principle, one can mimic the time-resolved experiments and 
extract both real and reciprocal space information by performing detailed materials simulations.

The use of digital twins will increase the efficiency of the user experience at the SUFs by providing prior and 
concurrent guidance to users to run the most precise experiments. For example, users may require extensive 
searching of the parameter space — of both computational models and experimental controls — requiring 
automated workflows in order to maximize the throughput of parameter combinations investigated (Fig. 5.13.4). 

Without available workflows that couple an experiment’s goals with known theory, digital twins have not been 
utilized in SUFs. In two to five years, applications of ASCR workflow research offers untapped opportunities to 
address the above challenges. Workflows can fill in the missing gaps in resolution in space and time by comparing 
multiple models and selecting the best model(s) to emulate an experiment. The utilization of facilities can be 
optimized by conducting parameter searches ahead of scheduled beam time. Workflows can help scientists derive 
the theory to explain empirical results by launching an ensemble of simulations with different initial conditions 
and searching for results that match the experiment. Beyond five years, we anticipate fully deployed digital 
twins at SUFs that have shared workflows operating in both forward and reverse modes. In the former, a user 
can switch between various multifidelity modeling scales and perform virtual simulations to extract synthetic 
real or reciprocal space data expected in experiments. In the latter, information extraction from experimental 
measurements is used to retrieve back structural information as well as facilitate continuous updates from real 
experiments (real or reciprocal space), which would be used as training data to improve the models for AI 
solutions to inverse characterization problems.

5.13.2.5 Remote Science Activities

In the case of a digital twin, most of the remote resources are computational in nature, e.g., utilizing compute 
clusters at one of the NSRCs or via leadership computing (NERSC, ALCF, OLCF). Other (noncomputational) 
remote resources being utilized typically are done via users communication to staff in real time during planning 
of experiment and its execution, alongside observation through Teams or Zoom. Direct steering of instruments is 
becoming possible. 

5.13.2.6 Software Requirements

The CNM primarily utilizes two storage technologies, block and object storage. The software solution for block 
storage access is Luster, and DataCore Swarm for object storage. Both storage solutions utilize the Globus data 
platform services to share and transfer data with remote users or facilities. In addition, DataCore Swarm provides 
an S3 API to access, transfer, and share data. In the next two to five years, CNM plans to release custom RDMS 
to aid in the data curation, analysis, and publication of scientific data produced at CNM. 

Online data analysis and reduction are important and much of this is accomplished within the particular 
application software. Other components may involve postprocessing via VisIt, VMD, VESTA, Matlab, P4Vasp, 
etc. Typical data formats are ASCII, XML, HDF5, binary, lossless compressed, etc. GridFTP can be effective for 
much of the needed data movement between computing resources, especially in the postprocessed form. Other 
modes such as NFS, SMB/CIFS, Globus Online, BBCP, FTP, SCP, can also be useful and are utilized.

CNMS data is being transitioned to a large PB storage server. CNMS also runs a local server with about 100 
TB of storage which is a windows file system that our staff can access to back up their data. CNMS is currently 
trialing the use of DataFed, an ORNL-developed federated data management system for keeping track of both 
simulation and experimental data sets. DataFed is a software solution that links together geographically diverse 
file storage systems and makes all of them available through the same utility. It offers considerable features 
relevant for scientific information flow data provenance tracking, metadata searches and includes a Python API 
for automating routines. DataFed can work with Globus and other tools.
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We also publish data sets through ORNL’s constellation application, which provides a quick interface for hosting 
the file, and providing a doi. It is envisioned that this will be integrated into DataFed in the future.

For the experimental side, we are trialing the use of a gateway device to transfer files from the instruments to 
the data storage system, with the files automatically ingested by DataFed so that the relevant metadata is also 
captured, thus enabling keyword searches by metadata fields. The data storage is local to ORNL. Any remote data 
sets can be accessed through collaborators through either Globus endpoints or through scp/ftp, or through the 
DataFed interface (if the collaborator also utilizes DataFed).

For analysis of spectral and imaging data sets, the CNMS, with partners, developed the pycroscopy ecosystem 
of packages (github.com/pycroscopy). This software effort has amassed over 200k downloads in five years, and 
now consists of ~ a dozen important packages for different types of data analysis. All the packages are written in 
Python and are open-sourced. This ecosystem is divided primarily into three distinct areas, (1) Data input/output 
and utilities, (2) Generic imaging and spectroscopy analysis, and (3) More focused and domain-specific packages, 
as shown in Figure 5.13.1. The general feature of the ecosystem is a common ‘currency’ of data object (the sidpy 
data set object) that enables efficient processing storage and visualization.

5.13.2.7 Additional Network and Data Architecture

The Argonne campus network connects 100 buildings and 12 data centers in a multivendor switching and  
routing network. The campus has a new robust single-mode fiber cable plant that has plenty of capacity and 
ability to be expanded.

External network connectivity is provided by ESnet, MREN, Internet2, and Internet2 Peering Exchange (I2PX). 
ESnet recently migrated Argonne to the new ESnet6 network and has redundant optical transport and routers 
deployed on the Argonne campus in a redundant configuration supporting up to 400GE connections.

There are two primary networking node locations distributed between the north (Bldg 221) and south (Bldg 
541B) sides of the campus to provide network redundancy. Generally, all buildings and data centers have 
connections to each of these networking nodes. The fiber used to connect to off-site providers is diverse and exits 
on the east and west sides of the campus.

The Argonne networks supports many connection speeds. The WAN supports 10GE, 40GE, 100GE, and 400GE. 
The campus core network support speeds of 1GE, 10GE, 40GE, and 100GE. Building connections are generally 
multiple 10GE with some 40GE. Data centers 10GE, 40GE, and 100GE. LAN connections within buildings are 
generally 1GE and 10GE.

ANL WAN

The Argonne WAN network connectivity is provided by ESnet and MREN (Internet2 gateway, Peer Exchange 
(I2PX)) ESnet has optical and routing gear on the Argonne campus. Argonne has two Juniper MX960 border 
routers that are split between buildings 221 and 541B for redundancy and diversity.

Argonne uses ESnet OSCARS virtual circuits. (On-Demand Secure Circuits and Advance Reservation System)

The Argonne connections to ESnet are 2x100GE. The connections to MREN are 3x10GE. The border routers are 
connected to each other with 2x100GE connections. The connections to the campus Core network is 2x40GE and 
40GE to the perimeter firewall.

Argonne has one perfSONAR connected to the border at 40GE.

Argonne deploys cyber security at the border with blackhole routing and network traffic capture taps for traffic 
collection and intrusion detection.
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• Present to two years

 − 400GE upgrade expected in FY22

• Two to five years

 − Upgrade border routers

 − Multiple 400GE

• Five + years

 − Terabit WAN connections

ANL Science DMZ

The Argonne ScienceDMZ is composed of Juniper QFX series equipment that is connected directly to the 
Argonne border routers with redundant 2x100GE links. The ScienceDMZ provides high-speed connectivity 
between scientific organizations for the exchange of data without taking the traditional path through a firewall.

Connections in to the Science DMZ are a minimum of 100GE with most facilities connecting at 2x100G. This 
allows collaborators to exchange data in a high-speed environment that does not affect commodity network 
connectivity.

• Present to two years

 − 400GE connectivity

• Two to five years

 − Hardware upgrade

• Five + years

 − Terabit connectivity

ANL Core

The Argonne core network is provided by 2 Cisco Nexus 7710s spread across buildings 221 and 541B for 
redundancy. These switches offer network speeds at 1GE, 10GE, 40GE, and 100GE. The Core provide 
connections to the buildings and many of the data centers on the Argonne campus.

• Present to two years

 − No changes

• Two to five years

 − Replace core devices to NextGen

• Five+ years

 − Terabit connectivity

ANL LAN

The Argonne LAN consists of the building access and aggregation switches. The Laboratory has standardized on 
Cisco and Aruba switches in the LAN. There is a combination of 1GE, 10GE, and 40GE network speeds in the 
LAN. Desktops are connected at 1GE.

• Present to two years

 − Continual refresh of switches older than five to seven years

 − Wireless access point upgrades
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• Two to five years

 − Consider an overlay network topology

 − Ongoing switch refreshes

 − Zero-trust networking

• Five+ years

 − Next-Gen

 − 10GE to the desktop

 ANL Data Centers

The primary data center at Argonne consists of Cisco Nexus equipment in an ACI fabric. It connects to the 
Argonne core network at 4x40GE and offers 2x40GE connectivity to every ToR switch. There is a combination of 
1GE, 10GE, 25GE, and 40GE to host in this space.

• Present to two years

 − Hardware refresh for ToR switches

• Two to five years

 − Spine switch replacement

• 5+ years

 − Terabit connectivity

5.13.2.8 Use of Cloud Services

The NSRC’s do not presently utilize cloud services for its scientific data infrastructure or for computations/data 
analysis. Cost-effectiveness was a major factor hindering the use of cloud computing services for CNM users. 
CNM does not have any immediate plans to utilize cloud services for our needs. Currently the CNMS makes 
limited use of cloud services, but this is expected to change. Our cloud service is a locally run OpenStack run 
by CADES, which provides small virtual machines to staff and users at the CNMS on an as-needed basis. These 
VMs can, and are, used for data processing and occasionally some more heavy parallel computation jobs (e.g., 
those requiring ~64 CPU cores), for special requests. Many of our users also utilize Colab, for access to a GPU 
for training. It is expected that as GPU usage continues to increase, either our local cloud compute capabilities 
will grow to accommodate this demand, or our users will shift to external cloud services such as AWS or Azure. 
This may run into the dozens of instances/year level. CNM along with the other NSRC’s will continue to evaluate 
the capabilities and cost-effectiveness of using cloud services in the near term.

5.13.2.9 Data-Related Resource Constraints

For most of the facility, the data storage and transfer speeds are currently sufficient, and are not expected to 
be significant concerns in the next two years (perhaps with the exception of very particular experiments, such 
as 4D STEM). The main constraints are with the access to computation, which is particularly limited for the 
theory groups, and the changing nature of the HPC platforms which make older code quickly obsolete, requiring 
significant rewriting to accommodate new hardware upgrades. These are perhaps the most significant issues. 
Additionally, the different NSRCs and different facilities within each, have different schemes and different levels 
of implementation for acquiring, labeling, storing, and providing access to the heterogeneous data generated. The 
lack of data pipeline standards causes issues, such as differences in metadata associated with different data types 
and different levels of data manipulation. To capture and curate data from the NSRCs, many levels of technical 
details need to be worked out, such as data formats, software development framework, sample tracking, metadata 
capturing, and labeling. In addition, data sets from correlated measurements, and the corresponding simulations, 
need to be handled in a coordinated manner to extract synergistic information. These issues hamper the efficient 
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use of NSRC data for scientific discovery. There is a need for common standards and shared workflows for data 
across the NSRCs which will not only provide an effective data solution, but will also enable cross-center data 
sharing, augmentation, and manipulation.

Coupling ‘digital twin’ simulations with experimental steering will become an increasingly relied upon capability 
at the light sources as the decade progresses. Due to the high computational cost associated with data processing, 
reduction, and analysis, and of model training on such large data sets, the light sources will need to employ the 
use of geographically distributed computing facilities and data repositories. This necessitates high bandwidth, low 
latency network connections between the light sources, and remote computing and data storage centers.

5.13.2.10 Outstanding Issues 

None to report at this time. 

5.13.2.11 Case Study Contributors

BES Design and Development of Digital Twin Strategies Representation

• Subramanian Sankaranarayanan, ANL, skrssank@uic.edu

• Christopher Mayes, SLAC National Accelerator Laboratory, cmayes@slac.stanford.edu

• Guimei Wang, LBNL, gwang@bnl.gov

• Sugata Chowdhury, Howard University, sugata.chowdhury@howard.edu

• Joshua Turner, SLAC National Accelerator Laboratory, joshuat@slac.stanford.edu

• Timmy Ramirez-Cuesta, ORNL, ramirezcueaj@ornl.gov

• Kevin Yager, BNL, kyager@bnl.gov

• Yugang Zhang, BNL, yuzhang@bnl.gov

• David Prendergast, LBNL, dgprendergast@lbl.gov

• Remi Dingreville, Sandia National Laboratories, rdingre@sandia.gov

• Bobby Sumpter, ORNL, sumpterbg@ornl.gov

ESCC Representation

• Linda Winkler, ANL, winkler@mcs.anl.gov 

• Corey Hall, ANL, chall@anl.gov
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5.14 Multifacility Experimentation and Analysis Workflows: X-ray Light 
Source Perspective
The multifacility experimentation and analysis workflows, focused on X-ray light sources, brings together BES 
community representatives from X-ray light sources discuss this emerging area of scientific investigation. The 
case study profiles the overall concept, some early results, and a discussion about what the future will hold. 

5.14.1 Discussion Summary

• BES-funded light sources often house multiple beamlines and instruments. Most operate 
24/7 for 8-9 months a year with multiple user groups running concurrently. Experiments are 
diverse in their data size with a daily rate ranging from 10 MB (X-ray spectroscopy) to many TB 
(imaging and tomography). In many cases, data is transferred from the host facilities to the users 
for analysis, using portable drives or data transfer tools. 

• There are a number of different sources/sinks for the data, depending on the workflow:

 − Synchrotron facility to DOE HPC facility

 − Synchrotron facility to light source or national lab

 − Synchrotron facility to university

 − Synchrotron facility to cloud computing/storage 

• Synchrotron facility to an DOE HPC facility is the most heavily used for streaming analysis 
to process raw data or do post-experiment analysis, as well as archive historical data, train and 
retrain AI/ML, and use of simulations to inform experimental process. 

• The Lab to Lab use case is exercised when multimodal analysis is desired, or if a lab/university 
has a specialized local computing resource that is used for analysis. 

• The synchrotron facility to university use case is mostly used to do the slow transfer of data sets 
post experiment to a users’ local storage/computing resources. 

• The synchrotron facility to cloud computing/storage is not used by the facility but may be 
employed by users. 

• The near real-time interpretation of structure revealed by X-ray diffraction requires significant 
computational resources. The analysis pattern is characterized by bursts of short jobs, requiring 
very short startup time. Current data collection rates are about 15 TB/day for high compute 
experiments. Within three to five years, it is expected that this rate will increase to 500 TB/day 
and in 5+ years to > 1 PB/day. 

• During analysis execution at a remote HPC site the data stream can be about 1 Gb/s, but is 
likely to increase by at least a factor of 10x within three years as more sophisticated methods of 
visualizing intermediate results are implemented. 

• Archiving data between experimental and computational facilities is common, and typical 
transfers are 8-24 Gbps but are expected to increase by a factor of at least 10 within a year and a 
factor of 100 within three years.

• Data collection rates are growing exponentially due to light source and detector upgrades, and 
computational requirements are also growing in proportion. Sending data from a light source 
facility to the HPC facility requires a data path of sufficient bandwidth. 

• By the end of the decade, data aggregated at rates of multiple terabits per second (100-300 Gbps 
within three years and exceeding 1 Tbps in five years) may flow via ESnet from any of the light 
sources to any of the DOE HPC facilities. There is an urgent need to upgrade the light source 
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to ESnet connections at some of the laboratories to 400 Gbps and above to match the input 
bandwidth at ASCR computing facilities within the next two years.

• Key elements of a future data management strategy for the light sources include a common API 
for accessing network and computing resources, parallel data transfer tools, high-fidelity data 
transfer, network performance monitoring, reservations, and dynamic network provisioning.

• There is a growing need for remote acquisition and analysis at user facilities. The development 
and deployment of tools to facilitate remote data acquisition and analysis continues, despite the 
challenges of spanning instruments at one facility or instruments across multiple facilities. 

• Remote (e.g., streaming) data analysis is often necessary due to the size and time constraints of 
bulk-data movement. This is compounded by users without access to dedicated computation or 
storage resources, or a lack of sophisticated software tools. It is often practical to use systems 
managed by experts at the facility, accessed via remote desktop tools or web applications like 
Jupyter.

• Data is managed using various facility-specific and instrument-specific solutions. Bluesky 
Databroker is becoming a common interface at some facilities, but it will never encompass all 
the data of interest.

• Data is transferred using, HTTP services (e.g. Bluesky Tiled), SFTP, and Globus.

• For some instruments and techniques, storage is cheap and the budget for storage sufficient. In 
other cases, aggressive downsampling and/or lossy compression are needed. 

• It is routine to execute experiments where the physical instrumentation and the compute 
infrastructure are not colocated. When the compute infrastructure is used to inform 
experimental decisions (whether fully or semi-autonomously) the network transfer speed can be 
a significant limiting factor on throughput.

• An emerging pattern is the use of “online” data reduction, which can reduce data volume in 
order to be able to write to disk and stream to DOE HPC facilities over ESnet. Throughput 
from the detectors could exceed 1 TBps by 2028, and local data reduction will reduce by a factor 
of 10 to about 1 Tbps over ESnet. 

5.14.2 Multifacility Experimentation and Analysis Workflows: X-ray Light Source 
Perspective Case Study 
Four synchrotron facilities in the US are sponsored by the Scientific User Facilities Division (SUFD) at the Office 
of BES in the US DOE. Using electron storage rings and linear accelerators, these facilities produce intense 
photon beams with energies ranging from terahertz to hard X-rays using electron accelerators. 

The raw data in an experiment at a light source is captured by a variety of detectors. The interpretation of 
the data is typically conducted by the user team, in the aftermath of the measurements, with some exceptions 
where in-line data analysis is critical to successfully conduct the experiment. Due to the growing complexities 
of the analysis workflow, coupling experimental facilities with dedicated analysis frameworks, often run at HPC 
facilities, is a new area of investigation for the future use of the BES community. 

5.14.2.1 Science Background 

Interaction of photons with matter produces signals that reveal subtle details of physical processes, mechanisms 
of complex chemical reactions, and intricate material properties. All DOE sponsored synchrotron sources operate 
as national user facilities, with capabilities — both cutting-edge instrumentation and the technical expertise 
to operate them — available to users from academia, industry, government agencies, and research institutions 
worldwide. Light sources user community conducts research in a broad range of scientific disciplines, ranging 
from biology and environmental science through basic and applied chemistry to condensed matter physics. The 
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majority of users gain access to BES user facilities via a merit-based peer-review process. Scientific proposals for 
access to the facility’s capabilities are evaluated by the independent review committee. Calls for these proposals 
typically take place every 4 months. Typically, individual users’ experiments last between several hours to 7 days 
When the users’ research results are expected to be published in open literature, the access is free, with a small 
fraction of time allocated to proprietary research on a cost-recovery basis.

National Synchrotron Light Source II (NSLS-II) at BNL, which began operations in 2014 is the newest facility in 
the DOE complex. ALS and APS, at Berkeley and Argonne national laboratories respectively, plan considerable 
upgrades in 2023-2026, replacing their storage rings with state-of-the-art designs. These upgrades will bring our 
light sources into a new era of fully coherent and close-to-theory high brightness, which enable experiments for 
nanometer-scale spatial resolution, sensitivity to correlated processes with ultrashort time scales, and various 
techniques relying on beam coherency. LCLS, at SLAC National Accelerator Laboratory, the world’s first hard 
X-ray free-electron laser, will be complemented with LCLS-II which will provide 1000x increase in photon  
pulse rate.

The raw data in an experiment at a light source is captured by a variety of detectors, such as ion chambers, 
scintillators, semiconductor (Si, Ge, CdTe) detectors, to name a few, which capture flux, energy, and location 
of the photons and the time of the events. Multiple, method-specific techniques are used to extract physically 
meaningful information about structure and dynamics in the specimen under study. Detector data is coupled  
with the data from the sample environment (e.g., temperature, pressure, etc.) which allows to infer complex 
structure-function relationships. The interpretation of the data is typically conducted by the user team, in the 
aftermath of the measurements, with some exceptions where in-line data analysis is critical to successfully 
conduct the experiment. 

Day in the Life of a User – The Data Lifecycle at LCLS

Users submit proposals in response to calls twice a year. Each proposal is reviewed and ranked by the 
independent PRP. Top-ranking proposals are awarded beam time. Planning begins as soon as beam time is 
awarded. The LCLS facility begins discussions with users about their needs. Users may begin generating 
simulations, growing samples, or building instrumentation several months in advance of the beam time. 
Experiments typically last for 5 days of 12-hour shifts. Experiments are either on a day shift, 9 AM – 9 PM or a 
night shift, 9 PM – 9 AM and multiple experiments may run simultaneously. Experiment configurations at the 
beamlines are not static and change weekly. Users arrive on-site several days prior to their beamtime and spend 
time checking out the beamline, setting up for the experiment, or testing analysis workflows, which may require 
some access to computing resources. Any given experiment can have from a handful of collaborators to 70 – 80, 
some of which are on-site and driving the experiment during the beam time while the others are analyzing data 
from their home institutions and participating with on-site colleagues via telecommunication software.

In addition to data collection for scientific inquiry, data is also collected to calibrate the detectors, align the 
beamline, or tune sample delivery. By the last few days of beamtime, most of the beamline parameters have been 
optimized to extract the most science information, so average rates of useful data written to disk usually increase 
during the last days of an experiment. Some experiments require some coordinated excitation of the sample 
followed by data-taking. For example, a laser pulse may excite a material which is followed up by a precisely 
timed series of X-ray pulses to image the system at different time intervals following the stimulus. In this case, the 
data system coordinates this sequence of events and collects metadata that is stored alongside the instrument data 
to describe the conditions under which the experiment was done. 

For 80% of experiments, local (SLAC) compute resources are sufficient to provide quasi-real-time analysis, but 
for 20% of experiments, we stream data to a DOE Leadership Class Facility (NERSC, OLCF, ALCF) for analysis. 
The intent is for beamline scientists to be able to keep up with the acquisition rate of their data and obtain 
analysis results within minutes of ending a period of data acquisition. After data is copied to the spindle-based 
offline storage, users may copy data to their home institution for analysis. Approximately a tenth of users copy 
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data to their home institutions, usually using Globus. Most users complete their offline analysis using SLAC-
provided computing resources in the 4 months following their experiment. On average, a typical user will rerun 
over their entire data set up to 10 times. In some cases, users will also reanalyze data taken during a previous 
beamtime (up to 10 years ago) or combine results with data taken at other light sources to include (but not limited 
to) ALS, APS, NSLS-II, SSRL, SACLA, PAL, EuXFEL. 

The timescales for generation of data vary from group to group but can be summarized as follows. Ahead of an 
experiment, users may generate simulations in collaboration with theorists. This data is privately managed by 
the users. During the experiment, beamline scientists work closely with experimenters to optimize the data 
acquisition (calibrate detectors, detector to IP distances, sample delivery, hit rate) and optimize optics/laser 
timing. Once those are setup, data acquisition begins, which is an interactive process. Data is acquired for about 
10 minutes at a time, and analyses are run “live” during acquisition. The goal is to get an answer to a scientific 
question within a few minutes of stopping acquisition so the experimenters can decide how best to steer the 
experiment. Data quality is also assessed as part of this process: is the calibration/timing/alignment good? Is the 
data reduction performing optimally? Is the signal to noise as expected? If everything looks good, keep acquiring 
data. If not, modify the analysis code, take more data, and determine the source of the problem. Then, fix the 
problem and continue data taking. In some cases, there is a comparison between theory and experiment. 

5.14.2.2 Collaborators

BES-funded light sources use a peer-reviewed proposal system to enable user access to their capabilities. 
Synchrotron facilities house multiple beamlines (approx. 30, 40 and 65 for NSLS-II, ALS, and APS, respectively) 
whereas LCLS operates 10 instruments. Most of the beamlines are run simultaneously 24/7 for 8-9 months a 
year. Multiple user groups run their experiments during operating periods, bringing the total number of users 
to thousands a year (1500, 2000, 5000 and 1000 annually for NSLS-II, ALS, APS, and LCLS respectively). 
Experiments are very diverse in their data size with a daily rate ranging from 10 MB (X-ray spectroscopy) to 
many TB (imaging and tomography). In many cases, data is transferred from the host facilities to the users for 
analysis, using portable drives or data transfer.

User/
Collaborator 
and Location

Primary or 
secondary copy of 

the data

Data access 
method

Avg. size of 
data set

Frequency of data 
transfer or download

Are data 
sent back to 
the source 
and method

Any known  
issues with 
data sharing

ALL USERS varies, depending 
on whether they 
are a multimodal 
data producer or 
only a consumer

both portal and 
transfer

kB to TB 
depending on 
instrument

spanning slow post 
hoc analysis up to live-

streaming real time 
feedback with low-

latency requirements

Yes, transport 
modes 

include HTTP 
and Globus

Need partial 
access, 

streaming 
support, and 

speed

Table 5.14.1: Multifacility X-ray Collaborations

There are a number of different sources/sinks for the data, depending on the workflow and the needs of the 
experimenters. The data paths can be summarized as follows: 1) Synchrotron facility to ASCR compute facility, 
2) Synchrotron facility to light source or national lab, 3) Synchrotron facility to university, and 4) Synchrotron 
facility to cloud computing/storage such as Google, Amazon AWS, or Microsoft Azure. The first, Synchrotron 
facility to ASCR facility is the most heavily used. It is used to do streaming analysis using ASCR computing to 
process raw data or do post-experiment analysis. A primary copy of the data set is always kept at synchrotron 
facility and a secondary copy is kept at NERSC. The synchrotron to ASCR facility workflow is used to archive 
the data sets at NERSC and to train/retrain AI/ML models that are being used by software at a beamline during 
experiments or to analyze data post experiment. An emerging use case is the use of simulations, performed at 
the ASCR facility, and then used during the experiment to inform data analysis. The second data path, lab to lab, 
is used when multimodal analysis is desired, or if a lab/university has a specialized local computing resource 
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that is used for analysis. The third data path, synchrotron facility to university, is mostly used to do the slow 
transfer of data sets post experiment to a user’s local storage/computing resources. Finally, the synchrotron 
facility to cloud computing/storage is not used by the facility but may be employed by users. The synchrotron 
facility has investigated the possibility of using cloud resources but found that the costs associated with I/O were 
unsustainably high. However, synchrotron facility does not prevent users from making use of these resources 
if they wish, and if multimodal analysis is desired, cloud storage and computing becomes a more attractive 
option. In some cases, such as streaming real-time analysis during an experiment, there may be strong real-time 
constraints on the flow of data between the facility and a computing resource.

5.14.2.3 Use of Instruments and Facilities

Due to the variety of users, experiments at light sources will not cover all detection and data transfer and data 
interpretation schemes. 

Use Case: XPCS

XPCS is a technique requiring highly coherent X-ray beam available at modern synchrotron sources. It enables 
researchers to investigate nanoscale and mesoscale dynamics of complex materials on timescales ranging from 
below milliseconds to minutes or hours. XPCS is based on measuring time correlation functions of the speckle 
fluctuations that occur when a coherent X-ray beam is scattered from a disordered sample. It can be used to 
measure equilibrium dynamics via the “usual” single-speckle intensity-intensity autocorrelation functions. 
When combined with 2D area detectors and a multispeckle detection technique, it can also be used to measure 
nonstationary, nonequilibrium dynamics via two-time correlation functions.

As an example of the current state of affairs, Coherent Hard X-ray Scattering (CHX) beamline provides 
state-of-the-art flux of coherent photons, leveraging exceptional brilliance of the NSLS-II storage ring. CHX 
employs a 2D detector with 4 x 106 pixels (Eiger 4K) operating at the frame rate of 1kHz. Speckle patterns are 
collected for 30 s. Analysis of the data is required to steer the experiment. The collected data is stored locally and 
analyzed using a 72-core, 1 TB RAM server, local to the instrument. With the available computer capabilities, 
the data analysis, which is a computationally intensive process takes ~15 min, reducing the duty cycle of the 
instrument to below 10 %. Enabling in-line analysis will require 100Gbps data transfer to a multinode cluster and 
optimization of the analysis code to enable parallelization or GPU utilization. 

Use Case: LCLS X-ray Scattering Experiments

X-ray scattering experiments are a powerful tool to determine the molecular structure and function of unknown 
samples, such as COVID-19 viral proteins . In crystallography experiments, molecular structure is determined  
by merging the X-ray diffraction patterns from millions to billions of protein crystals exposed in random 
orientations. The near real-time interpretation of structure revealed by X-ray diffraction requires significant 
computational resources.
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The analysis pattern is characterized by bursts of short jobs, requiring very short startup time. Current data 
collection rates are about 15 TB/day for high compute experiments. Within three to five years, it is expected that 
this rate will increase to 500 TB/day and in five+ years to > 1 PB/day. During analysis execution at a remote 
HPC site, updates on job progress, intermediate results, and logfiles may be transferred back to the originating 
facility. After analysis jobs are complete, summary results are transferred and made available to users via a web 
browser at LCLS. In total, this data stream from NERSC back to LCLS is about 1 Gb/s, but is likely to increase 
by at least a factor of 10x within three years as more sophisticated methods of visualizing intermediate results are 
implemented. In addition to transferring data for running experiments to NERSC for fast-feedback processing, 
LCLS also uses ESnet to archive data at NERSC. Typical transfers are 8 to 24 Gbps but are expected to increase 
by a factor of at least 10 within a year and a factor of 100 within three years.

Such “big data” experiments are challenging to execute and often require fast turnaround between data 
acquisition and data analysis to enable experimenters to make informed decisions when driving experiments in 
order to make use of the limited resources of X-ray beam time and samples. Data collection rates are growing 
exponentially due to light source and detector upgrades, and computational requirements are also growing 
in proportion. In order to analyze data on experiment timescales, it is necessary to send data to remote high 
performance computing facilities such as NERSC, the ALCF, or the OLCF. Sending data from a light source 
facility to the HPC facility requires a data path of sufficient bandwidth. 

In principle, by the end of the decade, data aggregated at rates of multiple terabits per second (100-300 Gbps 
within three years and exceeding 1 Tbps in five years) may flow via ESnet from any of the light sources (ALS, 
APS, LCLS, NSLS-II, SSRL) to any of the ASCR compute facilities (ALCF, NERSC, OLCF). There is an urgent 
need to upgrade the light source to ESnet connections at some of the laboratories to 400 Gbps and above to 
match the input bandwidth at ASCR computing facilities within the next two years.

Key elements of a future data management strategy for the light sources include a common API for accessing 
network and computing resources, parallel data transfer tools, high-fidelity data transfer, network performance 
monitoring, reservations, and dynamic network provisioning. Consideration should be given to defining a 
methodology for handling simulated and other data to enable multimodal analysis and for reporting meaningful 
intermediate analysis results back to the user without abusing the network.

Figure 5.14.1:  LCLS SFX/SPI example is a representative information extraction pipeline. In this exam-
ple, raw data is acquired at the light source facility (LCLS), automatically transferred to an ASCR facility 
(NERSC) via ESnet, and analyzed using a scalable software library appropriate to the science domain. It 
is possible to achieve a turnaround time from data acquisition to full molecular reconstruction within 10 
minutes. (ref arXiv.2106.11469v2)
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Use Case: Autonomous Experiment Steering for Scientific Discovery at Synchrotron Light Sources

Autonomous experiment steering is an emerging mode of conducting science at the five US DOE-funded light 
sources. Within the light sources, this capability has the promise to provide automated setup of the source and 
sample alignment, intelligent data collection, quality verification, data reduction, and coupling of experimentally 
derived data with information derived from theory, models, and simulations. Autonomous experiment steering 
has the potential to unlock new materials science knowledge to, for example, better understand failure modes in 
materials, enable the synthesis of new materials, aid in the creation of purpose-built designer materials, and assist 
in additive manufacturing processes.

Feedback must often be obtained on timescales too short for humans to react in order to plan and steer 
experiments to, for example, catch rare events or see fast processes. Due to the intrinsic capabilities of the 
current and soon to be upgraded sources, coupled with high data rate detectors that generate large volumes of 
data at increasingly higher rates, advanced computational techniques, including AI/ML, must be employed to 
realize autonomous steering of light source experiments. These methods require the utilization of considerable 
supercomputing power to process data and train AI/ML models that may then be used to make real-time 
decisions using edge or local computing systems (see Figure 5.14.2).

Figure 5.14.2: Prototypical autonomous experiment ML data workflow. Data generated at a light source 
instrument (in this case at LCLS) is streamed directly to a supercomputing center (in this case ALCF). An 
ML model is trained on the fly. The trained model is deployed on an edge-computing device at the light 
source instrument to make experiment decisions in real time.

Networking must be able to connect light source instruments to edge, local, campus, and centralized computing 
facilities reliability, and with low latency. Terabit per second networking and beyond will be required to handle 
the large amounts of data expected in the coming years.

The further development and application of autonomous experiment steering at the light sources requires that a 
number of gaps in capabilities and infrastructure across the light sources, Laboratories, and computing centers 
be filled, including sufficient, reliable bandwidth, sufficient and sustainable data storage resources, on-demand 
access to large-scale computing systems, transparent access to facilities and systems across the complex, including 
federated identity and shared data protocols, and software tools and infrastructure to facilitate the development of 
scientific data workflows that operate across the DOE’s distributed resource landscape.

Autonomous experiment steering will become an increasingly relied upon capability at the light sources as the 
decade progresses. Due to the high computational cost associated with data processing, reduction, and analysis, 
and of model training on such large data sets, the light sources will need to employ the use of geographically 
distributed computing facilities and data repositories. This necessitates high bandwidth, low latency network 
connections between the light sources and remote computing and data storage centers.
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Unified solutions across the light sources are required in order to leverage efficiencies of scale, and to provide 
facility users with the ability to easily and transparently manipulate data across the light sources. A shared 
computational fabric for the complex should be developed that connects light source instruments (and other 
SUF) to a multitiered, distributed computing landscape, including edge, local, campus, and supercomputing 
centers, data repositories and archives, and facility user institutions in a seamless and transparent manner. 
This necessitates the development of advanced networking capabilities and increased networking bandwidth, 
sustainable and discoverable data repositories, on-demand real-time supercomputing access, and workflow and 
orchestration tools.

Use Case: Autonomous Experiment Steering for Scientific Discovery 

Coupling of simulations and development of “digital twins” to light source experiments has the potential to 
unlock new materials science knowledge to, for example, better understand failure modes in materials, enable 
the synthesis of new materials, aid in the creation of purpose-built designer materials, and assist in additive 
manufacturing processes. It will also allow for a more efficient and optimum use of beamtime at the light sources. 

The coupling of simulations with light source experiments can be split up into three main areas in the 
experimental life cycle. Firstly, before the experiment, simulations can be used to help prepare, plan, and 
determine if the experiment is even feasible. Secondly, during the allocated beam time, simulations can help 
guide and inform the strategy and guide the experiment. Finally, simulations can be used to aid in the data 
analysis in order to extract the maximum scientific information from the data. 

Figure 5.14.3: Diagram that shows the flow chart of using a digital twin with light source experiments

Coupling simulations experiment steering will become an increasingly relied upon capability at the light sources 
as the decade progresses. Due to the high computational cost associated with data processing, reduction, 
and analysis, and of model training on such large data sets, the light sources will need to employ the use of 
geographically distributed computing facilities and data repositories. This necessitates high bandwidth, low 
latency network connections between the light sources and remote computing and data storage centers.

Unified solutions across the light sources are required in order to leverage efficiencies of scale, and to provide 
facility users with the ability to easily and transparently manipulate data across the light sources. A shared 
computational fabric for the complex should be developed that connects light source instruments (and other 
SUF) to a multitiered, distributed computing landscape, including edge, local, campus, and supercomputing 
centers, data repositories and archives, and facility user institutions in a seamless and transparent manner. 
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This necessitates the development of advanced networking capabilities and increased networking bandwidth, 
sustainable and discoverable data repositories, on-demand real-time supercomputing access, and workflow and 
orchestration tools. Also, as the majority of light source users are not experts in using computational facilities, 
there needs to be easy access and both in terms of obtaining the resources and performing the calculations.

As an example, here is the multimodal experiment we foresee becoming more common in the coming years. 
Recently, two instances of a single sample were placed simultaneous in two separate beamline instruments, which 
specialize in complementary techniques. The data streams from each instrument were fed to a single point of 
control, which orchestrated the sequence of measurements that each instrument should perform, synthesizing 
input from AI/ML agents and experimentalists. In this case, the two beamline instruments happened to be in 
the same facility, so all control and data communication took place over the local networks. In the future, we 
anticipate experiments that may combine two or more instruments from different facilities connected by  
wider networks.

5.14.2.4 Process of Science

Serial Femtosecond X-ray Crystallography (SFX) reveals the reaction mechanism by providing separate atomic 
structures for each metastable state, and several time points in between. SFX experiments offer huge benefits 
to the study of macromolecules, including the availability of femtosecond time resolution and the avoidance of 
radiation damage under operando conditions. SFX techniques will be instrumental in many experiments, ranging 
from the determination of macromolecules structure and dynamics, to the understanding and controlling of 
materials nucleation pathways, to the study of oxygenic photosynthesis.

In SFX, the structural information is derived from the diffraction data collected from a stream of individual 
crystals, with the primary feature extraction step consisting of measuring the Bragg spot intensities on each 
diffraction pattern. The main steps in the SFX algorithm are (1) identifying the Bragg diffraction spots, (2) 
deducing the geometry of the lattice repeat, (3) refining the model again and (4) summing the X-ray signal in each 
spot for further analysis.

Figure 5.14.4: Pictorial representation of the SFX pipeline

Based on a 10% hit rate and on the CCTBX workflow compute requirements, we project that the rate of useful 
SFX events will approach 5 kHz and the computing resources needed to reconstruct SFX data in LCLS-II will 
run routinely in the few tens of PFLOPS and some of the more demanding algorithms, like IOTA, will require 
several tens of PFLOPS.
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Use Case: Heterogeneous Catalysis

A second illustrative example is in the area of heterogeneous catalysis, where functional systems are neither 
homogeneous, nor static. The evolution of atomic and electronic structure, the making and breaking of chemical 
bonds, and the exchange of vibrational energy through intermediate states ultimately determine functionality. 
These interactions further lead to dynamic restructuring of catalyst materials during reaction. Knowing the time 
evolution of the atomic and electronic structure of molecules and substrates, particularly near elusive transition 
states, is critical to developing a predictive understanding for catalysts design

Today we are unable to develop a complete picture of this structural evolution — neither on the ultrafast 
timescales relevant to atomic motion, nor the nsec to msec timescales characteristic of diffusion and materials 
evolution. LCLS has enabled the study of simple surface reactions, and reported the first observation of a 
surface transition state — based on studies of ideal crystals, with reactants prepared at high concentrations in 
vacuum. However, these studies do not address “working” catalysts which are typically of low dimensionality (e.g. 
nanoclusters of metals on an oxidic support), where coupled fluctuations of the electronic and atomic structure 
become increasingly important.

LCLS-II-HE, coupled with advanced computational approaches applied to massive data sets, will enable 
completely new approaches for simultaneously following both the atomic and electronic structure of 
heterogeneous catalysts in operation. In one such proposed approach, nanocatalysts are prepared (either 
with or without preadsorbed reactants) and interrogated pulse by pulse using a gas-phase jet, liquid particle 
injector, or translating tape. Multimodal characterization incorporates ultrafast X-ray spectroscopy (e.g. EXAFS, 
XES, or RIXS) or photoelectron spectroscopy to probes the electronic structure and chemical environment, 
while coherent X-ray scattering from the same hard X-ray pulse probes the atomic structure. Demonstration 
experiments in the soft X-ray range at FLASH and at LCLS highlight the promise of this approach for 
characterizing small heterogeneous ensembles of nanoparticles at the atomic scale using hard X-rays.

SPI

SPI is a promising emerging technique for such applications, Here, diffraction images are collected 
from individual particles, and are used to determine molecular (or atomic) structure, even from multiple 
conformational states (or nonidentical particles) in operating conditions that are inaccessible through other 
methods. These techniques will be instrumental in many areas of science, ranging from understanding and 
controlling nanomaterials self-assembly, to the chemistry and morphology of combustion aerosols to the coupled 
electronic and nuclear dynamics in heterogeneous (nano) catalysis.

However, determining structure from these experiments is challenging, since orientations and states of imaged 
particles are unknown and images are highly contaminated with noise. Furthermore, the number of useful 
images is often limited by achievable single-particle hit rates. Advanced algorithms currently under development 
(e.g. M-TIP by the CAMERA group) introduce an iterative projection framework to simultaneously determine 
orientations, states, and molecular structure from limited single-particle data by leveraging structural constraints 
throughout the reconstruction and offer a potential pathway to increasing the amount of information that can be 
extracted from single-particle diffraction.

A fundamental challenge in SPI is that the orientation of each imaged particle is unknown and must be recovered 
to determine structural information. Additionally, many samples display conformational flexibility and may exist 
in one of many possible structural states. To account for varying structural states and avoid a loss of resolution due 
to averaging of states, the diffraction patterns may need to be classified to the correct state. Furthermore, single 
particles scatter very few photons; hence the images are heavily contaminated by shot noise, often with less than 
a photon per Shannon pixel at high scattering angles.
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5.14.2.5 Remote Science Activities

The COVID emergency accelerated growing interest in remote acquisition and analysis at user facilities. As 
a result, staff and users have increased comfort and fluency with remote work. This includes planning with 
distributed teams, using video conferencing and remote desktop tools, and collaborative authorship of both prose 
documents and software code. Even with the return to normal operations, facilities are offering more telework 
and remote arrangements to new hires and existing staff. The development and deployment of tools to facilitate 
remote data acquisition and analysis, prioritized during the initial months of the COVID emergency, continues 
today. Multimodal experiments, whether spanning instruments at one facility or instruments across multiple 
facilities, present many of the same challenges and benefit from the solutions. 

Remote data analysis (where the bulk of the data stays near where it was acquired) is sometimes necessary even 
if the user visits the site. The data may be too large to practically copy or move. The user may not have storage 
resources to keep a copy on their own resources. Or, the user may not have computation resources to process data 
on their own resources. Finally, even with small data sets, users may not have software sophistication to set up the 
software environment they need to do their work. It may be more practical to use systems managed by experts at 
the facility, accessed via remote desktop tools or web applications like Jupyter.

At LCLS, operating experiments is the shared responsibility of beamline scientists, local staff, and on-site users. 
LCLS has web services, a data management system, and a data analysis infrastructure that allows for virtual 
access to all of the resources necessary to analyze the data taken at LCLS from a remote location. In most cases, 
all the same resources are available to users doing analysis at home as at SLAC. In most cases, the data remains 
in LCLS local storage and LCLS offline processing resource are used to analyze. Because of the uniqueness and 
changeability of LCLS instruments, LCLS does not envision remote operation of the instruments.

5.14.2.6 Software Requirements

The data is managed using various facility-specific and instrument-specific solutions. At NSLS-II and, 
increasingly, at other light sources, Bluesky Databroker is becoming a common interface, but it will never 
encompass all the data of interest.

Data is transferred using, HTTP services (e.g. Bluesky Tiled), SFTP, and Globus.

The accelerator systems and beamline instruments use the EPICS for low-level device control. The Bluesky Suite 
of tools has been broadly adopted for at NSLS-II high-level experiment control and increasingly, becoming a 
common interface at other light sources . Remote access tools, such as ssh, NX, and NoMachine, will continue to 
be utilized to enable remote access for LCLS experiments.

The basic requirements for a data management system typically include:

• Security: Authentication/Authorization (WebAuth using SLAC LDAP, Stanford SSO)

• Scan/run control (Bluesky, Python, epics, custom DAQ, Kafka message bus)

• File catalog (was iRods, migrating to Rucio by the end of 2022)

• Experiment metadata (mongodb, Kafka)

• Electronic Logbook (custom web application)

• Samples (mongodb)

• Workflow (Kafka, LSF/SLURM, AirFlow, APIS provides feedback)

• Feedback and reporting (custom web form)

• Instrument operator portals (MongoDB)
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In addition, we also require support for:

• Composability/site specificity (custom web service, Kafka/Websocket)

• Scalability/Reliability (MongoDB, Kafka)

• Backup/restore (MongoDB — mongodump, mongorestore)

• Scriptability (Python, Kerberos endpoint, PAM endpoint)

• Ease of deployment/upgrades (Python+Javascript application)

• Ease of development (Conda, Kubernetes, document-based store with Python_Javascript)

Python is widely used for experimental software these days; it also provided many simple web frameworks. A 
service-oriented architecture based on a REST based web service API is commonly used; and Flask seems to 
be a popular choice for building REST services with Python. The principal requirements for the backend are 
scalability/reliability; MongoDB has built in sharding/replication and the ability to grow a cluster seamlessly. 
MongoDB also uses a document model; which significantly enhances the ease of development avoiding much of 
the boilerplate associated with other backends. In addition, a message oriented architecture where all changes 
of interest are published on a message bus, enables composability of applications. The ability to separate out 
site-specific features into serverless components that react to these messages and shape the business data to suit 
the needs of the site is also useful. Using Kafka as a message bus allows for clients to reliably continue from where 
they left off; this facilitates building reliable components. Kafka messages can also be routed to the frontend’s 
using websockets to facilitate reactive UI’s eliminating the need for polling.

5.14.2.7 Additional Network and Data Architecture

BNL HTSN

BNL has implemented a vendor agnostic, resilient, scalable and modular terabit per second (Tbps) HTSN which 
serves as the primary network transport for all data intensive collaborations at BNL. It provides high throughput 
connectivity to all HPC and HTC collaborations and supports the timely transfer of large amounts of scientific 
data via the Internet. 

The HTSN has five primary components:

• Network perimeter

 − Three diverse 100 Gbps circuits that peer with ESnet. These circuits are utilized by 
all scientific and administrative communities at BNL. All traffic to and from BNL flows 
through either of these circuits. 

 − The BNL network perimeter transfers on average 15-20 PBs of data monthly.

• Science DMZ

 − Supports open, high-speed WAN/Internet) access for all scientific collaborations 
throughout the BNL campus.

• Science Core

 − A Tbps DCI for data intensive collaborations at BNL. This network interconnect enables 
high-speed connectivity between collaborations such as ATLAS, STAR, PHENIX, CAD, 
CFN, NSLS-II, High-Performance Computing Clusters and the SDCC.

 − Intelligence and routing policies are applied within the Science Core to restrict or grant 
access to specific resources within the SDCC.
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• Spine

 − A Tbps network Spine that interconnects all Leaf switches. Leaf switches can consist of  
ToR or chassis-based switches that connect compute, storage or general infrastructure 
service servers.

 − The responsibility of the Spine is fast packet forwarding and flexibility, not policy insertion 
or server termination.

 − External Border Gateway Protocol (eBGP) is utilized throughout the HTSN. EBGP was 
chosen for its ability to immensely scale and to create modularity and fault domain isolation 
down to the rack level. Each Spine group shares the same ASN but does not have Internal 
BGP (iBGP) peering’s between them. Each Leaf or pairs of Leaves will require their  
own ASN. 

• Storage Core

 − A redundant terabit per second switching block that aggregates high performance  
storage services.

BNL Next-Generation Network Perimeter

The network perimeter at BNL is a high-speed and fault-tolerant network infrastructure that provides the BNL 
site connectivity to the Internet and various scientific wide area networks. It supports numerous data intensive 
collaborations such as BES, Biological and Environmental Research, HEP, and Nuclear Physics. It also supports 
critical campus services such as workstations, phone service, security, safety and monitoring and enterprise and 
cloud computing. Since being placed into production in 2013, the network perimeter has transmitted over 100+ 
PBs of data per year to numerous scientific collaborations worldwide. 

In 2013 the BNL network perimeter was bleeding edge 100 GbE technology. Now, the hardware has reached 
8+ years in age and it is no longer cost-effective to purchase additional hardware for these platforms. Newer 
platforms today support much greater 100 GbE interface densities along with supporting 400 GbE which will 
allow BNL to support all its data intensive collaborations well into the future. With these factors in mind, BNL 
will possibly procure a next-generation network perimeter within the next one to two years. This will prepare the 
laboratory to meet the missions needs of all the data intensive collaborations at BNL.

The SLAC Shared Science Data Facility (S3DF)

S3DF is a compute, storage and network architecture designed to support massive scale analytics required by the 
SLAC experimental facilities. S3DF will effectively replace several outdated SLAC systems. S3DF is considered 
an all-new environment that serves as a greenfield for modern technologies: storage, containerization, interactive 
workflows, data management, identity and access. 

The S3DF infrastructure is optimized for data analytics and is characterized by large, massive throughput,  
high concurrency storage systems. Over the next decade, S3DF will deploy a few PFLOPS of CPU  
computing, tens of PFLOPS of GPU computing, hundreds of PBs of fast storage, and more than two exabytes  
of archiving capabilities.

A significant fraction of these capabilities will be dedicated to LCLS — more specifically 2 PFLOPS of CPU  
and 5 PFLOPS of GPU computational resources, and 50 PFLOPS of fast access storage, will be reserved for 
LCLS experiments.

The S3DF will be complemented by DOE HEC facilities (OLCF, ALCF and NERSC) for the most 
computationally demanding LCLS experiments. This approach of combining local and complex-wide facilities 
will allow sizing S3DF to satisfy the requirements of the majority of LCLS experiments, rather than being driven 
by the most demanding techniques, while at the same time mitigating the risks related to unplanned outages 



247Basic Energy Sciences Network Requirements Review Final Report 2022

at HEC facilities and reducing some of the complexities associated with running on a supercomputer (resource 
orchestration, users accounts, lack of privileges, priority management, container requirements, etc).

S3DF will be hosted in the SRCF. SLAC and Stanford have recently completed the plans for a new SRCF 
module (SRCF-II) that will double the current data center capabilities, for a total of 6 MW. The new data center 
module will be available to host the S3DF expansion by early spring 2023. 

5.14.2.8 Use of Cloud Services

Commercial cloud services are used, primarily for blob storage and cloud VMs, with some experimental use of 
Kubernetes. At NSLS-II, both Microsoft Azure and Amazon AWS are used.

Figure 5.14.6: SLAC Projected Capacity Requirements

Figure 5.14.5: S3DF Diagram
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Presently, mostly used to support public demos and tutorials, such as the Users’ Meetings, where data and 
compute resources need to be made available to users outside the lab network. In the future, applications may 
include a Content Distribution Network to enable faster delivery of data to nonlocal users; archival and, relatedly, 
a way to transfer stewardship of data from the facility to users (i.e., “If you want to keep it, it’s moving to an 
account that you pay for.”); and compute infrastructure for “burst-y” workloads that are more cost-effective in  
the Cloud.

5.14.2.9 Data-Related Resource Constraints

For many instruments and techniques, storage is cheap and the budget for storage sufficient. There are notable 
and interesting exceptions, where aggressive down sampling and/or lossy compression are needed. It is becoming 
more routine to execute experiments where the physical instrumentation and the compute infrastructure are 
not collocated. When the compute infrastructure is used to inform experimental decisions (whether fully or 
semi-autonomously) the network transfer speed can be a significant limiting factor on throughput. Locating 
and accessing specific data of interest, which may be a region of interest inside a large data set, is of interest. 
Streaming access to data, to kick off data processing while measurements are still in progress, is also of interest.

LCLS is doing online data reduction to reduce data volume in order to be able to write to disk and stream to 
NERSC over ESnet. Throughput from the detectors will exceed 1 TBps by 2028, and local data reduction will 
reduce by a factor of 10 to about 1 Tbps over ESnet to NERSC.

5.14.2.10 Outstanding Issues 

None to report at this time. 

5.14.2.11 Case Study Contributors

Multifacility Experimentation and Analysis Workflows: X-ray Light Source Perspective Representation

• Eli Stavitski, BNL, istavitski@bnl.gov

• Daniel Allan, BNL, dallan@bnl.gov

• Maria Chan, ANL, mchan@anl.gov

• Jana Thayer, SLAC National Accelerator Laboratory, jana@slac.stanford.edu

• Wanli Yang, LBNL, wlyang@lbl.gov

ESCC Representation

• Vinny Bonafede, BNL, bonafede@bnl.gov

• Mark Lukasczyk, BNL, mlukasczyk@bnl.gov

• Rune Stromsness, LBNL, rstrom@lbl.gov

• Richard Simon, LBNL, rsimon@lbl.gov

• Mark Foster, SLAC National Accelerator Laboratory, fosterm@slac.stanford.edu
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5.15 Multifacility Experimentation and Analysis Workflows: Neutron 
Scattering Perspective
The multifacility experimentation and analysis workflows, focused on neutron scattering facilities, brings together 
BES community representatives from neutron scattering facilities discuss this emerging area of scientific 
investigation. The case study profiles the overall concept, some early results, and a discussion about what the 
future will hold. 

5.15.1 Discussion Summary

• The future or neutron scattering science and the study of quantum materials will require large 
quantities of data, from several locations, comprised of simulations and data, needing to be 
co-analyzed and used in ML. 

• Growing data volumes and rates provide a significant challenge, and current condensed matter 
physics tools are being replaced by more interdisciplinary team science approaches. Existing 
and future experiments demand powerful analysis capabilities and real-time feedback. 

• Neutron facilities attract thousands of users, many of them will use multiple experimental 
and computational facilities. As advanced analysis includes AI/ML based methods sharing 
experimental and simulated data, networks will become increasingly important. This shift will 
also require ‘programmatic’ ways to search and retrieve large amounts of data. 

• Large-scale analysis and data transfer capabilities are critical to the development of AI 
accelerated codes. Network capabilities to allow these collaborations, and data transfers, need to 
be put in place. 

• Experimental and simulation data, computer resources, and collaborators, are located in 
different location requiring remote use.

• Future multifacility neutron experiments will require:

 − Simulations and training for neutron experiments (spectroscopy, reflectometry, and diffuse 
scattering) have data sets in the 10s to 100s of TB ranges. 

 − Pre-trained AI will require to be extended in real-time during experiments. This involves 
new simulations and training which will be at different remote locations. 

 − Experiment data sets from neutron instruments are in the 10s of GB to TB range and will 
need to be streamed for specialized AI to undertake analytics to recognize patterns and 
identify features. 

 − The nature of specialized computational resources and codes mean that simulation and data 
tasks will be distributed over different locations. 

 − ESnet provides the network infrastructure to bridge this gap. In addition, co-analysis with 
data sets from other facilities, especially microscopy, synchrotron, and XFEL data  
is needed. 

• Workflows relying on ML will require to rethink searching, access and retrieval of data for 
training as well as data management related to the derived networks and products.

5.15.2 Multifacility Experimentation and Analysis Workflows: Neutron Scattering 
Perspective Case Study 
Researchers are faced with increasingly complex and difficult scientific questions and challenges that require 
the use of data involving multiple experimental techniques as well as cutting edge modeling to solve. These 
involve large quantities of heterogeneous data from several institutions and facilities in the form of simulations 
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and measured data that need to be co-analyzed and involve the application of data science techniques such as 
ML. In addition, real-time simulations and analysis are demanded during experiments involving remote users 
and resources. A domain that typifies these challenges is quantum materials where the first such studies are 
being performed1 2 3 4. Coupling resources at dedicated analysis facilities, to those of experimental facilities, offers 
unparalleled opportunities to investigate new workflows. 

5.15.2.1 Science Background 

Quantum materials are being intensively studied due to their exceptional properties and new physical principles 
involved. To harness and control quantum coherence in these materials, and the interfaces between them 
requires rationally designing materials for novel technologies ranging from energy harvesting to devices for 
quantum information, and sensing beyond classical limits. Essential for this is undertaking codesign between high 
performance simulations based on state-of-the-art theory with materials and experiments. 

A significant challenge is the growing data volumes and rates, which means that conventional condensed matter 
physics tools are being replaced by more interdisciplinary team science. Neutron and X-ray facilities epitomize 
the demands of cutting-edge experiments. These experiments demand powerful analysis capabilities and real-
time feedback to aid researchers. Meanwhile high-throughput theoretical modeling of quantum materials is 
being performed by other team members at other locations using specialized computational codes and resources. 
Unsupervised learning techniques, including autoencoders and generative modeling, provide the means to 
identify patterns in data and simulations, relevant variables involved, and understandable low-dimensional 
descriptions of otherwise complex phenomena.

5.15.2.2 Collaborators

Neutron and X-ray user facilities attract thousands of users carrying our experiments. Many of them will use 
multiple experimental and computational facilities in their research. As advanced analysis includes AI/ML 
based methods sharing experimental and simulated data as well as potentially trained networks will become 
increasingly important. 

Collaborators will come from national and international research facilities. While this case study focuses on 
quantum materials, the types of workflows discussed here will have broader applicability. Collaborators will have 
a varied computational skill set and resources at their home institution. 

Key collaborators for this case study are the University of Tennessee, ORNL, ANL and NERSC.

1 M. Doucet, A. M. Samarakoon, C. Do, W. T. Heller, R. Archibald, D. A. Tennant, T. Proffen, G. E. Granroth, Machine Learning for Neutron 
Scattering at ORNL, Machine Learning: Science and Technology, https://doi.org/10.1088/2632-2153/abcf88. (2020).
2 Z. Chen, N. Andrejevic, N. Drucker, T. Nguyen, R. P. Zian, T. Smidt, Y. Wang, R. Ernstorfer, A. Tennant, M. Chen, M. Li, Machine Learning 
on Neutron and X-ray Scattering, Chem. Phys. Reviews 2, 031301 (2021); https://doi.org/10.48550/arXiv.2102.03024, ArXiv:2102.03024.
3 A. Samarakoon, P. Laurell, A. Banerjee, S, Nagler, S. Okamoto, D. A. Tennant, Extraction of the interaction parameters for alpha-RuCl3 from 
neutron data using machine learning, Phys Rev Research 4 L022061 (2022).
4 A.M. Samarakoon, D.A. Tennant, F. Ye, Q. Zhang, S.A. Grigera, Integration of Machine learning with Neutron Scattering: Hamiltonian Tun-
ing in Spin Ice with Pressure, Communications Materials accepted (2022); https://arxiv.org/abs/2110.15817.
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5.15.2.3 Use of Instruments and Facilities

Science enabled by multifacility workflows will utilize experimental user facilities such as the SNS and the HFIR 
at ORNL as well as computational facilities. Computational facilities will include organizational resources such as 
the CADES at ORNL as well as leadership computing such as Summit (and soon Frontier) at ORNL. Scientists 
will choose experimental neutron and X-ray facilities based on the specific experimental problem to be addressed 
and similarly the computational facilities that match analysis and modeling needs. 

As AI/ML based methods find broader acceptance and applications, the need for accessing large amounts of 
experimental and/or simulated data sets for training will become more important. This shift will also require 
‘programmatic’ ways to search and retrieve large amounts of data and make them available for training which is 
very different from the more conventional data portal concept (web interface for user to search and download 
smaller amounts of data sets).

5.15.2.4 Process of Science

Magnetic quantum materials are examples where data science approaches and close integration of advanced 
modeling and experiment are allowing advances to be made on problems that previously were out of scope. 
Particularly, deeper understanding of the physical states of quantum materials and prediction and explanation 
of their behavior is being achieved, by identifying their Hamiltonian—the master equation linking theory to 
experiment—and making reliable predictions of experimentally accessible quantities.

Dy2Ti2O7 — spin ice — is a material that has presented major challenges regarding understanding the 
underlying interactions in the material and its mysterious properties at low temperature for over two decades5. 
Demanding simulations are required to model the material and at the same time it is necessary to combine 
multiple data sets including diffuse neutron scattering, heat capacity, and susceptibility including at multiple 
magnetic fields for analysis. ML in the form of trained nonlinear autoencoders and generative models have 
been demonstrated to provide the ability to extract new physical understanding as well as quantifying accurate 
Hamiltonians. They have provided automated capabilities for complex data handling tasks such as removal of 
backgrounds from diffuse scattering data and extraction of the interactions6 yielding new insight into the material  
 
 
 

5 S.T. Bramwell, M.J, Harris, The history of spin ice, J. Phys. Condens. Matter 32 (32) 37410 (2020)
6 Samarakoon A.M., Barros K., Li Y.W., Eisenbach M., Zhang Q., Ye F., Dun Z.L., Zhou H., Grigera S.A., Batista C.D., Tennant D.A., Machine 
Learning Assisted Insight to Spin Ice Dy2Ti2O7, Nature Communications 11 892 (2020); https://doi.org/10.1038/s41467-020-14660-y.
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Table 5.15.1: Multifacility Neutron Source Collaborations 
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and its out-of-equilibrium behavior at low temperatures7. Additionally, the use of generative models has facilitated 
the design of experiments, rapid exploration of complex phase diagrams and real-time analysis [4]. This work has 
culminated in the discovery of unforeseen new physical principles which otherwise were unlikely to be detected8.

The material RuCl3 is a candidate for applications in topological quantum computing. It has presented 
extraordinary difficulties in determining its physical state and interactions. While inelastic scattering is the 
best experimental technique to determine this, the modeling involved is very demanding. HPC simulations are 
required and again ML approaches have been necessary to analyze the data [Samarakoon22_I]. Here co-analysis 
with light scattering, thermodynamic properties, and measurements at multiple temperatures and magnetic fields 
are needed which is not currently possible which means that while interactions are determined they are not  
fully validated. 

Figure 5.15.1 shows the ML-based workflow suitable for neutron scattering that was used in both studies above. 
Multiple steps are performed manually as not all parts of the data pipeline are currently automated. A crucial 
bottleneck is that the codes for training the neural networks for Dy2Ti2O7 and RuCl3 produced around 40Tb of 
data, which requires HPC resources to compute with experimental data sets of order 200Gb. It is not possible 
currently to move the simulations quickly to different locations for retraining of the ML nor can additional runs 
be scheduled to calculate new simulations based on findings from experiments during those experiments. Further, 
ML can be directly run on the data, but this again means data streams transporting large amounts of live data to 
remote locations. Compounding this our experience shows that using all available data on materials including 
from light sources, other neutron sources, and lab-based measurements is important for analysis. This means 
accessing and moving around this other data as well as collaborative use of orthogonal simulation codes for these 
techniques again on remote computational facilities would also require integration.

7 A. M. Samarakoon, B. Klemke, R. A. Borzi, R. Feyerherm, F. Ye, Q. Zhang, Z. Dun, H. Zhou, T. Egami, C. Castelnovo, L. Jaubert, R. Moess-
ner, S.A. Grigera, D. A. Tennant, Structural spin glassiness in spin ice Dy2Ti2O7, Phys Rev Research, under review (2021); ArXiv: 2107.12305; 
and Anomalous magnetic noise in imperfectly flat landscape in the topological magnet Dy2Ti2O7, PNAS 119 (5) e2117453119 (2022); https://
doi.org/10.1073/pnas.2117453119
8 J. Hallen, C. Castelnovo, S.A. Grigera, D.A. Tennant, R. Moessner, Universal noise from monopole motion on dynamical fractals. Science 
accepted (2022)

Figure 5.15.1: Schematic overview of machine-learning integration into the direct and inverse scattering 
problem (a). The ML workflow used here to drive the scattering experiment with automated data analy-
sis and feeding back vital information. 
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The workflow is split into four main sections: (I) scattering experiment design and optimization; (II) parameter 
space exploration and information compression; (III) structure or property predictions; and (IV) parameter space 
predictions. Section II links to both III and IV via latent space {L}, a compressed version of the large pixel space. 
Dashed lines with a silhouette indicate parts of the flow that currently still require some human intervention. 
The latent space representations, S(L), are used in surrogates that bypass expensive calculations. (b) Schematic 
design of the surrogate model used to predict S(L) and S(Q) for a model with a given set of parameters, H(p). It 
comprises a radial basis network, mapping parameter space to latent space and a decoder to reconstruct S(Q) 
from latent space representations. The training of the surrogate is done based on a set of S(L) obtained from a set 
of models at different parameters, H(p), using Monte Carlo simulations and Nonlinear Auto-Encoder encoding. 
These surrogates are used for exhaustive searches of parameter space, identifying phases and phase transitions, 
and predicting optimal regions for experimental study. More simulations are done iteratively in the areas of 
interest, and the surrogates are trained accordingly to improve their prediction accuracy.

New Developments

Other developments that are pushing forward the need to achieve large-scale analysis and data transfer 
capabilities are the development of AI accelerated codes. By using ML massive atomistic simulations and 
complex quantum simulations that previously were too expensive or slow to impact experiments are now 
becoming available. That means that the ESnet capabilities to allow these collaborations and data transfers need 
to be put in place. In addition to this, there is increasing evidence that the integration of ML into measurements 
results in significant improvements in speed and outcomes. 

Science Workflow

Figure 5.15.2: Scientific workflow involved: The wider networking and tasks need to realize the kinds of 
AI integrated experiment and analysis workflows illustrated in Figure 5.15.1.

Requirements are teams of theorists and experimentalists to have the ability to share data, simulations, and 
data analytics capabilities in real time to effectively conduct experiments and maximize the scientific value of 
multifacility co-analysis. Realizing this capability requires ESnet fast data transfers and archiving capabilities 
between supercomputing and edge-computing resources. Organizational tools and data centers that provide 
specialized theory and simulations to train neural networks as surrogates and the ability to mine and extend 
simulations and training data sets are also required. Finally, intensive data analytics on experiment data during 
a beamtime to identify features and aid experimental decision-making can involve sending data to distant 
institutions for rapid analysis.
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5.15.2.5 Remote Science Activities

Experimental and simulation data, computer resources and collaborators are located in different locations 
requiring remote use. Partially accelerated by COVID, more facilities now offer remote experiments. In the 
context of cross-facility workflows, the question is ‘what is remote’?

5.15.2.6 Software Requirements

Recent developments in using AI and ML based techniques require vast amounts of training data. These can 
be simulation data or experimental data often in some reduced form. Depending on the computational cost of 
simulations, simulation data will be shared as well. While the typical use in the past centered around finding and 
downloading a few data sets for analysis, use of ML will require ‘API’ type capabilities to find, aggregate and use/
move large amounts of data for training of neural networks.

In addition, trained networks will be published and should be made available for reuse in the future. While not 
solely a software issue, the need for metadata related to trained networks and tools to use them including e.g., for 
transfer learning and such are new challenges that need to be addressed.

5.15.2.7 Additional Network and Data Architecture

Key requirements for simulations and training for neutron experiments (spectroscopy, reflectometry, and diffuse 
scattering), are in the 10s to 100s of TB ranges. Pre-trained AI such as generative models will require to be 
extended in real time during experiments. This involves new simulations and training which will be at different 
remote locations. Meanwhile the experiment data sets from neutron instruments are in the tens of GB to TB 
range and will need to be streamed for specialized AI to undertake analytics to recognize patterns and identify 
features. The nature of specialized computational resources and codes mean that simulation and data tasks will 
be distributed over different locations. ESnet provides the network infrastructure to bridge this gap. In addition, 
co-analysis with data sets from other facilities, especially microscopy, synchrotron, and XFEL data is needed.

5.15.2.8 Use of Cloud Services

It is expected that cloud services related to the workflow, data archiving and ML might meet the needs outlined 
here. However, this will need to be determined in detail as work related to this case study progresses.

5.15.2.9 Data-Related Resource Constraints

Workflows relying on ML will require rethinking searching, access and retrieval of data for training as well as 
data management related to the derived networks and products.

5.15.2.10 Outstanding Issues 

Currently realizing any workflow discussed here requires a one-off staging of data, modifying of scripts 
and represents more a demo or prototype than a scientific workflow solution across multiple experimental 
and computational facilities as well as local universities and institutions. Traditionally we think of scientists 
downloading one or few data sets through a portal. However, as discussed here a cross-facility workflow 
employing ML methods requires a different approach to data search and retrieval e.g., though a generic API as 
well as expanded sets of metadata facilitating easy assembly of training data. 

As applications of ML grow, there will be an increasing number of trained networks that require storage, access 
and the needed metadata to allow reuse.
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5.16 Multifacility Experimentation and Analysis Workflows:  
NSRC Perspective
The multifacility experimentation and analysis workflows, focused on NSRCs, brings together BES community 
representatives from the NSRCs to discuss this emerging area of scientific investigation. The case study profiles 
the overall concept, some early results, and a discussion about what the future will hold. 

5.16.1 Discussion Summary

• 4D cameras can operate at 350 Gigabits per second, and can produce 5 PBs of data per year. 
These types of data rates will only increase in electron microscopy due to the increased 
proliferation and continued development of high-speed electron detectors. 

• New detectors based on CMOS designs are currently being installed at multiple  
national laboratories. 

• The 4DCamera Distillery is a DOE-funded project across all NSRCs to develop and deploy 
methods and tools based on AI/ML to analyze electron scattering information. The expected 
increases to data velocities and volumes present significant challenges for moving, storing, and 
processing data. 

• Most of the data from microscopy collaboration is first reduced before it is shared over cloud 
storage. Globus is often used to transfer files to local storage to run analysis on HPC systems.

• The size of data sets for frontier electron microscopy experiments (tomography, 4D, high frame 
rate) makes it infeasible for users to download the full data set, and impractical to browse the 
data set looking for information of interest. This points to the need for remote interfaces for data 
browsing and analytics.

• Scientific characterization tools have been pivotal to increasing our understanding of 
nanoscience. Substantial bottlenecks exist between the data streams emanating from these tools, 
and the feedback from theoretical/simulation insights. Directly coupling the microscope data to 
simulations in real time to assist the experimenter is of crucial importance in the quest towards 
automation and autonomous materials/physics discovery platforms. 

• Significant computational needs beyond edge compute will be required in the future,  
including GPUs. 

• Taking advantage of midcapacity computing, and DOE HPC capabilities, can generate 0.5-5 
GBs of data per calculation that can quickly add up to few TBs of data. A dedicated pipeline 
with fast data-transfer rates connecting edge computers that are close to experiments, with 
computational infrastructure will drive simulations “on the fly” to both guide experimental 
investigation, as well as accelerate materials as well as fundamental physics discoveries. 

• Networking is critical to achieve autonomous and “smart” characterization tools. Data captured 
during synthesis using characterization tools can be processed to update experimental 
conditions. As these approaches are computational expensive, data needs to be transferred from 
the instrument to computation, and back, to provide instructions during autonomous  
data capture.

• Simulations that can be used to guide and explain the observations encountered in the 
experiment are critical, and require fast processing and networks access to be fully realized. 

• In many instances, data reduction is achieved at the source during the experiment. The reduced 
data is usually stored on local drives and given to the user through USB keys or other media. 
Experimental and simulation data is not usually shared immediately, but this paradigm is 
rapidly changing. 
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• Current remote science activities are primitive, but adapting. Remote engagement among 
scientific collaborators is necessary, and future facilities will need to support remote progress. 
An outstanding challenge is to provide a remote instrument control experience that is 
commensurate with that one can obtain while local to the instrument. 

• Remote data access has seen a much broader uptake of cloud storage solutions at the facilities, 
both institute-provided local solutions, as well as the use of commercial cloud vendors. Future 
network solutions would ideally integrate seamlessly and provide high-speed connections to 
typical storage systems.

• Future lab instruments should expose a standard API, so that users could devise integrated 
experimental workflows. 

• The software being used across facilities is currently highly heterogeneous. There is not 
currently a single, integrated plan for the software systems that will be deployed. 

• NSRCs host commercial tools from a multitude of vendors. This makes it inevitable to interact 
with a large number of different software systems, many of which use proprietary data formats. 
It remains a significant challenge to integrate these tools with automated workflows. 

• Data rates for next-generation electron microscopes exceed typical local infrastructure 
capabilities. As microscope data rates will increase yet further in future iterations, it is necessary 
for future network and storage infrastructure to be up to the task of handling these data rates.

• Use of cloud storage solutions has increased, but is still done in an ad hoc manner. In the long 
term, DOE as a complex will need to answer questions about the long-term archival storage of 
facility data. If facilities are to be responsible for long-term storage of user data, then there will 
need to be consideration and commitments regarding facility mission, funding for storage, and 
network infrastructure for access.

• The size of electron microscopy data sets challenges current computational methods. Most 
analysis pipelines are insufficient for real-time analysis and impractical for post facto analysis. 
Significant improvements in computational workflows must be developed and integrated. 

• Cross-facility integrated data sets face a substantial challenge with respect to acquiring and 
preserving suitable metadata. Improved software tools for acquiring, transferring, and browsing/
searching through metadata are necessary.

5.16.2 Multifacility Experimentation and Analysis Workflows:  
NSRC Perspective Case Study 
Advancements in NSRC experimental technology has led to an increase in the volume and quantity of scientific 
data produced, and raised serious issues regarding the approach to computing and storage in the long term. This 
case study will review examples from the NSRCs that involve multifacility workflows, the relative success in their 
execution, and plans for the future 

5.16.2.1 Science Background

Direct Electron Detectors based on CMOS Image Sensor processes have been transformational in electron 
scattering and microscopy – culminating in the 2017 Nobel Prize for cryo-electron microscopy. Concurrent with 
the transformational science that direct electron detectors enable is the rich and large amount of data that they 
produce. At the leading edge of this trend, the newly installed 4D Camera at LBNL operates at 350 Gigabits per 
second and is estimated to produce about 5 PBs of data per year. The origin of this extreme data rate is that the 
4D Camera was designed to collect as many scattered electrons as possible from a typical electron microscope 
experiment, a feature critical for understanding the structure of beam sensitive materials, nanomaterials, and a 
wide range of energy-relevant technologies. As the 4D Camera demonstrates, these types of data rates will only 
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increase in electron microscopy due to the increased proliferation and continued development of high-speed 
electron detectors aimed at high-speed imaging and high-resolution analytical measurements. 

Figure 5.16.1: LBNL 4DCamera Design

For example, new detectors based on CMOS designs are currently being installed at multiple national 
laboratories. For instance, BNL is installing a 4D Camera and at LBNL there is a new detector project to design, 
fabricate and implement a novel, very high-speed (~MHz) electron spectroscopy detector for electron energy 
loss spectroscopy. The data rate will be similar to the 4D Camera, (350Gbitps). As direct electron detectors are 
upgradable options for existing electron microscopes, their proliferation is possible at all electron microscopy 
research centers. 

The 4DCamera Distillery is a recently funded project across all DOE NSRCs to develop and deploy methods 
and tools based on AI/ML to analyze electron scattering information from the data streams of fast direct electron 
detectors. The Distillery program consists of five thrusts that address both the critical need for data 

reduction tools for these detectors, as well as scientific opportunities to create new modes of measurement and 
experimentation in the electron microscope enabled by fast electron detection. Direct electron detectors such 
as the 4D Camera recently deployed at TMF at LBNL produce massive volumes of data (up to 3 TB/min) at 
incredibly high sampling rates (87 kHz). These data velocities and volumes present significant challenges for 
moving, storing, and processing data.
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Collaborations for microscopy projects are typically those where the user/collaborator provides the sample to 
be investigated. Alternatively, the samples could be synthesized in house, and some characterization that is not 
available locally may be performed externally at other facilities (for example, at a synchrotron for quantitative 
measurements of composition and structure of oxide films). Most of the data from such collaborations is first 
reduced before it is shared over cloud storage such as Dropbox, although in the case of large simulation files, 
Globus is often used to transfer files to local storage, if for example this is required to run analysis on HPC 
systems.

The size of data sets for frontier electron microscopy experiments (tomography, 4D, high frame rate) makes 
it infeasible for users to download the full/raw data set, and impractical to browse the data set looking for 
information of interest. This points to the need for remote interfaces for data browsing and analytics.

5.16.2.3 Use of Instruments and Facilities

Consider that scientific characterization tools, and in particular forms of scanning probe and electron microscopy, 
have been pivotal to increasing our understanding of nanoscience by enabling functional properties to be 
correlated with microstructural and atomic features of samples. Despite the proliferation of such tools, substantial 
bottlenecks exist in terms of the analysis of the data streams emanating from these tools, and the (much longer 
time) feedback from theoretical/simulation insights that can provide knowledge about the physical mechanisms 
underpinning the observed relationships and phenomena. Directly coupling the microscope data to simulations 
in real time to assist the experimenter is of crucial importance in the quest towards automation and autonomous 
materials/physics discovery platforms. A simple example of such a workflow is shown in Figure 5.16.2.

5.16.2.2 Collaborators

Table 5.16.1: Multifacility NSRC Collaborations

User/
Collaborator 

and 
Location

Primary or 
secondary 

copy of 
the data

Data access 
method

Avg. size 
of data 

set

Frequency 
of data 

transfer or 
download

Are data 
sent back 

to the 
source and 

method

Any known  
issues with data sharing

BNL 
(EXAMPLE 

OF PRIMARY 
SITE)

primary Data transfer 
(Globus, cloud 

services, ad hoc)

10-100 
TB

daily N Data rates challenge current systems.

USERS secondary various (Globus, 
cloud services, 

ad hoc)

10 TB Ad hoc N Size of data sets makes it hard to 
organize and browse. Full download 

of data sets impractical and 
inefficient.
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The data rates on traditional STEM are lower (~20 MBps), but the same can be applicable to 4D-STEM which 
can provide data rates of >100 Gbitps and which will need reduction at the edge before further processing can 
be accomplished. At the same time, significant computational needs beyond edge compute will be required, 
including GPUs for tasks such as model training (step a in Fig. 2), and to run molecular dynamics codes, or cluster 
compute for first principles approaches such as density functional theory. These calculations can range from 1 to 
10s of nodes, taking advantage of both midcapacity computing as well as DOEs HPC capabilities, including the 
hybrid CPU/GPU architecture available in the latter. Such calculations generate 0.5-5 GBs of data per calculation 
that can quickly add up to few TBs of data with concurrent embarrassingly parallel high-throughput screening 
approaches. A dedicated pipeline with fast data-transfer rates connecting edge computers that are close to 
experiments, with such midcapacity and HPC infrastructure in national labs. has the much needed, yet untapped 
potential, to drive specific simulations “on the fly” to both guide experimental investigation, as well as accelerate 
materials as well as fundamental physics discoveries. 

The data from microscopy experiments is typically stored immediately on a NAS device, and then transferred to 
dedicated storage for longer terms (typically about five years).

5.16.2.4 Process of Science

Networking is critical to achieve autonomous and “smart” characterization tools, and for physics discovery, as 
shown in Figure 5.16.2. Essentially, data captured at synthesis and characterization tools can be processed and 
the experimental conditions updated, via suitable algorithms such as Bayesian optimization. However, such 
algorithms are compute hungry and therefore, data needs to be transferred from the instrument to the GPU 
cluster for computation, and then fed back to the instrument as directions for adjusting the instrument parameters 
to achieve optimal sampling and autonomous data capture.

Simulations that can guide and explain the observations encountered in the experiment are also critical. At 
this point, most simulations are performed either before or after the experiment is completed, and little to no 
feedback is available, either to experiment or theory. 

With respect to data analysis and reduction, in many instances, data reduction is achieved at the source during 
the experiment, i.e., with simple techniques such as signal averaging. This (reduced) data is usually stored on 

Figure 5.16.2: From Ghosh et al., npj Comp. Mater. 8, 74 (2022). (a) Deep learning models take input 
images and convert them into atomic coordinates. These are then used as input for simulations, which 
can then be run to provide insight into the physics and relevant chemistry, energetics of the different 
structures observed and also provide guidance towards feedback to manipulate the structures observed 
towards predefined targets.
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local drives and then given to the user, through USB keys or other media. Experimental and simulation data is 
not shared immediately and usually there is a considerable time lag; we do envision (as in Figure 5.16.2) that this 
paradigm is rapidly changing. Although standardized file structures are available for much of the simulation data, 
this is not universal, and the problem is exacerbated on the experimental side where every vendor chooses their 
own (often proprietary) standard. This makes data sharing more difficult, leading to the need to write ‘converters’ 
to a common file format, such as hdf5. Much of this work has been completed in the past few years. The future 
will revolve around (a) automating the pipelines for translation of the file to the standard selected, automating 
data processing based on the files generated, automating the theory-experiment matching, and then presenting 
visualization to the user so they can better understand the differences between the experiment and the simulated 
results, for immediate feedback to both domains. At this point, most of the data resides in separate storage boxes 
that are unlinked. In five years, it is expected this will no longer be the case.

5.16.2.5 Remote Science Activities

Currently, remote science activities are relatively primitive; however, it is already clear that this is an area where 
facilities will see significant growth over the coming years. A transition has been spurred in large part by the 
COVID-19 pandemic, where remote engagement among scientific collaborators became necessary. In the wake 
of this event, it is clear that future facilities will need to support remote progress of various kinds.

Computing work has a long history of leveraging remote user access, and this mode of operation will undoubtedly 
continue. Here, one can expect an increasing desire for remote interfaces to simplify launching and managing of 
jobs, as well as remote data analysis platforms suitable for nonexperts. As always, a reliable and robust network 
infrastructure will be necessary for HPC users to make best use of facilities.

On the experimental side, we are beginning to see uptake of remote science activities, including remote 
engagement (video conferencing between scientists), remote instrument control, and remote data access. All 
of these require increasingly robust and low-latency network connections. For NSRC facilities, which host 
a heterogeneity of instruments from a variety of vendors, the remote control method may often be relatively 
inefficient (e.g., remote desktop), which correspondingly requires an overprovisioned network infrastructure, 
with respect to data rates and latency. An outstanding challenge is to provide a remote instrument control 
experience that is commensurate with that one can obtain while local to the instrument. E.g., video-rate data does 
not transfer smoothly over typical remote desktop interfaces. Video-streaming solutions may be required. Remote 
data access has seen a much broader uptake of cloud storage solutions at the facilities, both institute-provided 
local solutions, as well as the use of commercial cloud vendors. Future network solutions would ideally integrate 
seamlessly and provide high-speed connections to typical storage systems.

Looking beyond the short term, it is possible to imagine multifacility experiments that leverage instruments 
across multiple national laboratories. Providing a smooth user experience in such cases would require fast and 
efficient remote systems, as previously mentioned, but also integrated with each other. Ideally, the various lab 
instruments would each expose a standard programmatic control interface (API), so that users could devise 
integrated experimental workflows. The behind-the-scenes network infrastructure would need to correspondingly 
efficiently transfer and aggregate data sets, presenting them to the user in a coherent way.

5.16.2.6 Software Requirements

The software being used across facilities is currently highly heterogeneous. There is not currently a single, 
integrated plan for the software systems that will be deployed.

Of note is that NSRCs host commercial tools from a multitude of vendors. This makes it inevitable to interact 
with a large number of different software systems, many of which use proprietary data formats. It remains a 
significant challenge to integrate these tools with automated workflows, requiring cumbersome workarounds both 
for control and for data access.
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5.16.2.7 Additional Network and Data Architecture

Note aforementioned data rates for next-generation electron microscopes (350 GBps) exceed typical local 
infrastructure capabilities. Using such systems requires bespoke solutions, including local SSD arrays as cache to 
capture data, and high-speed (fiber-optic) links to institutional data storage systems. As microscope data rates will 
increase yet further in future iterations, it is necessary for future network and storage infrastructure to be up to 
the task of handling these data rates.

5.16.2.8 Use of Cloud Services

Use of cloud storage solutions has increased dramatically at the NSRCs. However, it is currently mostly done in 
an ad hoc manner, where individual scientists manage data for the tools under their purview.

In the near term, we anticipate increasing use of institutional and commercial cloud storage solutions. This will 
see increased data traffic to cloud storage, and increasing need for automated computational workflows that can 
ingest data from cloud storage solutions.

In the long term, DoE as a complex will need to answer questions about the long-term archival storage of facility 
data. If facilities are to be responsible for long-term storage of user data, then there will need to be consideration 
and commitments regarding facility mission, funding for storage (whether institutional or commercial), and 
network infrastructure for access.

5.16.2.9 Data-Related Resource Constraints

The size of electron microscopy data sets challenges current computational methods. For collection of megapixel 
images at kilohertz frame rates, most analysis pipelines are insufficient for real-time analysis and impractical even 
for post facto analysis. Significant improvements in computational workflows must be developed and integrated. 
These may arise through improved algorithms, machine-learning methods, hardware acceleration (e.g., GPUs, 
FPGAs, etc.), or improved use of HPC. It is likely that all of these approaches will see broader use (in  
different contexts).

Cross-facility integrated data sets face a substantial challenge with respect to acquiring and preserving suitable 
metadata. Data aggregation and automated analysis can only occur when metadata and provenance are saved 
correctly. Currently this is not done on the majority of tools. Improved software tools for acquiring, transferring, 
and browsing/searching through metadata are necessary.

5.16.2.10 Outstanding Issues 

None to report at this time. 
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5.17 Use of the ESnet for Quantum Simulations of Materials  
and Molecules
Quantum simulations of materials and molecules is an emerging area of research with unique data needs. This 
case study, featuring a cross-section of BES community members, will outline some of the current state, and 
future goals of this work. 

5.17.1 Discussion Summary

• Quantum simulations of materials and molecules use a variety of platforms, encompassing 
midsize compute cluster and storage systems owned by universities, and high-performance 
architectures at national facilities.

• FPMD simulations generate data sets of tens to hundreds of terabytes. 

• Generated data may not reside on the HPC facilities where they have been created for future 
access, curation and reuse, which necessitates data transfer between collaborators. 

• Globus is used through ESnet for the transfer of data sets at different stages of investigation. 

• We expect this hybrid model to persist in the era of quantum computers where part of the 
calculations will be carried out on classical architectures and part on quantum hardware, with 
the need to transfer between the two platforms. 

• A future hybrid computing strategy will require tighter integration of classical and quantum 
resources. In this case, a quantum processor becomes a co-processor on which certain tasks 
are offloaded, but will require real-time data movement. The data transfer would be small, but 
real-time transfer will be critical between resources. 

• ML surrogates will require highly expensive quantum simulations. Training these models will 
require training data collected through massively distributed simulations on leadership-class 
supercomputing facilities. The data set sizes, and bandwidth requirements, will require efficient 
movement of GB to TB of data. 

• Simulations on small clusters generate initial structure information for larger simulations. Data 
is order 10 MB per file, with tens of thousands of files. 

• Simulations at HPC facilities can range on the order from 1 GB to 10 TBs, with the number of 
files and directories can range from 1 to tens of thousands, with total data set size around tens  
of TBs. 

• Once exascale computers become seriously available to more users, the size of all of simulation 
data will likely be multiplied by 100- to 1,000-fold. 

• A number of quantum simulation users and collaborations currently use multiple facilities and 
locations to accomplish science goals that cross the DOE, commercial, and university complex. 
Data sharing is primarily challenged by data formats and searchability, and for certain classes of 
simulations the size of the data to be transferred remains a significant issue to solve. 

• Future usage of computing will require interaction between multimodal experimental 
and multifidelity theoretical approaches. The urgent need is for on-demand computing, 
interoperable smart workflows across various computing platforms, along with long-term cloud 
storage solutions. 

• Most of the data storage and transfer speeds are appropriate for quantum simulation, and this is 
unlikely to change within the next several years. 

• Data accessibility, searchability, and usability is a key issue for quantum simulation, and 
improvements to enable high throughput scientific workflows will be required. 



264Basic Energy Sciences Network Requirements Review Final Report 2022

• There are significant needs for software that performs well on heterogeneous computers.  
In addition, cloud computing could be an area of need in the future in terms of resources  
and interoperability. 

• There is a need for experienced data/computing personnel for streamlining of workflows,  
data management and custodians that are flexible to respond to specific needs of different 
projects/applications.

5.17.2 Use of the ESnet for Quantum Simulations of Materials and Molecules  
Case Study 
Quantum simulations of materials and molecules use a variety of platforms, encompassing midsize compute 
cluster and storage systems owned by universities, and high-performance architectures at national facilities.  
Most problems require the transfer of data between university clusters or national laboratory resources and  
HPC facilities, both at the time of investigation and at the completion of the project, when storage of data is 
planned (often data may not reside on the HPC facilities where they have been created for future access,  
curation and reuse).

5.17.2.1 Science Background 

The study of physical and chemical problems using atomistic and quantum simulations typically includes the 
determination of structural properties of complex systems, for example by carrying out FPMD, possibly coupled 
with advanced sampling techniques, and the study of electronic and transport properties, for example by 
performing advanced calculations with methods beyond density functional theory. FPMD simulations and the 
complex workflows surrounding molecular and materials simulations generate data sets of tens to hundreds of 
terabytes, depending on the system and length of the simulations1.

In most studies, simulations are performed on different platforms: for example, on midsize clusters to generate 
starting configurations and HPC facilities for production runs, with the need to move large data sets back and 
forth between facilities. Another example pertains to running ensemble-based simulations on HPC facilities and 
sampling that data to perform property-related computations on midsize clusters, as part of a complex workflow. 
Most often Globus is used through ESnet2 for the transfer of data sets at different stages of the investigation, not 
only for MD trajectories but also for electronic structure data. 

In essence any large-scale simulation of materials and molecules is always hybrid, with components on midsize 
compute clusters and components on HPC facilities, and hence with the need of transferring data. Some analysis 
can be carried out on the fly, but not all analyses are amenable to immediate processing. In fact, data should be 
made available for possible reprocessing or new processing when an investigation is completed. Data curation is 
also expected to be hybrid. Even in the case when data is made completely available and accessible on a paper-
paper basis (e.g., through Qresp3), it may not be further analyzed on the platform where it is made available, but 
rather necessitates transfer for additional processing. 

We expect this hybrid model to persist in the era of quantum computers where part of the calculations will  
be carried out on classical architectures and part on quantum hardware, with the need to transfer between the  
two platforms, at least in the era of near-term noisy quantum computers. Below are specific use cases that  
emphasize the multifaceted science challenges and requirements that are faced in quantum simulations of 
materials and chemicals. 

1 http://www.quantum-simulation.org/reference/index.htm
2 https://fasterdata.es.net/data-transfer-tools/globus/
3 https://paperstack.uchicago.edu/explorer
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Simulation of Quantum Algorithms for Materials Properties 

An important component of the case study, particularly as quantum computers become better, is the use of them 
to provide key information – electronic energies, gradients, etc. for, e.g., FPMD simulations. Efficient quantum 
algorithms need to be developed and tested, and the benchmarking of the performance of these algorithms – 
including the Variational Quantum Algorithm (VQE) and various forms of Quantum Phase Estimation (QPE) – is 
crucial. The simulations can require large amounts of memory (e.g., on the order of 2N Bytes, where N is the 
number of qubits (spin-orbitals in electronic structure simulations, ideally > 30 for moderate-sized molecules, 
making the problem memory and computationally challenging). Such calculations will nonetheless suggest the 
path forward for actual hybrid classical/quantum computer simulations. Approaches to accelerate large-scale 
simulations, including databases for initial VQE starting points will also be pursued. A different strategy that 
needs to be considered is a much tighter integration of classical and quantum resources. A good example is the 
recent Google work on quantum Monte Carlo sampling. Here a quantum processor becomes a co-processor 
on which certain tasks are offloaded, but will require real-time data movement. Similar approaches are being 
explored in quantum chemistry. While the data transfer in such a case is small, real-time transfer is critical. 

ML Surrogates to Accelerate First Principles Simulation 

A next-generation predictive capability for computational materials design will require highly expensive 
quantum simulations that include the established suite of simulation methods such as density functional theory, 
coupled cluster, and multireference frame techniques. The computational cost of these simulation techniques 
increases very rapidly with the accuracy required, and applications to materials design are frequently limited by 
computational resources. A promising approach is the development of ML models that act as low-cost, high-
fidelity surrogates. Training these models will require a collection of diverse and high-quality training data. Such 
training data can be collected through massively distributed simulations on leadership-class supercomputing 
facilities, tied together by an active learning procedure that guides exploration in chemical space. As the resulting 
simulation data may be broadly useful to a variety of ML research efforts, it will be useful to be able to quickly 
distribute the simulation data to researchers throughout the DOE complex. We anticipate that the training of 
future ML surrogate models will incorporate more information about the electronic wave function, and excited-
state properties, which increases the data set sizes, and bandwidth requirements. High-quality data sets of 
102-104 gigabytes will become the norm, and we anticipate a need to rapidly transfer these data sets throughout 
the DOE complex.

Computational Simulations of Emergent Phenomena in Strongly Correlated Quantum Materials 

Emergent phenomena including unconventional superconductivity and quantum spin liquids, in strongly 
correlated quantum materials have a profound impact in the next-generation devices for energy and quantum 
applications. On the one hand, these phenomena originate from the competing interactions and couplings among 
multiple degrees of freedom. Therefore, these phenomena defy the descriptions by the current density functional 
theory, which has been quite successful for many systems without strong correlations (e.g., normal metals, 
semiconductors). On the other hand, these phenomena are cooperative in the thermodynamic limit and are 
absent in the atomic scale. There are three types of computational finite-size approaches on strongly correlated 
systems described for example Hubbard model: exact diagonalization (ExactDia), quantum Monte Carlo (QMC), 
density matrix renormalization group (DMRG). ExactDia calculates exactly the ground and low-lying excited 
states of the model, while QMC and DMRG approach larger systems by discarding nearly irrelevant high-energy 
quantum states to save the memory space. For example, ExactDia scales exponentially with the number of sites 
whereas DMRG scales exponentially with system width. However, in contrast to the ExactDia, QMC and DMRG 
results are not always guaranteed to be reliable. For example, there are conflicting conclusions from QMC and 
DMRG as to the existence of unconventional superconductivity in the simplest two-dimensional Hubbard 
model. Therefore, a revival of exact calculations on a larger system is needed. This implies a physical memory 
of hundreds of terabytes, and very fast data exchange. Specifically, the ability to reach 40-60 sites for a two-
dimensional repulsive Hubbard model (t-J model) will significantly improve the scaling analysis, which enables 
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an independent determination of the superconductivity instability. Additionally, larger simulations can be needed 
to adequately treat the complexity of real physical systems based on experimental observations, for example to 
study the atomic-scale inhomogeneity observed in high-temperature cuprates. We note that such high-quality 
calculations of these strongly correlated systems can serve as a reference for quantum computing algorithms on 
noisy intermediate-scale quantum hardware.

Structurally Complex Strongly Correlated Materials with Ab Initio Accuracy

Multifunctional correlated materials with competing degrees of freedom (spin, charge, topology, etc.) have 
applications ranging from energy-efficient computing to novel qubit materials. While key milestones in theory 
have identifying structure-property relationships in pristine systems (e.g., strain tuning of multiferroicity, 
pressure-driven superconductivity), understanding their emergent properties in the presence of structural 
distortions, atomic disorder and reconstruction, and in amorphous materials remains a challenge. Computational 
complexity appears at several stages in the process ranging from the large unit cells required to the inclusion 
of correlations at an appropriate level and requires multiscale physics approaches. For example, atomic 
reconstruction with twist in moiré heterostructures observed in electron microscopy experiments needs to be 
included for accurate modeling of the emergent physics of these systems requiring large unit cells. Amorphous 
materials can be simulated using ab initio molecular dynamics of multiple large quench-melt ensembles to 
represent bonding networks/coordination. These large-scale atomic configurations can generate 100 GB-TBs 
of data in themselves during calculation. Resulting atomic data is commonly shared with collaborators and/
or refined (e.g. electron microscopy data, X-ray/neutron diffraction data) Further calculations including the 
construction of Wannier-based tight-binding models (e.g. to include correlations at level of dynamical mean-field 
theory (DMFT), calculation of topological surface states), and the use of methods for treating the resulting large 
matrices (e.g. Kernel Polynomial methods) to calculate electronic structure additionally generate large-scale data 
sets (GBs-TB) that need to be simultaneously manipulated and stored. A combination of HPC resources is needed 
for such workflows with efficient data transfer between these resources needed — e.g., large-scale structural 
optimizations parallelize on CPU/GPU nodes with large storage requirements and are ideal for systems like 
Perlmutter, while Wannier-based tight-binding calculations and DMFT still require large storage but with much 
reduced CPU requirements (e.g., local institutional clusters with ~10s of nodes).

High-Throughput QMC Based Many-Body Simulations of Heterogeneous Solids and Interfaces 

Functional properties of materials in energy and quantum technologies (e.g., batteries, photovoltaics, 
ferroelectric-capacitors, semiconductors, quantum devices etc.) are largely determined by the intrinsic defects 
and solid-solid (or solid-liquid) interfaces present in them, that can in principle range from 10sÅ to 10-100nm. 
Many of the systems of technological interest, such as complex oxides or magnetic 2d interfaces, require accurate 
many-body approaches to describe their properties. While accurate ab initio electronic structure approaches, 
such as QMC, using QMCPACK (www.qmcpack.org ), can in principle describe the ground-state properties 
exactly, they remain limited today to systems with linear dimensions of ~10-20Å. QMC scales as ~N^3, where 
N is the total number of electrons in the problem, limiting the size of the system on current HPC architectures. 
A single typical QMC calculation even for such a system size will use O(100 GB) of RAM (per node), and run on 
2k-4k nodes on DOE HPC machines (even on hybrid machines such as Summit/Theta/Perlmutter), for ~10 hrs 
and use ~100 MB – ~100 GB storage (depending on observables stored – e.g., wave function files and related 
quantities such as 1RDM can take more space than charge density). We envision the need for generating more 
regular QMC benchmark data sets to both predict ground-state (and some excited-state) properties, as well as 
to inform other approximate electronic structure methods (e.g., DFT functionals, GW approximation, model 
parameters in lattice models, force-field parameters etc.). While the above estimates are for a single determinant-
based Slater-Jastrow wave function, with one fixed nodal structure, improvements to the wave function are 
possible by performing nodal optimization and/or adding additional determinants, which increases the cost (and 
storage) by a factor of ~100x or more. This provides a compelling reason to increase availability of compute 
infrastructure as well as data-storage infrastructure on HPC machines, with pipelines that offer fast data-transfer 
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from node-to-node as well as from HPC compute nodes (or high performance storage system (HPSS) archival 
systems) to dedicated HPC data-reduction/analysis machines, before it is moved to midcapacity computers in 
national labs/universities where visualization is performed to obtain scientific inference from the simulations. 
Efficient use of this infrastructure also requires workflows to prepare/submit/collate data, marching through the 
different simulation steps, that are interoperable across midcapacity, HPC compute/storage facilities, using data-
transfer nodes when applicable. We envision these workflows to also be eventually integrated to AI/ML  
surrogate models or at least a GP process for smart choices of materials/parameters to explore for a targeted 
scientific outcome. 

Development and Understanding of Complex Catalytic Environments 

Catalysts are essential to the industrial complex by efficiently taking raw materials and feedstocks to commodity 
and specialty chemicals required for our continuing technological advancement. Complex catalytic environments 
must be simulated accurately to understand existing chemical phenomena and to develop new catalysts that 
are more efficient or that produce new chemicals and materials. These complex environments must include 
highly accurate and realistic pictures of the reactions that are occurring in solvents and on surfaces, especially 
in confined surfaces such as zeolites, mesoporous silicon nanoparticles, and metal organic frameworks. These 
simulations require multiscale and multiphysics approaches that incorporate many configurations of the 
system (ensembles) over time (such as in molecular dynamics). Additional insight and properties from these 
configurations are often obtained by additional simulations on subsets of the configurations. Choosing these 
configurations wisely and launching them to different computational resources is required — resulting in 
complex workflows where data must be transported between different computational facilities and researchers. 
These needs will only be extended as quantum simulations become the everyday workhorse for AI investigations 
of molecular simulations and chemical predictions.

Designing Novel Molecular Crystals for Direct Air Capture (CO2 Capture from Air)

The direct air capture of carbon dioxide is a potentially transformative technology for addressing climate change. 
A few select materials solutions are being investigated for industrial application, but the field is still very much 
in its infancy, and there is a substantial need for the discovery of new adsorbents exhibiting a greater separation 
capacity, long-term adsorption/desorption cycling stability, and fast uptake kinetics. A major hurdle here is the 
high cost of regenerating the material to release the captured CO2, which currently limits applicability on a large 
scale. Computational simulations serve as a virtual experimental platform to understand the thermodynamics and 
kinetics of the CO2 adsorption and release driven by cooperative chemical reactions in a dynamic and complex 
chemical environment. To extract rate constants, simulations will need to be highly accurate, and high levels 
of theory with a large computational complexity will need to be used to obtain the desired results. Dynamics 
simulations will be critical to understand the transformation of molecular crystals in the presence of carbon 
dioxide and water, and to understand the transformation when carbon dioxide gets released through heating or 
other thermodynamic means. Since the processes involve chemical transformations not suited for classical MD 
approaches, ab initio dynamics combined with classical molecular dynamics simulations will be required to gain 
the needed scientific insight. So far, simulations will provide fundamental insights. To design novel molecular 
crystals will require the generation of large data sets, that can be used with ML and inverse design strategies. 

First Principles Simulation of Heterogenous and Hybrid Materials 

These simulations are hybrid from start to end and they will continue to be hybrid also when using quantum 
computers, hence the necessity of transferring terabytes of data at different stages of the work. In addition, these 
simulations require multiple plans for data storage because some studies are long enough that storage availability 
changes during the course of the investigation.
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5.17.2.2 Collaborators

It is important to note that the types of science and users/collaborations described above involve multiple 
facilities/locations to accomplish the science. So, these should be considered examples of typical use cases. 
Many university partners are involved in these collaborations (too many to number) and data sharing is primarily 
challenged by data formats and searchability – although in some types of simulations, the size of the data to be 
transferred could be an issue. Appropriate levels of security should also be considered during data transfer while 
not significantly impinging on the timely completion of work.

5.17.2.3 Use of Instruments and Facilities

Quantum simulations of materials and molecules use a variety of platforms, encompassing midsize compute 
cluster and storage systems owned by universities, and high-performance architectures at national facilities 
(NERSC, ALCF, and OLCF). Most problems require the transfer of data between university clusters or national 
laboratory resources and HPC facilities, both at the time of investigation and at the completion of the project, 
when storage of data is planned (often data may not reside on the HPC facilities where they have been created 
for future access, curation and reuse). Data produced at the facilities can range widely based on the type of 
simulations and computational workflows and campaigns needed to accomplish the science. Often times, the 
simulations on the smaller clusters (at the national laboratories or universities) are used to generate initial 
structure information for larger simulations. This data tends to be on the order of 10 MB per file and for large 
campaigns there can be tens of thousands of these files. For the HPC facilities, current file sizes can range on the 
order from 1 GB to 10 TBs, the number of files and directories can range from 1 to tens of thousands with total 
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Y, data 
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Compatibility of data formats for 
quantum simulators

BNL Secondary Data transfer 
(Globus)

10s of GB 
to TBs
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N/A
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and 
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Data transfer and 
portable hard 

drive

102–104 
GB
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monthly

N Data formats, searchability of 
data, fast node response time 

for I/O

LBNL (NCEM, MF, 
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BERKELEY
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10 GB to 
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for different applications

QMC-
COLLABORATORS 
(NATL. LABS, LED 
BY ORNL, AND US 

UNIVERSITIES) 
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10s GB to 
10s TB

Weekly Y, data 
transfer

Data query, fast nodes to 
download (upload) few TB files

Table 5.17.1: Quantum Collaboration Scenarios 
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data set size maxing out in the 10s of TBs. This will likely not change significantly until the exascale computers 
become more available and scientific challenges are tackled at this scale. Once these systems become seriously 
available to more users, the size of all of the data will likely be multiplied by 100 to 1000-fold. 

The future of computing in the two to five year timeframe and beyond will require both active and passive 
interaction between multimodal experimental and multifidelity/physics theoretical approaches on nationally 
federated experimental, computing and storage facilities, handled by smart workflows. The urgent need of the 
hour is on-demand computing, with interoperable smart workflows across various HPC as well as midcapacity 
computing platforms, along with long-term cloud storage solutions. As an example of active interactions, 
workflows that spawn expensive yet accurate quantum simulations of materials on high-end HPC clusters, such 
as using the QMC method, could be requested in a targeted manner based on errors assessed using lower-
fidelity modeling approaches performed on midcapacity clusters that are both available on demand and linked 
via fast data-transfer nodes to synchrotron and microscopy (user) facilities, nationwide, which are themselves 
guided by AI/ML algorithms running on edge clusters at these facilities. As an example of passive interaction, 
the stored experimental data sets corresponding to different characterization measurements from small/big 
experimental facilities are constantly used in the background to assess low-fidelity simulation stored results, to 
inform simulation protocols that bridge different length/timescales, as well as provide training data to improve 
the AI/ML models that drive experiments and perform data reduction at these facilities on their edge and/
or local-hardware, enabling predictive simulations of functional properties of materials. We foresee that such 
interoperable smart workflows will be needed to guide future synthesis and characterization experiments in the 
right direction for autonomous discovery of new materials with desired properties, leading to rapid identification 
of the optimal technological solutions to our pressing global challenges. 

5.17.2.4 Process of Science

The unifying theme of the simulations and instrumentation described above is that of scientific discovery 
involving analysis and sharing of the many simulations and analysis among teams of scientists. Already, the 
common mode of operation is for multiple team members to work together on data produced from multiple 
sources (both hardware and software) to understand the different physical underpinnings of a science challenge. 
While workflows are starting to be used in these teams, it is still not uncommon for each scientist (or local group 
of scientists) to use their own methods and worry about the integration with other data later in the process. It is 
clear that this is changing and will be a challenge for the next several years and into the timeframe beyond the 
next five years. Unfortunately, there is no one scientific workflow that is universal for all simulations. However, 
there are some commonalities. 

• Often it is the case that a scientist will want to search existing data to understand the 
simulations that have been performed before. This is currently a difficult task due to varying 
issues such as data formats, provenance and trustworthiness of the data, and public accessibility 
and searchability of data across federated data sources. Beyond the next five years, we anticipate 
that this will become more possible as common data formats (or at least converters between 
formats) become more available. From a network point of view, this will mean much more data 
being exchanged between scientists in an asynchronous manner than the current case of explicit 
transfer of data between scientists.

• This data is then manipulated into a form where local resources are used to develop initial 
targets (parameters) for simulations on HPC or (depending on the nature of the simulation) 
cloud computing. This may involve data transformation or a set of simplified simulations. In the 
next several years and into the future, this will likely continue since many local sites are still 
committed to providing local computing resources.

• This initial data is then transferred to an HPC resource for highly accurate and/or large 
capacity simulation. Currently much of this is accomplished through direct data transfer and 
is largely human directed (often using scripts). This is changing as more users are starting 
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to adapt workflow systems that allows multiple types of simulations and/or the same type of 
simulation on multiple molecular configurations. Ultimately, beyond the next five years one 
could anticipate that many users will use workflow systems that will allow them to run many 
simultaneous simulations on varying resources to accomplish the computation for the scientific 
challenge. This will mean that the data exchange will become more rapid fire and that it will 
likely involve many network paths since more computational resources than just one primary 
one will be used to accomplish the science.

• Data reduction currently happens mostly on local resources — meaning that the simulation data 
is often transferred from an HPC resource to a local computer for analysis. With more federated 
data and the need to combine multiple data streams, the need for these data transfers will either 
increase significantly or better ways of visualizing and analyzing data will need to be developed. 
In the former approach, the current model will continue but with multiple copies of the same 
data on multiple computational platforms.

• We expect a need for on-demand midcapacity computing and long-term storage solutions that 
are woven with fast data-communication networks and smart interoperable workflows, with 
connections to HPC facilities as/when needed for capacity computing, AI/ML model training 
and big-data reduction and visualization. 

• HPC computing and experimental facilities are becoming more and more integrated, as 
simulations become a critical input to data analysis at facilities such as the neutron and  
X-ray sources. Real-time analysis, computing and data movement will be critical. Approaches to 
this integration are being developed under the super facility model, where ESnet is a  
critical component.

Overall, it is anticipated that there will be more frequent communication required and many more disparate 
sources of data to accomplish complex scientific workflows.

5.17.2.5 Remote Science Activities

The current and near future remote resources will include the DOE HPC facilities as well as remote access 
to data sources/repositories (such as the MP, NIST Materials Data Repository, etc.). Beyond five years, cloud 
computing could become more used as computational chemistry and materials science software becomes more 
available on those resources. It is also possible that cloud computing/data sharing will become more used for data 
analysis and visualization.

5.17.2.6 Software Requirements

One very important current and future need related to software is the ability to share and transform data into 
formats that can be used in shared visualization and data analysis without extensive user input. Various efforts 
within DOE, NSF and NIST are underway to standardize data formats for data storage and sharing, there is still 
a lack of uptake in the community to use the standards and in the development of software that can facilitate the 
use by the end user. Progress is being made, with many of the computational chemistry and materials science 
centers who are developing software tools that are interoperable, or providing clear data APIs. With a growing 
adaptations of data standards by the scientific community one can anticipate that software and standardized 
formats will need to be supported at the various computing sites.

5.17.2.7 Additional Network and Data Architecture

Quantum simulation can be made into an analysis or characterization tool to work together with other 
experimental facilities. In an integrated scientific discovery process, large-scale real-time computing is in 
demand, so easy access to a HPC center from an experimental facility is needed. A network with unified 
cybersecurity policies might be necessary for such seamless connection to happen. 
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5.17.2.8 Use of Cloud Services

Cloud computing is not currently used extensively in this community. However, it is possible that more cloud 
computing will be used to analyze complex amounts of data and for large scientific campaigns of smaller  
sized individual simulations. The reader is also referred to section 8 of the case studies of the NSRCs for 
additional information.

5.17.2.9 Data-Related Resource Constraints

Currently, most of the data storage and transfer speeds are appropriate and this is unlikely to change within the 
next several years. As discussed previously, data accessibility, searchability, and usability is a key issue that is our 
community is facing and will need improvements to enable high throughput scientific workflows.

An additional concern will be to ensure that the large software ecosystem in the chemical and materials science 
are able to continue running well on the ever-changing computing resources available now and into the future. In 
particular, there are still significant needs for software that performs well on heterogeneous computers (although 
significant strides have been made with the ASCR funded Exascale Computing Project, the BES-funded 
Computation Materials and Chemical Sciences programs). In addition, cloud computing could be an area of need 
in the future.

There is a need for experienced data/computing personnel for streamlining of workflows, data management and 
custodians that are flexible to respond to specific needs of different projects/applications.

5.17.2.10 Outstanding Issues 

None to report at this time. 

5.17.2.11 Case Study Contributors

Use of the ESnet for Quantum Simulations of Materials and Molecules Representation

• Giulia Galli, ANL, gagalli@uchicago.edu

• Kipton Barros, LANL, kbarros@lanl.gov

• Panchapakesan Ganesh, ORNL, ganeshp@ornl.gov

• Stephen Gray, ANL, gray@anl.gov

• Sinéad Griffin, LBNL, sgriffin@lbl.gov

• Wibe de Jong, LBNL, wadejong@lbl.gov

• Theresa Windus, AMES, twindus@ameslab.gov

• Qin Wu, BNL, qinwu@bnl.gov

• Jianxin Zhu, LANL, jxzhu@lanl.gov
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5.18 The Materials Project (MP): Status and Future Directions
The MP is a multi-institution, multinational effort to compute the properties of all inorganic materials and 
provide the data and associated analysis algorithms for every materials researcher free of charge. The ultimate 
goal of the initiative is to drastically reduce the time needed to invent new materials by focusing costly and time-
consuming experiments on compounds that show the most promise computationally.

5.18.1 Discussion Summary

• The MP was founded in 2011, and now serves a community of over 200,000 registered users.

• Data needs from MP users range from highly frequent requests for common objects (100s of GB 
to TB sized downloads) to less frequent, but larger, data objects (10s to 100s of TB).

• The need to transfer data to and from MP is expected to increase as third-party contributions of 
data grow. 

• The MP infrastructure was initially supported by LBNL and NERSC compute and data 
infrastructure, and is now transitioning to AWS cloud resources to serve the growing user base 
and usage patterns. 

• Community contributions through a dedicated platform remains a critical research driver that 
now results in millions of submissions that can be efficiently processed.

• Integrating cloud and DOE infrastructure in a seamless manner is possible, and can serve as 
a model for other projects that may need to scale infrastructure beyond the needs of DOE 
compute centers, while still making optimal use of DOE resources. 

• Despite the flexibility, the cloud resources can be cost prohibitive in storing and indexing very 
large data sets, or performing long-running computations in batch. The MP model leverages 
DOE infrastructure for high-throughput computations and large-scale data management 
services: the core subset of the data is then made available via cloud resources, while less 
commonly used related data or source raw data can be handled directly through DOE 
infrastructure. A networking pipeline between the two is still facilitated by ESnet. 

• MP currently relies on NOMAD for public dissemination of raw calculation output. 

• Services like Spin at NERSC have also been valuable, but suffer from geographic exposure 
and no uptime guarantees. Seeing services like this extended to multiple sites to allow greater 
redundancy would also be a benefit. 

• MP’s transition to the cloud and its described architecture have proven to provide low latency 
with high reliability and security. An important continuation will be to connect resources in 
the private subnets of MP’s AWS VPC with resources on-premise at LBNL/NERSC, or other 
ESNET-connected HPC facilities. 

• High bandwidth/low latency connections between AWS and LBNL/NERSC resources will be 
important to ensure that data can be ingested into the cloud resources in a timely manner at all 
DOE facilitates, delivered via ESnet connectivity. 

• Having no dedicated connectivity between NERSC resources and AWS private network 
presents a significant roadblock for progress in transitioning to a seamless cloud experience. 
Enabling direct access and data transfer between MP’s cloud resources at AWS and on-premise 
resources at other DOE facilities would significantly reduce the burden of contributing and 
linking data. 
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• Transferring data between DOE facilities remains cumbersome; MP is trying to move toward 
accessing other facilities from the cloud, and would like to see templates developed in this use 
case to allow other facilities to set up cloud resources and then connect on the VPC level within 
AWS regions. 

5.18.2 The MP: Status and Future Directions Facility Profile and Case Study
As a public initiative supported by funding from the US DOE, the mission of the MP is to compute properties 
of all known materials and remove guesswork from materials design. Experimental research and the discovery 
of novel materials for applications such as energy storage, advanced electronics, and structural components can 
be targeted to the most promising compounds by screening and applying ML algorithms on MP’s computational 
data sets. MP now serves a community of over 200,000 registered users.

5.18.2.1 Science Background 

MP started in 2011, supported by LBNL and NERSC compute and data infrastructure. Data production and 
ingestion have been managed through multiterabyte MongoDB databases at NERSC, along with development 
clusters with web services hosted on the NERSC Science Gateways/Spin Platform. This approach served MP 
well for over a decade but with a community now having grown substantially (>200,000 registered users) 
and heavy use of both the online gateway and API, transitioning the MP infrastructure to the cloud became a 
cornerstone to the longevity of MP. It was evident that the MP collaboration and broader community needed to 
be empowered to contribute data and apps, and that responsibilities for different parts of the MP stack needed to 
be separated in order to scale with demand.

As a result, MP underwent a major effort to modernize its web infrastructure and transition it to the Cloud. The 
project designed, developed and deployed a microservices-based network architecture on the AWS cloud. The 
main web portal is in the process of transitioning to the new AWS based service. The new cloud architecture 
allows MP to meet modern requirements for high availability and rapid solutions. The MP use case is centered 
around enabling a new, hybrid networking infrastructure that enables seamless integration of cloud resources 
with computing and data infrastructure hosted by LBNL, NERSC and other DOE facilities through ESnet. 

Overall, MP presents a unique opportunity to help develop and establish protocols for data transfer and 
management to scientific communities. Its model of a hybrid DOE-based and cloud architecture represents 
an opportunity to design scientific data management and dissemination systems that make the best use of all 
available tools. Data needs from MP users range from highly frequent and globally distributed requests for a 
core data set (i.e., ~35 million monthly requests) to less frequent requests for larger raw data objects. The need 
to transfer data to and from MP is expected to only increase as the MPContribs platform, enabling third-party 
contributions of data, continues to serve as a materials data provider and partnerships with ESnet may form a key 
enabler of this transformation.
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5.18.2.2 Collaborators

MP collaborators are listed in Table 5.18.1. 

Community contributions through our dedicated platform MPContribs4 are another powerful example for the use 
of such a connection. MPContribs has been reliably available to the public since late 2018, and has now matured 
to process half a million submissions within a day. In particular, it has started serving the light sources (e.g., ALS, 
NSLS-II) as well as ML communities. MPContribs has become an integral part of MP’s next-generation website, 
underpinning the effort to disseminate data and apps contributed by the materials sciences community (see for 
example MOF and Catalysis Explorers) while leaving full ownership and control over the data with contributors. 
Enabling direct access and data transfer between MP’s cloud resources at AWS and on-premise resources at 
other DOE facilities would significantly reduce the burden of contributing and linking experimental as well as 
computational data to materials and apps on MP. For example, it opens up the potential for deeply integrated, 
automated and bidirectional data pipelines between DOE light sources and MP.

5.18.2.3 Instruments and Facilities

NERSC infrastructure continues to support MP operations in compute, data backup and archive, local databases, 
and web services via the NERSC Spin platform. Specifically:

• Raw calculation outputs from the VASP code are stored (or transferred) by group members and 
collaborators to NERSC CFS. A significant bottleneck is easily transferring calculations run 
externally to NERSC, since this typically requires new account setup, Globus training, and  
the like.

4 https://mpcontribs.org
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CORE TEAM Both website, MongoDB, 
HPSS, CFS

hundreds 
of GBs to 
hundreds 

of TBs

All 
frequencies

No No link between 
NERSC resources 
and AWS private 
network presents 
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WEBSITE USERS Secondary Portal 100GB 
Atlas, 5TB 

S3

Daily No

API USERS Secondary REST API / Python 
client

see 
website

Daily users can contribute 
small structure files for 
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MPCONTRIBS 
USERS

Both portal, rest api, 
Python client
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in the tens 
of GB but 
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to grow 
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daily, ad hoc Yes, in the case of 
contributed data. 
Upload happens 
via REST API to 

Atlas (cloud hosted 
MongoDB) database.

LIGHTSOURCES Both portal, rest api, 
Python client

currently 
in the tens 
of GB but 
potential 
to grow 
quickly

daily, ad hoc Yes, in the case of 
contributed data. 
Upload happens 
via REST API to 

Atlas (cloud hosted 
MongoDB) database.

Table 5.18.1: MP Collaborators
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• Command line tools developed by MP for data handling prepare raw data for organized archival 
via HPSS. The HPSS archive becomes the “source of truth” for all subsequent data building and 
dissemination to enable reproducibility.

• Periodically, subsets of files are transferred from HPSS to CFS or elsewhere to enable data 
processing via the XFER queue at NERSC.

• Parsing of raw data into a more versatile format goes into a central MongoDB collection 
managed by MP.

• MP “builders” use dedicated LBNL IT machine for high-throughput generation of derived 
MongoDB databases and collections corresponding to variety of materials properties.

• For active research work, MP runs and maintains dashboards to allow scientists to track the 
progress of their calculations. Individual scientists also have their own dedicated MongoDB 
databases for research purposes. 

• MP processing pipeline also syncs to Google Drive and NOMAD, an external repository hosted 
in Europe and focusing on raw materials output files. NOMAD provides internal and external 
access to raw VASP output files as an extra layer of backup.

5.18.2.4 Process of Science

Data generated at NERSC and other locations is stored centrally and disseminated to the community through our 
online portal5 and through our API. A schematic of the sequence of operations is provided in Figure 5.18.1.

In pioneering the use of this hybrid model, MP can integrate cloud and DOE infrastructure in a seamless 
manner. Indeed, we expect that MP’s design may serve as a model for other projects that may need to scale 
infrastructure beyond the needs of DOE compute centers such as NERSC while still making optimal use of DOE 
resources. While the AWS cloud will increase availability and allow us to scale to meet the growth in users, these 
cloud resources can be cost prohibitive in storing and indexing very large data sets, or performing long-running 
computations in batch. In our model we leverage DOE infrastructure for high-throughput computations and 
large-scale data management services. The core subset of the data is then distilled and made available via cloud 
resources, while less commonly used related data or source raw data can be handled directly through LBNL/ 
 
5 http://www.materialsproject.org

Figure 5.18.1: MP Process of Science
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NERSC infrastructure. MP can use the high bandwidth connectivity provided by ESnet to connect access DOE 
resources with AWS.

Opportunities include an ESnet connection to user resources at other DOE facilities to allow direct access to 
raw data on user infrastructure from MP services running at LBNL. This will allow, for example, development 
of GUIs that could significantly reduce the burden of extracting high-level data and integrating it within the MP 
website and API for broader sharing with the community. Similarly, data coming from beamlines at lightsources 
could be directly accessible to MP tools in the cloud, allowing more seamless transfer of data if select DOE 
resources were accessible via MP’s AWS VPC.

5.18.2.5 Remote Science Activities

Remote lightsources (and other DOE resources like HPC, file storage, DBs) can use MP interfaces to “pull” data 
into MP through VPN site-to-site to ESnet.

5.18.2.6 Software Infrastructure

Figure 5.18.2: MP Software Infrastructure

All software tools are developed as open-source codes and allow community contributions. The full MP software 
stack is now quite extensive, and includes:

• Pymatgen for calculation definitions, structure objects, and materials analyses

• FireWorks, a general purpose workflow software for defining, managing, and executing millions 
of complex workflows (dispatch and manage jobs on HPC infrastructure)

• Atomate defines materials science workflows using the FireWorks infrastructure

• Emmet builds databases from original “tasks” collections (see 3) and implements API server 
with definitions for API documents/schema (with maggma for database tooling)

• MPContribs repo contains implementation for web portal, API server and client

• MP web and API services use cloud resources; atomate and FireWorks are run on HPC
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5.18.2.7 Network and Data Architecture

Figure 5.18.3: MP Data Architecture

MP’s transition to the cloud and its described architecture have proven to provide low latency with high 
reliability and security. An important continuation in that vein is to connect resources in the private subnets 
of MP’s AWS VPC with resources on-premise at LBNL/NERSC (or other ESNET-connected HPC facilities). 
Possibilities for implementing this include a private virtual gateway with a stable/reliable VPN or AWS 
DirectConnect connection.
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MP can use this connection to access MongoDB and disk resources in the LBNL/NERSC network for data that 
is less frequently needed, and does not require high availability on AWS, but would be prohibitively expensive 
to host on Atlas MongoDB. MP would be accessing data from its website and APIs in real time through a direct 
connection to LBNL/NERSC, and requires a low-latency connection between AWS and LBNL/NERSC to 
provide end-to-end access to this data. Additionally, a high bandwidth connection between AWS and LBNL/
NERSC resources will also be important to ensure that data can be ingested into the cloud resources in a  
timely manner.

Early discussions with ESnet yielded plans for a proof of concept demo, which could be a set up to show that we 
can establish and use the connection. We include the demo plans as a reference point: ESnet could set up the 
hosted connection in Equinix Cloud Exchange Fabric. A low bandwidth connection would likely suffice for this 
pilot project. For demo/testing purposes, a MongoDB resource would be needed in the ESnet network. The goal 
is to design a network path between the MP VPC instance in the AWS EAST-1 and EAST-2 regions and by way 
of ESnet transport, connect a stub network instantiated in the AWS cloud to LBNL and NERSC. This would 
deliver a single prefix (public ESnetClassless Inter-Domain Routing) through a dedicated EBGP peering at the 
LBNL and NERSC network edge.

5.18.2.8 Cloud Services

The MP cloud stack consists of a collection of microservices based on modern container technology, which 
exchange traffic within the network of a VPC. Each set of dependent microservices is deployed on AWS 
serverless compute engine Fargate with IP addresses in dedicated VPC subnets. Using Fargate removes the 
need to own, run and manage the compute infrastructure and instead allows MP to focus development on its 

Figure 5.18.4: MP Cloud Architecture
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applications with security groups controlling traffic flow from the Internet and between subnets. MP’s cloud 
architecture employs private VPC endpoints to make use of free intraregion traffic and improved latency/
reliability between its Fargate microservices and other AWS services as well as the cloud-monitoring service 
Datadog. This traffic includes about ~5.6 TBs of data and 3.8M objects stored in S3 Object Storage. All of MP’s 
API microservices use a private peering connection to a managed MongoDB Atlas instance in the same AWS 
region reducing traffic costs by a factor 10. The MongoDB instance currently holds about 140 GB of queryable 
and indexed data. Cloudflare’s global network secures and accelerates MP’s services before traffic arrives at the 
AWS network load balancer. Current (pre-public release) daily cloud costs add up to about $60/day. As MP scales 
to full traffic, cloud costs are expected to increase primarily due to AWS egress costs. The majority of these are 
likely to be covered by LBNL’s egress waiver from AWS.

While the current deployment is on the AWS cloud, care has been taken to ensure services are portable, and 
could be deployed on other clouds as necessary, depending on future requirements.

5.18.2.9 Data-Related Resource Constraints

We are currently relying on NOMAD (an EU-funded scientific project) for public dissemination of raw 
calculation output, since they provide a platform and means to publicly share and transfer large amounts of data 
that are currently outside our means.

Transferring data between DOE facilities remains cumbersome; we are trying to move toward accessing  
other facilities from the cloud, and would like to see templates developed in this use case to allow other  
facilities to set up cloud resources and then connect on the VPC level within AWS regions (or equivalent for  
other cloud providers).

Services like Spin at NERSC have also been very valuable but suffer from geographic exposure and no  
uptime guarantees, seeing services like this extended to multiple sites to allow greater redundancy would  
also be a benefit.

5.18.2.10 Outstanding Issues 

None to report at this time. 

5.18.2.11 Facility Profile and Case Study Contributors

The MP Representation

• Kristin Persson, LBNL, kapersson@lbl.gov

• Anubhav Jain, LBNL, ajain@lbl.gov

• Matt Horton, LBNL, mkhorton@lbl.gov

• Patrick Huck, LBNL, phuck@lbl.gov 

• Bobby Sumpter, ORNL, sumpterbg@ornl.gov

ESCC Representation

• Susan Hicks, ORNL, hicksse@ornl.gov

• Richard Simon, LBNL, rsimon@lbl.gov

• Rune Stromsness, LBNL, rstrom@lbl.gov
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6 Focus Groups

A core component of the ESnet requirements review process displaced by the COVID-19 pandemic was the 
opportunity to hold impromptu conversations with colleagues. These could occur during the oral case study 
review period (and involve topics being presented or stumbled upon), but were also equally likely to occur 
before, during, or after the physical meeting. The importance of these interactions cannot be overstated, as 
they often resulted in cross-pollination of ideas, collaboration, or other forms of interaction fostered by the 
organization of the attendees and subject matter. Facilitating these types of interactions was a high priority, 
despite the challenges of conducting a fully distributed review process.

6.1 Purpose and Structure
In May 2022, the BES requirements review team convened two virtual focus groups. The general plan for these 
meetings was to:

• Gather together small groups of case study authors during predefined time periods, using 
virtual tools.

• Prepare the groups by having them review outlines of their case studies and research focus 
areas (if they were unfamiliar).

• Structure a conversation to review areas of research, and then seed conversation with a  
set of topics that were found to be common across all case studies in the 2022 BES  
requirements review.

During these focus sessions, the BES requirements review team acted as a moderator for the conversation, but 
let discussion flow organically toward topics of mutual interest. The goals were to:

• Allow emerging projects and facilities to ask questions of the established BES community, to 
better prepare for the future.

• Facilitate discussion on known problems and solutions that will guide the process of science, 
and support from ethnology, in the coming years.

• Establish best practices that span the different parts of the BES program area. 

6.2 Organization
The BES requirements review featured 18 case study groups. The optimal way to organize focus groups was to 
offer two events, and invite all parties that were available to attend; this organizational assumption acknowledged 
the fact that not all participants could attend both. Similar discussion topics were available at each event, but the 
chosen topics could differ drastically depending on participation. The events were as follows:

• Focus group 1 was held on May 5, 2022.

• Focus group 2 was held on May 31, 2022.

The agenda for each event was designed to be simple and dedicated to keeping a majority of the event available 
for attendee discussion. A brief introduction from the BES requirements review team and an overview of each 
meeting’s purpose . The remainder of the time was allocated to discussion topics. These were defined prior to the 
meeting (and shared with attendees) by the requirements review team. All topic areas were pulled directly from 
observations made by case study authors. The topics were as follows:

1. Supporting “remote” control and operation: use cases that started pre-pandemic, and have 
continued beyond. How are users managing new workflows?
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2. Challenges in supporting multi- or coupled facility workflows: are there complications in pairing 
BES experimentation with ASCR computing and storage via ESnet. 

3. Data storage locality, quantity, and mobility: storage needs are outpacing capabilities to generate 
and analyze BES data. What is being done, and are there suggestions to improve the national 
data architecture.

4. Computation that has real-time, near real-time, or offline requirements: use cases that require 
computation during the process of experimentation and simulation. Limitations to current 
practices, and thoughts on how to improve. How this affects and encourages network use. 

5. Software to perform analysis, sharing, simulation, or other use cases: current, near-term, and 
future needs and development opportunities that may leverage network resources. 

6. Future networking and service requirements: capacity, traffic expectations, future services.

7. Facility upgrades and potential changes to data volumes and rates: How are users modifying 
workflows to prepare, and how can networks be adjusted to fit the new requirements?

A piece of polling software was utilized to gauge the relative interest in each topic area during the meeting. This 
was done to gain an understanding of what mattered to those who were represented in the room. The interest 
could be based on things they wanted to hear more about (potentially from other attendees), things they were 
concerned with implementing, or things they felt they could share experience with. Each focus group came to 
different conclusions about what topics mattered most, and as a result, each focus group’s conversation flowed 
more naturally toward the strengths and weaknesses of those who attended.

6.3 Outcomes
The following sections highlight the areas of discussion and relevant findings and recommendations that emerged 
during the talks. Some are directly related to the structured conversation, but others came out of natural 
discussions that may have strayed from the topic areas. 

6.3.1 Focus Group 1

• The polling during the meeting produced the following discussion topics that were of interest to 
the assembled group:

• Data storage locality, quantity, and mobility.

• Software to perform analysis, sharing, simulation, or other use cases.

• Computation that has real-time, near real-time, or offline requirements.

• Facility upgrades and potential changes to data volumes and rates.

During this period of discussion, several notable items were brought up, and these are detailed in the  
following subsections. 

6.3.1.1 Data Storage Locality, Quantity, and Mobility

From the case study review, two primary data flow paths are present in the BES workflows:

• Acquisition from instrument/detector, and flowing to some form of local/buffer storage.

• Migration from local/buffer to long-term storage, analysis, or sharing with collaborators. 

The first workflow pattern, between the instrumentation and local capabilities, is universal throughout the 
BES community with every facility having a set of common approaches and mechanisms. The second workflow 
pattern, between local capabilities and more centralized resources, varies considerably depending on size 
and relationships. For example, at X-ray facilities such as ALS and APS, each may have workflows that push 



282Basic Energy Sciences Network Requirements Review Final Report 2022

large amounts of data to remote HPC facilities. The ESnet staff leading the discussion was most interested 
in understanding the specific approaches that facilities were using to support the use cases, along with 
understanding what works well, and what could use improvement. 

All of the participants agreed that the two use cases are critical to the workflow. In fact, during the polling 
exercise that ranked the topics, many noted that it was hard to pick one to start with because they are all of high 
importance, and even the lowest ranked item (“Future Networking Needs”) was still critical, since most of the 
other topics must build upon that topic. 

Large X-ray facilities (e.g. APS, ALS, NSLS-II, etc.) have adapted to the data mobility challenges over time, and 
tried many different approaches to get to where they are today. Many anticipate that the answers they use today 
will be a stepping stone to changes in the future. Active research and development is being done to experiment 
with new tools and approaches as data volumes increase and the user community adapts to new ways of working 
with large facilities (e.g., remotely). 

Interest in continuing to pursue workflows that involve major HPC centers is universal: most experimental 
facilities anticipate needing to leverage external resources for analysis workflows, along with emerging use cases 
that use AI and ML to steer experimentation in the future. HPC centers will continue to have a larger amount of 
computing and storage resources than an experimental facility, and support high-throughput data mobility tools 
that a number of scientific communities (including BES) use as a part of their workflows. 

Negative aspects to relying on external HPC facilities that were mentioned during discussion are: 

• Tying a workflow to resources not directly controlled by an experiment means that if the 
resources are not available (e.g., due to scheduled or unscheduled downtime), there is a risk 
of experimental delay, or failure. This could be mitigated with the ability to migrate to other 
resources at the same facility, or others that may support a similar API.

• HPC allocations are not automatic, and must be applied for on cycles. When they run out, it can 
sometimes be hard to request more. Having a more stable way to rely on HPC resources at a 
given facility (or several interchangeable facilities) is desirable. 

Both of these items were featured in discussions as a part of the DOE ASCR Integrated Research Infrastructure 
(IRI) activity, taking place throughout 2022. In particular, there is a strong push to unify the computational, 
storage, and networking portions of common DOE workflows to use a similar set of API hooks and other 
technology components. This would facilitate workflow migration to available resources, and unify the way that 
resources can be requested and reserved. 

Multifacility workflows also contain a deep tie to networking resources, given that many facilities are separated 
by geographical location. As BES workflows become more time dependent, particularly those that may try to 
utilize computational output in a real-time fashion, networking is a critical component that must perform well 
consistently. If a primary link becomes saturated or fails, the workflow could also fail. 

ESnet can work with the major facilities to set up backup networking options (e.g., L2VPN service similar to 
other science communities such as HEP) if this functionality would help smooth out uncertainty about future 
workflows. Overlay networking options, similar to the Large Hadron Collider Open Network Environment 
(LHCONE), could allow multiple BES collaborating facilities a stable and performant way to communicate built 
on top of the traditional ESnet network infrastructure. Active research and development is being done to expose 
networking APIs to intelligent data movement tools (e.g., Rucio) such that provisioning paths (and backups) can 
be done as a part of the overall workflow. In addition to smarter tools aware of network capabilities, there has also 
been interest in exploring on-demand (e.g. streaming) data movement options. 

An additional complication to data sharing comes when administrative boundaries are crossed. Identity 
management continues to be a friction point for BES users. This has been exacerbated in a multifacility workflow 
model where a user may need to authenticate to multiple locations, using multiple identities, on a regular basis. 



283Basic Energy Sciences Network Requirements Review Final Report 2022

Some tools are smarter about their ability to cache credentials, but this still does not solve the root problem of 
forcing users to perform the steps multiple times on a regular basis. A unified way to handle identity is still  
highly desirable. 

The NSRCs and neutron sources note that while their data volumes are not growing to the current levels 
experienced (or anticipated) at X-ray facilities, the volumes are still projected to grow beyond their current 
technology demands. For example, SNS is constructing a new instrument (VENUS) that is projected to create 
20–30 TB of raw image data in a single day. There will be mechanisms to reduce this locally, creating usable data 
sets that are a fraction of the size. Preparations are being made at the facility to adapt to the new volumes by 
upgrading networking capacities and making additional storage available. 

AI and ML are hungry consumers of research data, at least in the early phase of their use when they are trained 
in anticipation of a new use case. These needs are currently viewed as self-contained to a given facility or use 
case, but there are efforts to broaden the effort by sharing more training resources across individual facility 
use cases. This will also increase the data mobility requirements: both at BES facilities and HPC centers that 
run the algorithms. BES will employ more use cases for AI and in the future and has experimented with both 
edge computing in or close to the border of the instrumentation, as well as centrally located at large computing 
facilities. ESnet maintains a testbed that is exploring edge-computing options, as well as the aforementioned 
research into smarter APIs to interact with network functions. 

A last area of conversion in this topic centered on the growing demands of storage, and the temporal nature of 
allocations. In the future, having access to research data that spans facility boundaries, without having to worry 
about who may own or maintain the data, is desirable. The DOE ASCR IRI activity is also exploring these 
topics, and may recommend a more central way to store and manage research data that spans the administrative 
boundaries of a specific experimental facility. If this facility becomes a part of the ASCR ecosystem, ESnet would 
support connectivity to it.

6.3.1.2 Software to Perform Analysis, Sharing, Simulation, or Other Use Cases

Several X-ray facility case studies had common visions for the future of architecture, software, and workflow 
components in the current and future use cases of the BES community. DISCUS is the architectural vision that 
will integrate computation, software, instruments, and networking in a standard way. Bluesky will be an attempt 
to capture information and intent during the experimentation process to allow recording and reporting in a 
standard way. 

The NSRCs and neutron sources currently employ a heterogenous approach, which must change to be more 
uniform. This comes from the environment in which many operate: a number of different types of instruments 
that each have a different software stack (some of which may be vendor specific). This environment does not 
lend itself to creation of a standard workflow without creating a lot of custom software and APIs. Many of the 
NSRCs are at a tipping point where the amount of data produced by some of the instruments is growing beyond 
current capabilities. Thus a standard approach to deal with current (and future) technology with unified software, 
computation, and storage is desirable. 

With the growing data volumes, local networking must also be upgraded: typically the 1 Gbps control networks 
must be increased to 10 Gbps to allow for more seamless operation. As this occurs, the possibilities of integrating 
to national-level resources (such as HPC facilities) is also within reach. To use large HPC facilities means having 
to adhere to their standards for software and data management, which is also a forcing function to change the 
way that NSRCs operate. ESnet will continue to collaborate as necessary to link facilities that can benefit from 
multifacility workflows. 

A general comment surrounding BES facilities (e.g., X-ray light source, neutron scattering, or NSRC) is that 
many of their designs and operational patterns are closely tied to the era in which they were designed. Each has 
different funding models, and different data production expectations. As some scale upwards, they are learning 
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valuable lessons that can be shared with others that have yet to reach those levels. In some cases a facility may be 
on the bleeding edge of a technology requirement, such as adopting software that requires intense engineering 
knowledge. Getting to that level of operation could take subject-matter experts away from their core competency 
of their science just to learn how to adapt the technology. The BES community does not want to be experts in 
software or networking engineering, and relishes adopting BCPs that the ASCR community can recommend. 
This will scale collaboration in the future. Examples include the adoption of the Science DMZ approach to 
networking, or the Globus platform for data mobility. 

NSRCs, even with smaller data volumes, still gravitate toward some of the software and workflow solutions that 
other larger facilities have pioneered. In particular, the organizational structure of some of the software workflow 
tools works well locally, as well as nationally. These small productivity wins can outweigh the requirements of 
having near unlimited levels of bandwidth. For example, an older electron microscope may still produce data 
volumes in the MB to GB range and process the results using local storage and computation resources, but the 
ability to use intelligent software to automate the workflow is valuable. 

Some NSRCs are located at higher-security facilities, and because of this must use in-house resources. 
Security compliance can be tricky to manage at a number of BES facilities, and some struggle with the need to 
accommodate the requirements but also make data accessible. It can be a struggle to migrate even small data 
sets to users in ways that do not violate our security requirements. This event has resonated by showing lots of 
national-scale resources are available, and it is a worthwhile exercise to explore available options to leverage HPC 
facilities and ESnet for future collaborative efforts. 

6.3.1.3 Computation That Has Real-time, Near Real-time, or Offline Requirements

BES community members are considering many different approaches to their computational needs. An area of 
emerging interest for a number of years has been how computational power can be placed at or near the detector, 
particularly to refine the part of the workflow that performs data reduction. Using FPGAs (such as Xilinx or 
Altera) to do some of this work is of interest, but requires expertise that many in the community do not have 
readily available. In addition to data reduction, the aforementioned use cases that are employing AI and ML to 
steer experimental direction will leverage some mixture of local or edge-computing resources. Given the special 
nature of this work, namely using very customized training data that could have a large volume, physically close 
resources may be preferred. ESnet maintains an FPGA testbed, is also experimenting with edge-computing 
approaches, and will be working to figure out ways to deploy this resource close to sites so that it may be possible 
to perform similar functions for facilities and science experiments that could benefit. 

Other ways to solve the problem of computational availability will be to allocate other forms of computational 
resources (e.g., CPU or GPU) at the facilities, or to leverage the multifacility workflow model by leveraging ESnet 
and DOE HPC facilities. The latter use case raises a problem that is not quite solved: how can real-time needs for 
an instrument preempt the operation of a shared resource such as those found at the HPC facilities. Some BES 
community members are working with the HPC facilities to implement ways to have real-time critical jobs be 
advanced through the scheduling system such that they can meet deadlines to ensure experimental success. This 
is critical since delivering the information fast is a requirement for the use case. The aforementioned DOE ASCR 
IRI activity has identified this use case in their investigation as well; a number of communities are interested in 
being able to address real-time computational needs. 

As mentioned in previous topics, the BES community lacks the subject-matter expertise to explore new ways to 
address computational challenges. The use of FPGAs, or the manipulation of job queues, requires expertise that 
takes time to build. The BES community leverages HPC expertise from each of the facilities when possible, but 
finds it hard to grow this within the community of users who also know the underlying science use case. 

Also revisited was the area of friction surrounding HPC allocation. As stated before, HPC allocations are not 
automatic, and must be applied for on cycles. When they run out, it can sometimes be hard to request more. 
Having a more stable way to rely on HPC resources at a given facility (or several interchangeable facilities) is 
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desirable. BES would like to explore just having a permanent allocation for use, instead of having each facility (or 
PI) have to request each time. In the future, BES may have fewer dollars to spend on storage and computation. 
Thus having a permanent way to address computing challenges will alleviate some of this pressure on the 
workflow. It will also lend itself to simplified use cases, using standard APIs, and less bespoke ways to address the 
overall challenge of data reduction, analysis, or storage approaches. 

A last area of conversation involves the emerging streaming data use cases for analysis. One concept that has 
stopped BES, as well as a number of other communities, has been the challenges in having HPC worker nodes 
stream data directly from a remote repository. The typical use case has always been to perform a bulk-data 
movement to scratch storage, since worker nodes do not often have the ability to perform a wide area transfer 
directly. Research by DOE HPC facilities to enabling different approaches that may help this problem is ongoing 
and includes ways to indirectly fetch data (via the Cray Slingshot Interconnect), deploying in-network caches 
to bring data closer to HPC centers, or creating overlay networks that link resources on private VPN networks. 
These approaches are being explored by other DOE communities, including facilities and experiments from HEP. 

6.3.1.4 Facility Upgrades and Potential Changes to Data Volumes and Rates

The majority of facility case studies indicate growing data volumes in the coming years as facility upgrades and 
new instruments are installed. The new generation of detectors is both faster and more accurate, which leads to 
the data they produce growing at exponential scales. With larger and more accurate data comes a need to increase 
network speeds and increase the available computing power at HPC facilities that serve the experiments. 

LCLS at SLAC will experience significant data volume growth of the raw data capabilities (prior to any attempts 
to reduce the data sets). Needing Tbps capabilities in the coming years due to these upgrades is expected. SLAC 
is in the process of identifying the needs and timelines to increase its ESnet connectivity to reach NERSC for the 
analysis workflow. SLAC is in discussions with ESnet to upgrade the connectivity from two 100 Gbps connections 
in the short term. In the medium term, SLAC and ESnet will work to implement 400 Gbps connections. SLAC 
will continue to implement local upgrades, including connecting the new Shared Data Facility when the building 
is complete. 

To better align upgrades of technology components in the future, understanding how the relationship between 
upgrade capabilities (e.g., detector area captured, readout rate, etc.) will influence the requirements for 
networking, CPU memory and bandwidth requirements, and overall storage volumes is useful. Currently there is 
not a one to one relationship between any of these items; the BES community notes that any technology upgrades 
that can be provided by ESnet or the HPC facilities will ultimately improve the scientific process until the next 
bottleneck is reached. 

BES facilities and experiments commonly learn how new technology will benefit them, and then increase their 
productivity accordingly. For example, if computation doubles, they may try to double how much experimentation 
they accomplish in the same window. The same can be said for networking: with the availability of faster and 
more predictable networks, addressing data mobility between facilities will become easier, and people may 
send more data. This scalability will have limitations however, based on the previous discussions on workforce 
availability. A safe assumption will be that scientific output will track closely with technology upgrades, and the 
overall quality of experimentation will increase as well. For example, being able to validate a hypothesis with 
double the amount of data will strengthen the findings. 

Another area of discussion brings up the nature of understanding both the successes of research (e.g., the 
published results), as well as the failures that lead to the successes. For example, NSRCs engaged in the robotic 
synthesis of materials may learn valuable lessons about approaches that do not work. Keeping accurate records  
of failure, and being able to consult them before starting new experiments, is valuable to the overall process  
of science.
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6.3.2 Focus Group 2
The polling during the meeting produced the following discussion topics of interest to the assembled group:

• Computation that has real-time, near real-time, or offline requirements.

• Challenges in supporting multi- or coupled facility workflows.

• Data storage locality, quantity, and mobility.

• Supporting “remote” control and operation.

During this period of discussion, several notable items were brought up, as described in the following sections. 

6.3.2.1 Computation That Has Real-time, Near Real-time, or Offline Requirements

The ESnet team started this topic area seeking some clarification regarding the major types of computation 
workloads, and suggested hardware types that will support autonomous experiment steering. From the 
submissions, and discussions with authors, there are two “real time” requirements to consider going forward: one 
for the AI and ML components that will send feedback to the physical (or virtual) scientific instrumentation, and 
another that can be used to provide real-time analysis and visualization for operators and users of the instruments. 
Discussion of these two use cases revealed that edge computing (e.g., anything with less than milliseconds of 
latency and response time) will be required to support AI and ML needs during operations, while the analysis to 
support human users can be slower (e.g., seconds of latency and response time) and will continue to be provided 
by centrally managed computation within a facility, or in some cases at a coupled HPC center. Participants noted 
that in practice the most successful implementations have been with dedicated CPU and GPU resources to 
support a tight “feedback loop” for the AI and ML use cases, and a slightly slower (and lower fidelity) workflow 
that used institutional computation to support visualization or longer-term analysis. 

Operating these forms of computation comes with certain costs and risks. The real-time requirements 
placed on the AI and ML components imply that CPU or GPU resources must always be available, with 
almost instantaneous access required during the time of experimentation. Sharing this resource with several 
simultaneous uses could be challenging if the wait time grows beyond what is acceptable to keep the autonomous 
steering pipeline productive. Of equal consideration is the role of cybersecurity: edge-computing resources 
used by multiple parties must be trustworthy and verifiable during times of operation. Given the expected larger 
volumes of data from instruments and simulations in future years, designing computational infrastructure directly 
engaged with networking resources is the suggested way forward to ensure an efficient path to process data in a 
secure and predictable fashion. 

The institutional computing requirements to support visualization and analysis workflows (either locally or 
remotely) are more well-known and accepted by the BES community, but the use of edge computing is still 
emerging as a new paradigm to support. ESnet inquired more about how the use of edge computing will become 
more integrated into the standard workflows in the coming years; in particular if it is anticipated that edge 
resources will become highly customized to specific use cases (such as steering a specific instrument or analysis), 
or they will be general purpose to facilitate a wider variety of potential users. 

Most BES research on computation centers on the development of a generalized platform that can run an 
environment (e.g., a container with a set of microservices), which is then available for rapid deployment on 
demand. The generalized nature ensures that the environment has many options for deployment, but may not 
be as fast or specialized to a specific resource, which results in some loss of efficiency. Future development will 
explore the other possible direction: investing time into building custom hardware and software; particularly if 
it results in significant gains in efficiency for a given facility or instrument (e.g., compression, feature extraction, 
decision support analysis). 

A future vision centers on the notion of a seamless experience where data flows freely from an instrument or 
simulation directly to the AI and ML components, to minimize the latency and increase the overall response 
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time. Beyond autonomous experimental steering, the work to support the creation of facility and instrument 
digital twins, and the research into quantum computing, will also leverage edge-computing resources to support 
AI and ML workloads. The BES community is moving toward a model where simulation and experimental 
data will both become input to advanced algorithms that will help to guide the direction of physical or virtual 
experimentation outcomes. It was noted that within the DOE IRI program, a number of use cases and subgroups 
asked a similar question to determine if a unified API for generalized edge computing would be the most efficient 
way to utilize the resources, of if these concepts are best seen as bespoke to individual users. Participants noted 
that even within the concept of the edge, distinctions may be made between “near” and “far” edge, where one is 
extremely specific, and the other is more generalizable. 

Lastly, discussion returned to cybersecurity topics, specifically flows that related to the implementation of policies 
on access, identity, and permissions for the components of a modern BES workflow. Participants noted that for 
multifacility workflows to become more standardized, thought should be given to how independently managed 
resources and users can be integrated in a fashion that does not reveal their disjointed nature. For example, if a 
user at a BES beamline is to embark on a multifacility workflow, the following barriers often exist:

• The user may be from the parent laboratory, but often is not, and must go through steps to 
establish a local operating identify to access facility instrumentation, computation, and storage 
permissions prior to experimentation start.

• During experimentation, the user can utilize the aforementioned resources with a single 
identity and permissions, but may encounter friction if computation is required beyond the 
facility: use of a DOE HPC resource has another process to apply for an allocation, and receive 
a second identify.

• Creating workflows that link the two facilities will now involve the stitching together of multiple 
accounts and permissions, and may not be fully automated if restrictions are placed on data 
mobility between the facilities. 

• Lastly, operating computational and storage workloads at one DOE HPC resource does not 
guarantee the same components will function the same at others. No common operating 
environment or workflow is available. This is another conversation ongoing in the ASCR  
IRI activity.

These considerations are large barriers to the adoption of autonomous steering approaches because they impart 
friction into a process that requires agility. It is often the case that DOE facilities (e.g., BES or ASCR) do not 
share common definitions of security and policy, which complicates the design and prototype development 
activities discussed during the requirements review. While the participants do not have all of the answers, the 
common ground of requiring a baseline form of AAA implementation that spans facilities is desired, and it should 
apply at a facility, instrument, computation, storage, and data mobility level to ensure friction-free operation. This 
will prevent circumvention of security, and allow for a more automated environment so the community can move 
away from offline forms of operation (e.g., the use of removable media and shared login credentials). 

6.3.2.2 Challenges in Supporting Multi- or Coupled Facility Workflows

Pivoting away from computational topics, the conversation gradually focused more on the challenges that are 
facing multifacility operation. In addition to the inherent friction that comes from applying disjointed security 
policies and practices, the adoption of tools that are agnostic to location of individual components has been crucial 
to furthering these advanced workflows. Participants cited Jupyter notebooks, which can be easily deployed 
as a container into many forms of centralized, institutional, and local compute environments, as an important 
step to empowering users to adopt automated workflows during experimentation. Users that are not savvy with 
computing or coding can now use standard templates (https://neutronimaging.pages.ornl.gov/tutorial/notebooks/, 
https://analysis.sns.gov) to accomplish a number of standard experimental workflow portions: real-time analysis 
during an experiment, data mobility to off-site locations, and post-experimental analysis. A number of the BES 
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facilities have utilized this approach, particularly during the pandemic years, since it is easy to support remotely 
and is portable to a number of other experimental and HPC facilities. Some users noted the wide variety of other 
tools that support Jupyter, including Papermill1, which has allowed users to link together multiple notebook 
instances and build more complex workflows. Some participants in the focus group noted that the next logical 
step for the concept of an interactive notebook initiated by the user is one tied specifically to an instrument. This 
would further eliminate the need for individual users to be subject-matter experts in programmatic concepts, and 
would allow them to focus more on the science outcomes, versus having to constantly construct the workflow at 
the start of each experimental use case. 

The Jupyter notebooks do have some friction that was noted by participants. Watching tutorials, particularly 
for some users, is a necessary step that may not be undertaken prior to the first visit of a facility. Additionally, 
the tools could be simplified even more with enhancements to the GUI to clarify certain aspects. Lastly, the 
underlying software toolchain that supports the tools (e.g., Python) can be a delicate environment that requires 
special care when upgrading to not break functionality. A future consideration for the effectiveness of this tool 
will be scalability as the data volumes from instruments increase. For example, handling data sets of MB to GB 
sizes is typically within the boundaries of most Jupyter deployments, but approaching the TB and PB range will 
be a challenge for the underlying hardware environments. Future iterations of Jupiter may require adaptation to 
fetch data on demand versus complete importation, along with more intelligent APIs that can account for caching 
and prefetching of important data regions to not focus as much on the issue of data locality. The work on Bluesky 
and Tile is addressing some of these concerns. 

This discussion topic finished in reviewing some of the challenges to regular use of DOE HPC resources in 
the future of BES experimentation. Previous exploration has seen this work go from concept, to pilot, to near 
regular use cases that have shown experimental and cost efficiency in the coupling procedure. BES participants 
do have future concerns, though, particularly with regards to budgets: as their data and computation needs grow, 
it is harder to purchase, deploy, and maintain local computing; thus the appeal of using DOE HPC resources 
is growing. The allocation process for users remains competitive, so considering other approaches where a 
facility applies for an overarching allocation that can be distributed to users in a more uniform fashion may make 
sense. This is a different model than some DOE HPC facilities are used to, and may challenge some notions of 
use and cost. The alternative would be for BES (or other programmatic areas) to continue to provide their own 
computing, which over time could be more expensive in terms of capital and operating expenditures. As the 
requirements for computation grow there will be some friction to work out, particularly for the use cases that 
require specialized resources (e.g., GPUs to support AI and ML). The participants are in agreement that all forms 
of computing available will be leveraged now, and in the future. Standardizing the offerings across the DOE 
ecosystem is also recommended to ensure that workflows are portable, and resources can be used uniformly.

6.3.2.3 Data Storage Locality, Quantity, and Mobility

A common theme across all of the BES case studies was the growth of experimental and simulated data sets, 
and the strain this will put on data storage requirements in the coming years. ESnet started this topic area by 
inquiring if general consensus existed on how BES facilities are handling data storage: attempting to store all data 
in perpetuity, putting in place sensible policies to cycle out the oldest data as space becomes limited, or time-
based allocations that delete based on age alone. Participants noted that all are possible, and no standard exists 
based on facility. Smaller facilities with limited resources often follow the latter two approaches. Larger facilities, 
especially those with long-standing relationships with DOE HPC facilities, typically try to hang on to data 
forever, even if it means migrating to slower offline storage. In the general case the cost of storage has dropped, 
but the curation steps remain expensive (e.g., staff time to monitor and migrate data, along with updating 
catalogs). In the general case, most instruments and facilities have the ability to store multiple TB of data on live 
storage, and can then filter older data to institutional or offline storage as needed. Others noted extensive R&D 
efforts for new machines to develop more sophisticated data filters to reduce the footprint of raw data.

1 https://papermill.readthedocs.io/en/latest/
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Trying to establish a well-known centralized location, possibly a DOE HPC facility, that can serve as permanent 
storage was raised. In practice this idea has been discussed before, but faces some barriers. Export controls and 
other security policy differences between facilities remain large hurdles to a universal solution. A secondary 
problem is the lack of a unified data storage and metadata cataloging framework; these issues remain challenging 
since automating this is often hard, and experimental users often skip this step in the rush to acquire and publish 
research results. Some advancements, such as the standardized use of storage and computation for all instruments 
in a facility, have furthered the challenge of proper categorization, but there is a long way to go to span all of the 
BES ecosystem. 

6.3.2.4 Supporting “Remote” Control and Operation

The last topic was remote operation for BES facilities. The pandemic accelerated this use case across the entire 
ecosystem, and in locations where it was previously unavailable, it is now a first-order operational mode that will 
remain for years to come. Several participants offered their individual experiences, which can be summarized as:

• The initial lift of enabling remote viewing was challenging from a security standpoint for some 
facilities. Operating remote viewing tools (e.g., NoMachine, VNC) had to be done in a careful 
fashion to abide by institutional security policies. 

• The aforementioned issue with managing multiple identities also remains, and was made harder 
when users could not visit a facility to receive all credentials.

• Some instruments will never be fully remote operated, which implies that users must still 
coordinate with local staff during experimentation. This places a lot of emphasis on the power of 
remote collaboration tools (e.g., Zoom, WebEx, Bluejeans, Teams). 

This section completed with additional discussion on authentication, in particular the adoption of multifactor 
procedures, and how the user population has responded to their requirement and implementation. MFA has 
become more widespread, and is used in a number of commodity applications (e.g., banking, use of commercial 
email services); thus its use for instruments at DOE facilities is not unheard of. The complications still come from 
having to use multiple MFA systems, for multiple identities, in the course of doing a single experiment. There is 
hope that the ASCR IRI discussions will help to describe and codify requirements and implementation strategies 
in the future.
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List of Abbreviations

ACI application centric infrastructure

AI artificial intelligence

ALCF Argonne Leadership Computing Facility

ALS Advanced Light Source

ANL Argonne National Laboratory

APS Advanced Photon Source

APS-U Advanced Photon Source Upgrade

ARI ARPES and RIXS Imaging

ASCR Advanced Scientific Computing Research

ASN autonomous system number

AWS Amazon Web Service

BAG Block Allocation Groups

BCP best common practice

BES Basic Energy Sciences

BLAST Bridging Length/Timescales via Atomistic Simulation Toolkit

BNL Brookhaven National Laboratory

BTR beam time request

CADES Compute and Data Environment for Science

CAMERA Center for Advanced Mathematics for Energy Research Application

CAT collaborative access teams

CCD charge coupled device

CCTBX Computational Crystallography Toolbox

CDI coherent diffraction imaging

CDN Content Distribution Network

CFN Center for Functional Nanomaterials

CFS Community File System

CHX Coherent Hard X-ray

CINT Center for Integrated Nanotechnologies

CMOS complementary metal–oxide–semiconductor

CMS complex materials scattering

CNM Center for Nanoscale Materials

CNMS Center for Nanophase Materials Sciences

CPU central processing unit

CryoEM cryogenic electron microscopy

CSI Computer Science Initiative

DAC direct air capture

DAQ data acquisition

DCI Data Center Interconnect

DFT density-functional theory
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DISCUS Distributed Infrastructure for Scientific Computing for User Science

DMFT dynamical mean-field theory

DMRG density matrix renormalization group

DOE Department of Energy

DOE SC DOE Office of Science

DOI digital object identifier

DTN Data Transfer Node

EB exabyte

eBGP External Border Gateway Protocol

ECXF Equinix Cloud Exchange Fabric

ENOS ESnet R&D into network operating systems

EPICS Experimental Physics and Industrial Control System

ESCC ESnet Site Coordinators Committee

FAIR findability, accessibility, interoperability, and reusability

FCFS first come first served

FLOPS floating point operations per second

FPGA field-programmable gate array

FPMD first principles molecular dynamics

FTP file transfer protocol 

FTS first target station

FY fiscal year

GISAXS grazing incidence small angle scattering

GPFS General Parallel File System

GPU graphical processing unit

GU General User

GUI graphical user interface

HDD hard disk drive

HEC High End Computing

HEDM high-energy diffraction microscopy

HEP High Energy Physics

HEX high energy engineering X-ray scattering

HFIR High Flux Isotope Reactor

HPC high-performance computing

HPCS High Performance Computing Services

HPSS high performance storage system

HSCT high-speed computed tomography

HTC high throughput computing

HTSN High Throughput Science Network

ICNM In-situ Characterization and Nanomechanics

IDF instrument definition files

IOC input/output controllers
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IOTA Integration Optimization Triage and Analysis

IP Internet Protocol

IR Infrared 

IRI Integrated Research Infrastructure

IT Information technology

LAN local area network

LANL Los Alamos National Laboratory

LBNL Lawrence Berkeley National Laboratory

LCF Leadership Computing Facility

LCLS Linac Coherent Light Source

LDAP lightweight directory access protocol

LEA lab execution and analysis

LHCONE Large Hadron Collider Open Network Environment

LIMS Laboratory Information Management System

LN liquid nitrogen 

LSDCSC Light Source Data and Computing Steering Committee

LSTM long short-term memory

MB megabyte

MBA multibend achromat

MCP multi-channel plate

MD molecular dynamics

MDF Materials Data Facility

MFA Multi-factor authentication

ML machine learning

MOF metal–organic frameworks

MP Materials Project

MREN Metropolitan Research and Education Network

NAS network attached storage

NCEM National Center for Electron Microscopy

NERSC National Energy Research Scientific Computing Center

NFS network file system

NIH National Institutes of Health

NISQ noisy intermediate-scale quantum

NIST National Institute of Standards and Technology

NPON Nanophotonics and Optical Nanomaterials

NScD ORNL's Neutron Sciences User Office

NSF National Science Foundation

NSRC Nanoscale Science Research Center

OLAP online analytical processing

OLCF Oak Ridge Leadership Computing Facility

OPI operator interface
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ORNL Oak Ridge National Laboratory

OSCARS On-Demand Secure Circuits and Advance Reservation System

PASS Proposal Allocation, Safety, and Scheduling System

PB petabyte

PCA principal component analysis

PFLOPS petaflop, which is 10^15 floating point operations per second

PI principal investigator

PIN personal identification number

PRP Proposal Review Panel

PU Partner Users

QMC Quantum Monte Carlo

QMS Quantum Materials Systems

R&E research and education

RA Rapid Access

RDMS research data management systems

RDP remote desktop protocol

RIXS resonant inelastic X-ray scattering

RT room temperature

SAC Scientific Advisory Committee

SAN storage area network

SCS SLAC Computing Services

SDCC Scientific Data and Computing Center

SDK software development kit

SFTP secure file transfer protocol

SFX serial femtosecond crystallography

SLAC SLAC National Accelerator Laboratory 

SNAP SNS Neutrons And Pressure

SNL Sandia National Laboratories

SNS Spallation Neutron Source

SOA service-oriented architecture

SPEAR Stanford Positron Electron Asymmetric Ring

SPI single-particle imaging

SPICE Spectrometer Instrument Control Environment

SRCF Stanford Research Computing Facility

SRX submicron resolution X-ray

SSD solid state drives

SSH secure shell protocol

SSRL Stanford Synchrotron Radiation Light

STEM scanning/transmission electron microscopes

STS second target station

SUF Scientific User Facility
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SUFD Scientific User Facilities Division

SXN soft X-ray nanoprobe

TB terabyte 

TEAM transmission electron aberration-corrected microscope

TEM transmission electron microscope

TES thermal emission spectrometer

TMF The Molecular Foundry

ToR top of rack

UEC Users’ Executive Committee

UEM ultrafast electron microscope

UI user interface

UQ uncertainty quantification

VENUS versatile neutron imaging instrument

VM Virtual machine

VPC virtual private cloud

VPN virtual private network

VQE Variational Quantum Eigensolver 

VUV vacuum ultraviolet

WAN wide-area network

XAS X-ray absorption spectroscopy

XES X-ray emission spectroscopy

XFEL X-ray free electron lasers

XPCS X-ray photon correlation spectroscopy

XRF X-ray fluorescence
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