
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The artwork on the cover is a graphic representation of autonomous synthesis of atomic-scale building 
blocks for novel materials with unparalleled structures and functions. To revolutionize manufacturing, 
fundamental advances in precision synthesis, atom and energy efficiency in chemical processes, operando 
characterization, multi-scale modeling, validation, and methodologies for simultaneously achieving 
multiple performance objectives are needed. 

 
Image courtesy of Oak Ridge National Laboratory. 
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Executive Summary 

Manufacturing is central to the nation’s prosperity and security—it currently represents about 12% of the 
gross domestic product, provides nearly 13 million jobs, and accounts for about 25% of energy use. The 
economy relies heavily on numerous manufacturing subsectors that face common challenges, including 
how to best take advantage of available process data or inexpensively obtain needed additional data; a 
lack of physics- and chemistry-based models across length and time scales; a need for more sustainable 
processes; and supply chain constraints in a global marketplace. Advances in basic science are required to 
best meet these challenges and transform manufacturing. For example, how could understanding the 
issues of scaling from molecules to materials lead to the manufacturing of better, more economical 
batteries with higher capacity or reduce the energy consumption for industrial chemical production? 
Additionally, entirely new approaches to manufacturing and new products are needed and often arise 
from basic scientific research. 

To identify fundamental scientific opportunities and determine priority research directions (PRDs) that 
could accelerate innovation to transform manufacturing in the future, the US Department of Energy 
(DOE) Office of Science, Office of Basic Energy Sciences (BES), held a workshop on Basic Research 
Needs for Transformative Manufacturing in March 2020. DOE’s Advanced Manufacturing Office (AMO) 
within the Office of Energy Efficiency and Renewable Energy has long worked with industry to advance 
its mission to catalyze the research, development, and adoption of energy-related advanced manufacturing 
technologies and practices to drive US economic competitiveness and energy productivity. BES worked 
with AMO to identify technological barriers and manufacturing issues and to produce a factual document 
about the current state of manufacturing for discussion by invited workshop participants. (The factual 
document is posted along with this report at https://science.osti.gov/bes/Community-Resources/Reports.) 
Along with leading scientists and engineers from academia and national laboratories, industry 
representatives served as keynote speakers to provide additional perspectives. 

This report is the first US government examination of basic energy science needs for manufacturing. The 
identified PRDs provide a basic science strategy that underpins applied technology research. To transform 
manufacturing, fundamental advances in synthesis, processing, modeling, operando characterization, and 
validation are needed. As manufacturing processes become increasingly data driven and fully networked, 
integration of autonomous sensing and control will enable greater productivity and competitiveness. 
Finally, co-design will tackle data, control, and design across components, delivering multiple system-
level performance criteria simultaneously. Research based on these priorities will lay the scientific 
foundation to go beyond incremental improvements to create new, transformative technologies for 
manufacturing that are energy efficient and sustainable. 

The workshop was attended by more than 140 leading national and international scientific experts from 
academia, national laboratories, and industry. In a first for this workshop series, 40% of the participants 
attended virtually because of the emerging global pandemic. The five topical and one crosscutting panels 
identified five PRDs that should serve as the foundation for future DOE basic research to transform 
manufacturing. These PRDs are highlighted in the following paragraphs, along with a summary of the 
underlying critical opportunities for each one.  

Achieve Precise, Scalable Synthesis and Processing of Atomic-Scale Building 
Blocks for Components and Systems 

Innovations that enable precise and scalable synthesis and processing will accelerate the transition from 
current manufacturing methods to new paradigms for creating unparalleled structures and functions. 
Application-specific materials with unprecedented performance at manufacturing scale will emerge from 

https://science.osti.gov/bes/Community-Resources/Reports
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targeted synthesis and processing of building blocks, components, and systems that are precisely 
controlled at the atomic scale.  

Integrate Multiscale Models and Tools to Enable Adaptive Control of 
Manufacturing Processes 

Linkages between small-scale physics and chemistry and macro-scale nonequilibrium processes and 
component performance are not fully understood, limiting the achievable precision and functionality of 
products. A combination of multiscale modeling, in situ diagnostics, and an online decision-making 
framework is needed to realize adaptive manufacturing processes and guarantee component qualification. 

Unravel the Fundamentals of Manufacturing Processes Through Innovations in 
Operando Characterization 

In 21st century manufacturing, many processes are still practiced as “art” instead of science. Frequently, 
there is insufficient fundamental understanding to tailor and control materials and processes so that they 
perform exactly as desired, with minimum energy consumption and maximum efficiency. Operando 
characterization—direct visualization and characterization under actual manufacturing conditions—will 
provide the knowledge needed to transform the science of manufacturing. 

Direct Atom and Energy Flow to Realize Sustainable Manufacturing 

Sustainable manufacturing requires localizing energy delivery and directing atom- and energy-efficient 
chemical and materials processes. Synergistically using diverse forms of energy (e.g., electrical, thermal, 
radiative, and mechanical) coupled with understanding phenomena across length scales would enable 
sustainable, high-efficiency processes. Scientific advances could support the design of circular feedstocks 
that minimize waste and reduce the use of critical materials in existing and future chemicals and 
materials, moving toward resiliency. 

Co-design Materials, Processes, and Products to Revolutionize Manufacturing 

Co-design is a paradigm that provides scientific foundations for the creation of new materials, chemical 
processes, or systems by addressing the ubiquitous manufacturing challenge of simultaneously satisfying 
multiple performance objectives. Exciting opportunities exist to meet this challenge with new approaches 
integrating predictive modeling and experimental data with system resiliency, circularity, and operability. 
Doing so will enable the navigation of the near-infinite range of possible designs to identify inherently 
resilient systems. 
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The image is courtesy of Oak Ridge National Laboratory and Argonne National Laboratory, and portions 
are reprinted with permission from the American Chemical Society and Springer/Nature. 
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1. Introduction 

Manufacturing plays a central role in how we live and work. From the cars we drive to our cell phones 
and computers, as well as our homes and clothing—all rely on manufacturing innovations. Advances in 
manufacturing have been forged over centuries of inventions, yet key challenges remain. Now, perhaps 
more than ever, basic science is poised to transform manufacturing. Emerging opportunities are possible 
as a result of recent scientific advances in the complexity of systems that can be studied, including, 
among others: characterization tools that probe materials and chemical processes with unprecedented 
temporal and spatial resolution, enabling in situ and operando analysis of devices and processes; new 
chemistries and materials that are ushering in device miniaturization; artificial intelligence and robotics 
that are speeding up discoveries. With energy costs exceeding $150 billion a year1 for manufacturers in 
the United States, new ways to both reduce costs and ensure a circular economy are also needed. Figure 1 
is a Sankey diagram showing the sources of energy and energy consumption by US manufacturing. 

 
Figure 1.  The US manufacturing sector Sankey diagram shows how total primary energy is used by US 
manufacturing plants. It is based on the US Energy Information Administration’s manufacturing energy 
consumption survey data for 2014 and updated assumptions as of May 2019. Source: Image provided by 
DOE Advanced Manufacturing Office, Static Sankey Diagram Full Sector Manufacturing (2014 MECS). 

The President’s Council of Advisors on Science and Technology (PCAST)2 defined manufacturing as  

a family of activities that (a) depend on the use and coordination of information, 
automation, computation, software, sensing, and networking, and/or (b) make use of 
cutting edge materials and emerging capabilities enabled by the physical and biological 
sciences. 

This workshop was designed to capture the highest-priority fundamental research directions that could 
lead to transformative impacts on manufacturing, and the priorities laid out build upon this definition. 

The breadth of basic science provides many possible pathways to transform. For example, new methods 
that analyze vast amounts of process information, enhance automation, model chemical reactions and 
material syntheses, and enable networking and data mining are opportunities for transformation. These 
new methods will be enabled by further advances in data science, computation, robotics, and high-

https://www.energy.gov/eere/amo/static-sankey-diagram-full-sector-manufacturing-2014-mecs
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performance computing. The design and discovery of new characterization tools and the integration of 
current capabilities with these new tools could be particularly beneficial to manufacturing.  

Sidebar: A Short History of US Manufacturing 
The first known use of the word “manufacture” dates back to 1567. The word derives from 
Latin manu factus, meaning “made by hand.” Clearly, manufacturing has come a long 
way since then. US manufacturing origins include an automated grain mill that used 
conveyor belts, dating back to 1787. This era represents what some call “Industry 1.0.” The 
“American System of Manufactures” has its origins in the 1800s and was named to 
contrast it with the English system; it refers to the prevalence in US industry of production of 
goods using a sequential series of operations performed using purpose-built machinery to 
make interchangeable parts3 — the beginning of Industry 2.0. The 1900s brought about 
dramatic advances as assembly lines were introduced and the integrated circuit was 
invented. In the 1970s, automation of manufacturing lines become pivotal for beginning 
Industry 3.0. And, most recently, 3D printing and smart manufacturing has ushered in 
Industry 4.0. US manufacturing today is made up, predominantly, of small businesses with 
only about 4000 of the roughly 250,000 businesses having more than 500 employees. 
Manufacturing today is adaptable and lean and ready for innovation. Moving forward, 
the gaps that have prevented the seamless movement of basic science innovations to 
market and manufacturing challenges will be overcome through new research. New 
products will be designed and new manufacturing methods will be developed through 
discovery science.  

 
Source: Image provided by Argonne National Laboratory. 
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The discovery of methods, processes, and materials as yet uninvented could revolutionize manufacturing 
processes. Recent examples of methods currently revolutionizing manufacturing include additive 
manufacturing, which allows distributed manufacturing of customized products, and artificial 
intelligence, which is driving manufacturing autonomy. Basic science can provide new capabilities to 
advance what can be manufactured and how it can be manufactured. 

Other approaches include further incorporating sustainability and circular economy innovations into 
manufacturing. Opportunities here include finding ways to incorporate sustainability into product design 
and manufacturing processes, ensuring facile reuse of products at end-of-use, and developing new 
capabilities needed to further enable the use of recycled feedstocks. Considerable opportunities exist for 
basic scientific innovations that will accelerate the adoption of a circular economy. Figure 2 illustrates 
opportunities for sustainable chemical manufacturing. 

 
Figure 2.  Life cycle of chemical processes and products. Source: Image provided by Government 
Accounting Office, https://www.gao.gov/assets/690/689951.pdf. 

In today’s global manufacturing market, existing sources of raw materials, and their corresponding supply 
chain issues, underscore the need for scientific discoveries of alternative raw materials and of ways of 
processing them into products. Also needed are new routes for processing chemicals and materials that 
reduce reliance on foreign sources of feedstocks.  

Basic science is needed to overcome current challenges in moving discoveries to market. Bridging 
common “valleys of death” that inhibit moving basic science innovations to market, such as those shown 
in Figure 3, is vital. There are long-standing challenges, for example, in scaling production from the 
laboratory benchtop to batch and continuous reactors. Another current manufacturing challenge stems 
from the incomplete understanding of device and component interoperability that can lead to performance 
issues; opportunities abound for improved integration at all stages of manufacturing, including the co-

https://www.gao.gov/assets/690/689951.pdf
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design of products, wherein the multiple phases of research and development (R&D) are considered in an 
integrated way. 

Figure 3.  Basic science is the key to overcoming current manufacturing challenges in moving discoveries to 
market by bridging common “valleys of death.” Source: Image provided by Argonne National Laboratory. 

In every sense of the PCAST definition of manufacturing, this workshop report provides a framework for 
furthering knowledge of the physical sciences to establish capabilities and provide cutting-edge results 
that enable such coordination from atoms and molecules to products, and from test tubes to tankers.  

References 
1. Energy Information Administration, Table 7.9, Expenditures for purchased energy sources, 2014, 

November 2017, https://www.eia.gov/consumption/manufacturing/data/2014/pdf/table7_9.pdf
(accessed February 2021).

2. Report to the President on Ensuring American Leadership in Advanced Manufacturing; President’s 
Council of Advisors on Science and Technology. Washington, DC, 2011.

3. Hounshell, D. A. From the American System to Mass Production, 1800–1932: The Development of 
Manufacturing Technology in the United States; Hopkins University Press: Baltimore: 1984.

https://www.eia.gov/consumption/manufacturing/data/2014/pdf/table7_9.pdf
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2. Workshop Organization

This was the first workshop of its kind to examine how basic energy science can drive manufacturing 
forward and innovate new ways to manufacture goods. Rather than organizing the workshop around the 
subsectors of manufacturing, such as chemical manufacturing, primary metal manufacturing, machinery 
and so on,1 the workshop’s six panels were structured by themes that predominantly crossed multiple 
subsectors. The thought was that doing so would help reveal opportunities for discussions about 
fundamental research needs that could impact multiple manufacturing areas, and thus help identify the 
highest priorities for fundamental research.  

The following are the workshop’s six panels: 

1. Precision Synthesis Science
2. Processing and Scale-Up Science
3. System Integration Science
4. Sustainable Manufacturing
5. Digital Manufacturing
6. Crosscutting Topics

Panel 1 considered precision synthesis, deposition, assembly, and deterministic organization in synthetic 
molecules and materials, ranging from atomic and molecular scales, to low-dimensional and 
nanostructures, through the meso-scale to the macro scale. This panel considered experimental, 
computational, and especially combined experimental and computational approaches in precision 
synthesis science. The themes included, but were not limited to, sequence-specific molecules and 
polymers, atom-specific low-dimensional and bulk inorganic materials, deterministic assembly of 
architectures and functional systems, and materials genome and machine learning strategies for materials 
design and optimization.  

Panel 2 centered around the often-complicated processing steps considered acceptable in prototyping to 
enable volume manufacturing, by either scaling up or numbering up. Moving technology from carefully 
controlled laboratory settings into industrial processes remains a significant challenge. This panel 
discussed the state of the art in processing and scale-up science and considered how processing may 
evolve in a future state with new raw material and energy inputs.  

Panel 3 focused on new technologies that require the integration of multiple devices or components that 
function in complex physical environments for economic benefits. The panelists discussed common 
classes of “show-stoppers” that emerge in the later stages of R&D that can be addressed if deeper 
understanding of key basic science issues is available. Looking at the changing energy-generation 
landscape, impacts were considered for manufacturing and the development of phenomena and 
approaches that can drive the discovery of new hybrid, integrated, or decentralized processes.  

Panel 4 reimagined the landscape of opportunities in sustainable manufacturing, where innovative 
concepts, materials, and processes make possible substantial reductions in resource and energy 
consumption and mitigate environmental impacts. Based on overall energy intensity, manufacturing 
processes for high-volume chemicals, polymers, and structural and building materials are likely to benefit 
the most from new discoveries that lead to breakthrough innovations. Additional understanding of how to 
effectively de-manufacture materials at the molecular level for expedient recovery and reuse in 
manufacturing supply chains was considered.  

Panel 5 focused on opportunities relevant to digital manufacturing. Digital manufacturing involves the 
application of computational systems to manufacturing process streams from conception and design to 
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final product. Discussions included identifying and exploring the fundamental scientific questions, 
underlying physics, and existing gaps, which—if bridged—can advance and solidify digital 
manufacturing with true scientific underpinning.  

Panel 6 was aligned across the other five panels. It sought to identify crosscutting themes that will enable 
seamless integration of characterization, sensors, process design, computer simulation, algorithm 
development, machine learning, and advanced analytics and enable manufacturers to be successful in an 
increasingly competitive economic environment. For many high-tech manufactured products, the 
precision required is not possible through human ability, so automation and robotic technologies will be 
increasingly needed. Opportunities for scientific innovation as a result of these areas were also discussed.  

Leading experts were invited from across academia, national laboratories, and industry to be a part of 
each panel. To provide a common understanding of the current state of manufacturing, program managers 
and experts funded through DOE’s Advanced Manufacturing Office (AMO) assembled a document about 
the current state of manufacturing; a draft version of this document was provided to all panelists before 
the workshop, and it is available through the DOE Office of Science website. During the workshop, the 
panels met separately to discuss their particular panel focus area and came up with possible priority 
research areas. Together, all the panels identified common priority themes that emerged from across the 
panels and that led to the Priority Research Directions (PRDs) discussed herein. 

References 
1. US Bureau of Labor Statistics. Industries at a Glance. https://www.bls.gov/iag/tgs/iag31-33.htm 

(accessed December 1, 2020). 
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3. Priority Research Directions

The workshop panelists identified five PRDs, listed in Table 1, to enable transformations and significant 
advancements in manufacturing. In the sections that follow, each PRD is discussed in depth.  

Table 1. List of Priority Research Directions and key questions. 

1. Achieve precise, scalable synthesis and processing of atomic-scale building blocks for components and
systems
What are the mechanisms needed for manufacturing multiscale, atomically and molecularly precise 
materials? How can basic research uncover structure–function relationships across multiple scales in 
components and systems? How can chemical processes readily be scaled from laboratory results? 

2. Integrate multiscale models and tools to enable adaptive control of manufacturing processes
What are the frameworks required to model, monitor, and ultimately control manufacturing processes that 
tightly couple physics and chemistry across scales? How can complex multiscale models be translated to fast 
surrogate models for process control? 

3. Unravel the fundamentals of manufacturing processes through innovations in operando
characterization
How can manufacturing processes and products be “visualized” at the atomic level, in real time, and under 
operating conditions to reveal the intricate details of underlying physical or chemical events? How can these 
insights be used in control schemes that inform decision making? 

4. Direct atom and energy flow to realize sustainable manufacturing
What are the methodologies to achieve atom and energy efficiency for sustainable manufacturing? How can 
science enable adaptive and resilient manufacturing across scales to exploit renewable or recycled 
feedstocks? 

5. Co-design materials, processes, and products to revolutionize manufacturing
How can bottom-up scientific discovery be combined with top-down system-focused design to identify new 
and efficient manufacturing modalities? What new approaches will allow the control of matter in the 
presence of impurities and/or nonequilibrium states? How can science enable multiple performance 
objectives to be achieved simultaneously for complex, multicomponent processes? 

Summary 
Manufacturing plays a vital role in the national economy, and manufacturing innovations impact lives on 
a daily basis. Even with tremendous advances, many manufacturing challenges remain. The opportunities 
for new materials and chemical processes to be discovered and moved to market are endless, and they will 
be enabled by scientific innovations that provide revolutionary advances in manufacturing methods. 
These innovations require multidisciplinary approaches that fully integrate modeling, data analytics, 
digital assembly, and operando characterization not only to revolutionize manufacturing, but also to 
decrease life cycle energy, reduce resource requirements, and lessen economic impacts. 

This workshop report discusses five PRDs that comprise fundamental science strategies to accelerate 
innovation and solve industry’s toughest challenges in manufacturing. While distinct, the five PRDs 
identify basic research needs that share common themes, including the need to bridge fundamental 
understanding across length and time scales, to precisely and adaptively control syntheses and other 
manufacturing processes at the atomic and molecular scales, and to develop and validate high-speed 
computational, characterization, and analysis tools that control and optimize manufacturing processes in 
real time. The realization of these common scientific themes will transform manufacturing at a faster 
pace.  
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PRD 1: Achieve Precise, Scalable Synthesis and Processing of Atomic-Scale 
Building Blocks for Components and Systems 

Summary 
Innovations that enable precise, scalable synthesis and processing will accelerate the transition from 
current manufacturing methods—which form, for example, materials with limited atomic precision—to 
new manufacturing paradigms that result in materials with unparalleled structures and functions arising 
from precisely placed atoms and macromolecules made through precise molecular assembly. Application-
specific products with unprecedented performance at manufacturing scale will emerge from targeted 
synthesis and processing of building blocks, components, and systems that are precisely controlled first at 
the atomic or molecular scale, and subsequently at the nano-, micro-, and macro-scales. While molecules 
are already precise, and the value of such precision is absolutely clear in pharmaceuticals and materials 
such as liquid crystals, such precision is not present in most manufactured products. If precise synthesis 
could be realized at manufacturing scale, the benefits would be unprecedented. Autonomous synthesis 
and processing in manufacturing offer opportunities for faster discovery of optimal pathways to products 
with improved efficiency and carbon intensity through precise control of materials and reactants, as well 
as operating conditions. Materials and complex molecules with unparalleled properties for energy storage, 
harvesting, and use, as well as materials for future computing, materials with remarkable mechanical 
properties, new catalysts, water purification membranes, and materials with exceptional thermal 
properties would become available, to name some applications. Background for this PRD can be found in 
previous Basic Research Needs reports, including the report on synthesis science1 for a discussion of 
strategies to form precise atomic-scale building blocks. While applications in quantum information 
science and microelectronics are not the focus of this BRN report, the BRN roundtable reports on 
quantum information science2,3 and the BRN reports on quantum materials4 and microelectronics,5 
provide examples of where manufacturing of precise atomic-scale building blocks could impact these 
important areas. The BRN report on catalysis6 notes also areas that precision synthesis could impact. 

Precise, scalable synthesis and processing of atomic-scale building blocks requires fundamental 
understanding of chemical and physical forces and synthetic methods that will serve as first steps for the 
synthesis and assembly of multi-component, multiscale structures. Fundamental understandings of 
chemical and physical forces and the resultant interactions within and between components also will 
enable the discovery of components and systems containing multiple, unconventional combinations of 
desirable functions (Figure 4). These hierarchical systems have architectures that go beyond pure and 
periodic structures to embrace compositional and structural complexity and to intentionally introduce 
defects and interfaces to add function. Energy applications5,7,8 often require considerable volumes of 
material, and the precise synthesis and processing methods discovered must be scalable; this is key to 
making an impact. Research will yield new theoretical/computational tools and experimental techniques 
to design and characterize multiscale structures and properties of functional organic and inorganic 
building blocks relevant for larger-scale manufacturing designed to meet the energy challenges of the 21st 
century.  

This PRD seeks to address key questions that include the following: What are the mechanisms needed for 
manufacturing multiscale, atomically and molecularly precise materials? How can basic research 
uncover structure–function relationships across multiple scales in components and systems? How can 
chemical processes readily be scaled from laboratory results? 
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Figure 4.  Rational construction of multiple generations (G) of nanorods synthesized by cation-exchange 
reactions. (a) Schematic showing the reaction setup and injection sequence. (b) Scanning transmission 
electron microscopy–energy-dispersive x-ray spectroscopy (EDS) element maps for each nanorod 
generation. The elements Cu, Zn, In, Ga, Co, and Cd are shown in red, green, yellow, teal, purple, and 
blue, respectively. (c) High-resolution transmission electron microscopy image with overlaid EDS map 
highlighting the crystallinity of each material within the G-6 nanorod. Source: From B.C. Steimle et al. 
Science 367, 418, 2020. Reprinted with permission from AAAS. 

Scientific Challenges 
The first scientific challenge is the need to design multi-functional and multi-structural materials that are 
precise across multiple scales, including those with complex organization. The complex functions of 
energy production, conversion, storage, and use are enabled by hierarchical design, often involving 
heterogeneous materials with organic, inorganic, or mixed components (see Figure 5). For example, high-
efficiency catalysts with uniquely determined locations of multifunctional active sites that are arrayed 
within constrained reaction spaces and connected by channels for delivery of reactants to drive a serial 
cascade of reactions would be quite powerful. Systems providing a linked cascade of reactions have 
already been designed for enzymatic systems9 and developing analogous systems in chemistry and 
materials science is an ongoing challenge . Similarly, nanostructured photonic materials use coupling 
across length scales to create properties not possible in homogeneous materials.10,11 Although remarkable 
structures have been created for many proof-of-principle demonstrations, major science gaps exist at 
many levels that limit or prevent their large-scale manufacture. First, there is a need to develop more 
effective and efficient synthetic and purification strategies to realize the required precision, quality, and 
purity of fundamental building blocks for both organic and inorganic systems. Second, new insight is 
required for the design of fundamental building blocks for the efficient assembly of predictable 
equilibrium and nonequilibrium hierarchical structures with targeted functions. Third, manufacturing 
often imposes additional constraints such as cost, product life-cycle, resource impact, and safety that 
require the development of new science beyond the discovery phase of synthesis and processing to realize 
impactful hierarchical structural and multifunctional materials systems at scale. 

The second scientific challenge is to avoid or overcome undesirable states through pathway engineering. 
The energy landscape and the synthesis reaction pathway is often complex and characterized by numerous 
local energy minima. A key question is what block design modalities (i.e., shapes, interactions, 

https://science.sciencemag.org/content/367/6476/418/tab-article-info
https://science.sciencemag.org/content/367/6476/418/tab-article-info
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anisotropic characteristics, and chemical selectivities) and what processing principles (i.e., confinement, 
equilibrium, kinetic effects, active control, time- and chemistry- synchronized processes, external stimuli) 
can be used for steering system formation toward the targeted structure? The discovery of underlying 
principles and establishment of practical methods will enable the manufacture of nanomaterials and 
chemicals with prescribed organization at multiple length scales. Already well known in biological 
systems,12–14 pathway engineering has recently been explored in all-organic and organic-inorganic 
hybrids15–21 and nanoparticle lattices22 to drive systems to the desired states. Use of information-rich 
materials and steered processes will allow control of material formation. 

Figure 5.  Hierarchical design from atomistic to micron scales generates novel architectures and functions. 
At the shortest length scale, atomically precise clusters—shown here for In37P2—are stabilized by organic 
ligands (not shown), while complex colloidal liquid crystal phases exhibit features at the micron scale. 
Highly porous metal organic framework compounds, nanoparticle superlattices, self-assembled protein 
lattices, and DNA origami-nanoparticle hybrid materials. Ordered three-dimensional nanomaterials using 
DNA-prescribed and valence-controlled material voxels span the intervening scales. Sources (L to R, top to 
bottom): • J.L. Stein et al. Cation exchange induced transformation of InP magic-sized clusters, Chem. 
Mater. 29, 7984–7992, 2017, https://pubs.acs.org/doi/10.1021/acs.chemmater.7b03075. Used with 
permission of the American Chemical Society (ACS). Requests for permission for further use must be 
directed to the ACS. • L. Rossi et al. Soft Matter 7, 64–67, 2011; permission obtained through Copyright 
Clearance Center. • From Z. Chen et al. Science 368, 297–303, 2020. Reprinted with permission from AAAS. • 
Reprinted with permission from Y. Kang et al., J. Am. Chem. Soc. 135, 42–45, 2013. Copyright 2013 American 
Chemical Society. • Reprinted by permission from Nature Publishing Group: Nature, Controlling protein 
assembly on inorganic crystals through designed protein interfaces, H. Pyles et al. 571, 251–256, 2019. • 
Reprinted by permission from Nature Publishing Group: Nat. Mater. Ordered three-dimensional 
nanomaterials using DNA-prescribed and valence-controlled material voxels, Y. Tian et al., 19, 789–796, 
2020. 

A third challenge is the need to manage and design defects and disorder. Defects and disorder in 
manufacturing associated with either materials or processing can take on many roles; it must be possible 
to identify and characterize them and manage them accordingly. In semiconductor manufacturing, for 
example, precision synthesis of very complicated hierarchical and heterogeneous layered materials 
systems must be carried out with near perfection in each of hundreds of processing steps to produce a 
functioning system. In other materials, such as steel and other metal alloys, defects and disorder (e.g., 
phase-separated inclusions, dislocations, grain boundary segregated atoms) are tuning knobs with respect 
to material properties. For example, in single-site catalysts, which are becoming increasingly important 
for both hydrocarbon processing and ammonia synthesis,6 a major barrier is placing the active atoms into 
structurally identical sites. This is particularly challenging in systems containing inorganic components. 
Molecular self-assembly is arguably one of the most promising strategies for high-volume cost-effective 

https://pubs.acs.org/doi/10.1021/acs.chemmater.7b03075
https://pubs.rsc.org/en/content/articlelanding/2011/sm/c0sm00822b#!divAbstract
https://science.sciencemag.org/content/368/6488/297
https://pubs.acs.org/doi/10.1021/ja3097527
https://www.nature.com/articles/s41586-019-1361-6
https://www.nature.com/articles/s41586-019-1361-6
https://www.nature.com/articles/s41563-019-0550-x
https://www.nature.com/articles/s41563-019-0550-x
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manufacturing at the nanoscale in both hard and soft matter systems, although major challenges remain 
with management of defects and disorder. In soft matter systems especially, information is encoded into 
the building blocks to program the materials to spontaneously form regular nanostructures down to 
molecular length scales with targeted function. However, often the areas or volumes over which materials 
self-assemble with adequate perfection are quite small (micrometer-scale), while systems with high 
perfection over macroscopic dimensions are required for industrial relevance. In this case, strategies to 
mitigate or control defects and disorder include the application of system-biasing external fields or 
templates in conjunction with self-assembly in processes sometimes referred to as “directed self-
assembly.” Controlling defects and disorder in systems with truly macroscopic dimensions, however, 
remains a significant challenge. 

Defects need not have a pejorative connotation and can be desirable. Defects have been used effectively 
in semiconductor and quantum devices. If manufacturing protocols and the enabling science can be 
developed to enable control of defects in bulk materials—as is done in the semiconductor industry—the 
impact on materials for applications ranging from energy storage to separation processes would be 
significant. Formally, in optoelectronic devices, donors and acceptors are atomic impurities, with low 
carrier ionization energies, that are introduced to make n- and p-type semiconductors. Energetically 
deeper impurities are intentionally created in semiconductors to shorten carrier lifetimes and realize high-
speed photodetectors. Atomic- and molecular- defects in crystals have long been prized for the colors they 
create in minerals, including in precious stones, laser materials, and more recently as spin qubits for 
quantum information science.2,3 In the latter application, defect complexes such as the nitrogen vacancy in 
diamond serve as quantum emitters capable of photon indistinguishability. Defects (e.g., grain 
boundaries, dislocations, vacancies) exist in most engineering materials; but in those materials, unlike in 
advanced semiconductors, there is generally considerable disorder in the chemistry and spatial positioning 
of the defects. New computational and experimental methods to design, create, and position defects in 
materials at manufacturing scale, outside the microelectronics and quantum realms, would be powerful. 
Geometric and topological defects, including symmetry-breaking defects, may enable the realization of 
optical, acoustic, and mechanical materials with unconventional or superior properties. Development of 
design and synthesis tools for such applications will be critical for the realization of these new functions. 

A fourth challenge is to precisely control the arrangement of atoms and molecules at surfaces and 
interfaces. The boundary between two materials or between a liquid and a solid, as examples, often either 
imparts desired functionality or play a deleterious role in system performance. Understanding and 
synthetically controlling gas, solid, and liquid interfaces of the type seen in various devices or in chemical 
processing, including separations, remains an important research challenge to practical realization and 
manufacture of many materials systems employed in energy technologies, for example in hydrocarbon 
refining.23 The nature of interfaces in soft, hard, and hybrid materials or liquid and gaseous chemicals—or 
even between different phases—can determine how energy, charge carriers, and ions move through 
matter. Whether the interface contains imperfections or inhomogeneities or is atomically coherent, 
whether it is compositionally abrupt or graded, and whether it is chemically accessible or inert is a key 
factor in both the initial material performance and the robustness or resiliency of a material or system 
over time. 

In addition to the importance of interfaces in inducing or modulating performance, surfaces and interfaces 
are at play during the assembly and integration of materials and building blocks, or in directing synthesis 
operations. Controlling surface chemistry, for example through patterning, is often key to enabling the 
assembly or processing of components such as block copolymers into more complex architectures and 
devices.24 Designer surfaces are also key to advanced manufacturing of energy systems—such as 
catalysts, membranes and quantum devices—with respect to the arrangement of functional motifs with 
atomic or nanoscale control (see Figure 6). Patterned and selectively reactive and self-limiting surface 
chemistry forms the basis of atomic layer processing methods, including atomic and molecular layer 
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deposition and atomic layer etching. Creating designer interfaces in materials will increase in importance 
with the proliferation of additive manufacturing, a process that by its very nature often introduces large 
numbers of interfaces into a structure.  

A fifth challenge is the need for high-volume, massively parallel, down to atomic-scale positioning of 
atomic and molecular building blocks, and functional system components. Semiconductor manufacturing 
represents one of the engineering marvels of the modern world. It offers tools, processes, and concepts for 
wafer-scale fabrication that should be leveraged when possible or applied to advance scalable precision 
synthesis and processing for applications outside the semiconductor space. Challenges exist in the further 
evolution of these tools to reach the single-nanometer or atomic length scale. For example, synthetic 
methods continue to develop that enable larger atomically precise clusters of atoms; what manufacturing 
technologies might be leveraged for assembling these building blocks into macroscopic systems? 
Conversely, in the realm of tool development, can arrays of actuators or parallel scanning probes be 
developed that allow for the assembly of precise building blocks at the manufacturing-relevant speed, 
cost, and scale required for applications with lower added value per unit volume than microelectronics? 
Opportunities exist for the creative use of the most advanced tools as a starting point for directed self-
assembly of precise building blocks or in conjunction with selective patterning, deposition, or etching of 
conformal layers, or self-limiting reactive layers, to produce functional heterogeneous and hierarchical 
materials systems. 

Figure 6.  Precise, scalable quantum materials synthesis. (a) Spin qubits along a monolayer graphene 
nanoribbon with armchair edges. (b) Schematic diagram of an array of surface qubits, showing both a 
potential linker and metal complex geometry. (c) Qubits (glowing components) can be installed in metal 
organic frameworks via selection of proper structural nodes or linking moieties. Magnetic interactions (J) 
between qubits in (b) and (c) are open to synthetic fine-tuning via proper choice of bridging units.  
Sources: (a) Reprinted with permission from Nature Publishing Group: Nat. Rev. Mater. 2D materials for 
quantum information science, X. Liu and M. Hersam, 4, 669–684, 2019. (b–d) M.J. Graham et al. Chem. 
Mater. 29(5), 1885–1897, 2017. 

Research Thrusts 
Thrust 1. New scalable atom-, electron-, and energy-efficient synthetic routes to 
precision materials and chemical products  
With the transition toward scalable syntheses, there is a need to develop economically viable and 
sustainable chemistries. For example, in polymer syntheses, much can be learned from concepts related to 
atom economy developed in organic synthesis. CH-activation reactions are being widely investigated in 
small molecule syntheses.25 These reactions have translated well for the synthesis of semiconducting 
polymers in terms of direct arylation polymerizations26 and continue to be further developed for a diverse 
range of applications. However, challenges remain in controlling the degree of branching and 
homocoupling. For polymer synthesis in general, moving toward the use of first-row transition metal 
catalysts or organic catalysts for sustainability, and using photocatalysis and electrocatalysis to enable 
reactions that are otherwise difficult to achieve at room temperature, will allow for more energy-efficient 

https://www.nature.com/articles/s41578-019-0136-x
https://www.nature.com/articles/s41578-019-0136-x
https://pubs.acs.org/doi/10.1021/acs.chemmater.6b05433
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processes while achieving greater control over sequence specificity. Of particular relevance are 
chemistries in which atoms present in the precursors, and the energies required to link the atoms into 
molecules and polymers are as close to the thermodynamic limit as possible. As an example, consider 
frontal polymerization (Figure 7),27 a process, in which a self-propagating exothermic reaction wave 
transforms liquid monomers to fully cured polymers. The energy required to drive the polymerization is 
the heat liberated by the polymerization, and all of the atoms in the monomer are present in the polymer. 
Because the heat is generated internally, this approach scales to almost any size. Also, because the heat is 
generated internally, there is no external equipment that needs to be heated (and then cooled), further 
reducing the energy consumption of the process. The composition of the resulting polymer is exactly the 
composition of the monomer, and available functionalities are limited only by that of the monomer. 

Figure 7.  (a) Frontal polymerization uses a propagating thermal wave (formed and maintained by the 
exotherm of polymerization) to convert a mixture of monomer, catalyst, and inhibitor from a low-viscosity 
liquid or gel into a stiff solid polymer. (b) A prepolymer gel is extruded from a printing nozzle at the same 
rate at which the polymerization front propagates through the gel. Behind the front, a stiff self-supporting 
polymer is present. (c) Thermal imaging of a polymerization front passing through the prepolymer. Scale bar 
is 4 mm. Source: Adapted with permission from Nature Publishing Group: Nature, Rapid energy-efficient 
manufacturing of polymers and composites via frontal polymerization, I.D. Robertson et al., 557, 223–227, 
2018. 

Classical electrochemical processing is widely practiced in industry, where the ability to electroplate thin 
metal films from aqueous solutions onto both planar and curved surfaces, or to electrochemically refine 
materials provides considerable value. More recently, it has been recognized that materials such as 
LiCoO2 and silicon for battery cathodes and anodes, respectively,28,29 can be electrodeposited into precise 
forms, including those with tight control of crystallographic orientation, at temperatures far below typical 
solid-state processes used for such materials. Electrosynthesis of chemical compounds also is an area of 

https://www.nature.com/articles/s41586-018-0054-x
https://www.nature.com/articles/s41586-018-0054-x
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growing interest and importance due to the potential to reduce energy consumption and waste, as well as 
to access otherwise difficult to synthesize compounds.30 In electrochemically driven systems, efficient use 
of electrons is paramount. Electrons not participating in the reaction of interest are both wasted, and can 
drive undesirable side reactions. There remains a need to generalize these concepts in atom, electron, and 
energy efficient routes to broad classes of precise materials.  

Thrust 2. Synthesis of hierarchical structures across multiple scales, in complex 
organizations, and at interfaces with targeted functions 
Modern molecular and material systems are complex and are rarely composed of single building blocks 
because of the need to satisfy multiple, stringent, and sometimes competing performance demands. For 
example, many energy materials derive performance benefits from combining large surface areas, to 
maximize locations for desired transformations, with high atomic deposition rates to maximize the 
frequency at which reactants interact with the material. Biological materials encode both of these 
performance advantages through the use of structural hierarchy across length scales.31,32  

Important research directions 
underpinning the manufacture 
of advanced material systems 
include developing the 
synthesis and assembly methods 
that realize compositional 
complexity and hierarchical 
organization with exquisite 
levels of control of all relevant 
components (see Figure 8). This 
requires exploration, 
theoretically and 
experimentally, of the chemical 
and physical forces operable 
from the molecular to the macro 
scales and using them in 
developing suitable processes to 
define structures across 
different scales. In partnership 
with these efforts, research is 
required to understand the 
multiple material and scale 

structure-function relationships to harness desirable, multiple functionalities. For example, in 
nanoparticle/polyelectrolyte composites, the percolated nanoparticle domains provide strength, while an 
independently percolated polymer microphase enables ion transport.33 Beyond realizing additive functions 
in composites, mixed material systems open up avenues to couple different, often orthogonal properties to 
create “homogenized” materials with functions not found in bulk materials. These explorations are just 
beginning, but an early example is of superparticles assembled from a combination of plasmonic and 
magnetic nanoparticles that have coupled optical and magnetic properties.34 To illustrate how such control 
leads to better performance, designed 3D nanoscale arrays have been used to form a chemically active 
material with an enzyme density that is increased by several orders of magnitude and has a simultaneous 
enhanced efficiency of the reaction cascade.35 Associated research involves developing characterization 
methods that probe structure at different scales, and the often buried and high densities of interfaces and 
their correlation with their functions that may dominate overall system performance. Ultimately the 

Figure 8.  (a) (Top) SEM images of (left) cubes (46 nm in edge length) 
and (right) spherical nanoparticles (46 nm in diameter). (Bottom) 
Schematic of the DNA functionalization and assembly of cubes and 
spherical nanoparticles. (b) Comparison of (top) TEM images with 
(middle) 3D reconstruction models and (bottom) the projections of the 
modeled structures at a few selected tilt angles to reveal the 3D 
structure of the assembled clusters (left to right: –72.1°, –52.1°, –38.5° 
and –18.1°). Source: Reprinted with permission by Nature Publishing 
Group: Nat. Commun., Superlattices assembled through shape-
induced directional binding, L. Fang et al. 6, 6912 , 2015. 

https://www.nature.com/articles/ncomms7912
https://www.nature.com/articles/ncomms7912
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processes to prepare and assemble these structured materials need to be translated to meet manufacturing 
scales.  

Scientific understanding is needed for the integration of materials into manufacturable device 
architectures to ensure process combability and function. For example, the directed assembly of block 
copolymers and nanoparticles in templates, described previously, allows the integration of different 
materials—such as emissive particles in nanophotonic cavities or the patterning of magnetic material for 
storage—to create devices. Can such processes be applied at manufacturing scale to much broader classes 
of energy-relevant materials, e.g., for energy storage? Sequential assembly requires orthogonal processes 
to engineer and differentially functionalize layers. While such processes have been demonstrated for 
microelectronics, their use in other engineering materials has been limited. 

Thrust 3. Spatial and compositional control down to atomic scales in 0D, 1D, 2D, and 3D 
at manufacturing-relevant scales 
Supported by the National Nanotechnology Initiative over the past 20 years, exploratory and open-ended 
fundamental research in the scientific community has led to both rational and serendipitous discovery, 
creating the foundation of our understanding of chemistry and physics at the nanoscale and enabling its 
translation to impact energy science and technology. Now we look to leverage this knowledge to design, 
synthesize, and fabricate materials and devices with atomic control at manufacturing scales. For example, 
self-limiting chemical reactions used to grow layers with atomic control in the vapor phase, heralded for 
allowing the fabrication of robust gate dielectric layers in highly scaled semiconductor devices, are being 
extended to solution-phase, atomic control of surfaces in chemically synthesized, low-dimensional 
materials for applications far from microelectronics, e.g. separation membranes.36 Ion exchange 
interactions at the nanoscale (unlike in the bulk) are kinetically fast at room temperature, allowing rapid, 
solid-state chemical transformations. Atomic-scale control provides routes to dope nanostructures; create 
structural, compositional, and functional complexity; and realize metastable phases with single-nanometer 
critical dimensions. Can chemically specific and self-limiting reactions, and manipulation of the 
thermodynamic and kinetic landscape, be used to allow more precise spatial and compositional control of 
polymers and inorganic nanostructures and thus reduce dispersity in their structures and inhomogeneities 
in their functions even at the molecular level? Can these reactions be applied to a broader material set; 
and is it possible to maintain the precision, yet increase the speed of slow, sequential atomic layer 
processes to allow rapid growth of 3D and hierarchical structures?  

Physical, mechanical, optical, electrical, and magnetic forces have enabled the manipulation of low-
dimensional materials, even the manipulation of individual atoms. For example, the extension of single 
electrochemical devices to parallel arrays of scanning probes and actuators with three degrees of freedom 
is aimed at translating atom-level control on surfaces to manufacturing scales. Laser cooling and magnetic 
field gradients have been used to cool, confine, and trap isolated atoms and ions and are a leading 
platform for quantum computing.2,3 However, parallelization is similarly needed to scale to hundreds, 
thousands, and perhaps even millions of interconnected traps. These multiple forces are also the basis of 
operation of many energy technologies, including optomechanical and electromechanical devices and 
designs for smart windows, water treatment, and environmental sensors. 

Thrust 4. Design rules and processes for manufacturing 
To impact manufacturing, the synthesis of atomically and molecularly precise building blocks, 
components, and systems must be undertaken and must account for both function and manufacturing 
constraints. Successful design rules include, for example, (1) synthesizing materials and chemicals from 
abundant and Earth-friendly building blocks, (2) processing functional materials in large volumes 
without uncontrolled defects when needed for their end use, (3) positioning materials with both spatial 
precision and controlled orientation and morphology, and (4) simplifying chemical reaction pathways 
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with enhanced yields. Using such rules will enable manufacturing materials and molecules in which the 
flow of ions, molecules, electrons, photons, and phonons is controlled in unprecedented ways. Other 
manufacturing constraints related to performance metrics usually not associated in early stages of 
development—such as lifetime, life cycle, and reliability—enhance the probability of impact. Thus, these 
need to be addressed as design criteria from the beginning. Advancing these scientific thrusts will enable 
manufacturing processes that are fully optimized with respect to these constraints. Safety considerations 
are also important for manufacturing processes. For example, new materials for coating applications are 
infinitely more attractive if processing is water-based than organic solvent-based. In devices such as 
lithium-ion batteries, replacing flammable and toxic liquid electrolytes with solid electrolytes may offer 
distinct processing and recycling advantages. Incorporating manufacturing constraints into all aspects and 
all stages of scientific discovery, rather than treating these constraints as afterthoughts, promises to result 
in vastly improved technological outcomes for discoveries in the scalable synthesis and processing of 
precise atomic-scale building blocks for components and systems, and to shorten design cycles. 

Thrust 5. Translating fundamental understanding of science of assembly across length 
scales 
Research advances motivated by this PRD will provide fundamental understanding of how collective 
properties emerge and are structured across multiple length scales, and strategies for the purposeful 
design of emergent properties for technology. For example, heterogeneous superlattices constructed from 
functional nanocrystal building blocks (e.g., metallic, semiconductor, magnetic) have been shown to 
support collective phenomena when the internal architecture is appropriately controlled (see the sidebar). 
Assemblies of these and other component types have displayed coherent vibrational states,37 tandem 
catalysis,38–40 enhanced magnetism,41,42 optical responses,43–45 and robust mechanical properties.46 While 
there have been previous self-assembly demonstrations of binary47–49 and ternary50 superlattices, the 
discovery of manufacturable methods for creating 3D lattices, across many length scales, with desired 
emergent properties, would be a very significant technological advance. 

Science and Technology Impact 
Improved models, theory, and simulation tools for manufacturing science. Advances in scalable synthesis 
and processing of materials building blocks, components, and systems with atomic and molecular 
precision will enable and be enabled by transformational developments of theory, simulation, predictive 
modeling, and materials databases of great relevance for manufacturing. Non-incremental extensions of 
ab initio theoretical frameworks require validation but often are tested on a limited number of systems. 
Predictive models often also depend on empirical parameters that are determined based on limited data. 
Access to larger and richer data sets, including observables at multiple length scales, will both increase 
the physical content of the models and better leverage machine learning approaches. While examples of 
harnessing reaction data to guide synthesis exist, opportunities remain to extend these models to larger 
length scales or heterogeneous materials systems. Improved chemistry- and physics-based models can 
lead to entirely new understanding of complex molecular and material syntheses in terms of their 
constituent building blocks. They also will accelerate and better integrate the theory-characterization-
synthesis paradigm for rapid development of heterogeneous systems. 

Realization of specific hierarchical, multi-functional structured materials and systems. Progress in the 
research directions outlined in this PRD will result in foundational knowledge that can be used to predict 
and then direct the synthesis and assembly of precise, often hierarchical and multicomponent material 
systems with explicitly targeted functionalities. To have the greatest impact on technology, next-
generation materials not only must be precise but also likely must concurrently provide multiple 
functions, often with competing demands. For example, catalytic membranes must exhibit high porosity, 
high mechanical strength, chemical activity, and thermal stability. Materials of importance for both 
energy storage and separation processes often consist of composites containing separate ion and electron 
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conducting components.51 In both these examples, material systems in which one material can provide 
high performance across multiple unrelated properties will lead to performance enhancements and 
potentially reduce manufacturing complexity. This PRD will inspire researchers to answer important 
questions of significant relevance to manufacturing, including these: What are the optimal synthesis and 
assembly methods to achieve specific and targeted structures? How can desired synthesis pathways to 
multiscale material organization be established and carried out? What is the relationship between 
material’s multiscale architecture and its desired cross-functionality?  

Sidebar: Colloidal Nanocrystal Superlattices 
Colloidal nanocrystals are fragments of inorganic crystalline solids that have organic (i.e., 
molecular, DNA, dendrimeric, or polymeric) or inorganic ligands coordinating their 
surfaces. Wet-chemical methods provide exquisite control for synthesizing nanocrystals 
tailored in size from ~2 to 200 nm in diameter, which can be truly molecular for the 
smallest size species, or precise to within atomic roughness for larger nanocrystals. 
Synthesis routes also allow control of the shapes of nanocrystals (e.g., to form spheres, 
cubes, rods, and polygonal platelets) and internal structure (e.g., to introduce dopants 
and to achieve complex core-shell and Janus heterostructures). The library of nanocrystals 
includes elemental, binary, ternary, and quaternary compositions that can be metallic, 
semiconducting, insulating, magnetic, luminescent, and phase change materials. The 
ligands at the nanocrystal surface mediate their synthesis, providing size and shape 
control, and sterically or electrostatically stabilize the nanocrystals in solvents. 

The precision synthesis of nanocrystals and their colloidal stability enable their self-
assembly and directed self-assembly to form artificial superlattices. These structures can 
be crystalline, liquid crystalline, quasi-crystalline, or glassy. Many nanoscale superlattices 
adopt structural analogs of atomic solids (e.g., NaCl, MgZn2, CaCu5, and NaZn13; AlMgB4; 
nematic and smectic; and quasicrystalline AB4, AB3.84, AB7.7) with examples of packings 
not previously observed in bulk atomic systems. The motif depends on the sizes and 
shapes of the nanocrystals, the ligand chemistry (e.g., charge, steric, bonding 
interactions) and surface coverage, and the chemical affinity of the nanocrystals to liquid 
or solid substrates upon which they are assembled. 

The physical properties of superlattices can be tuned by the type (i.e., precise size, shape, 
and composition), number, and arrangement of nanocrystals and by the distance and 
composition of the medium between the nanocrystals. For example, by tailoring the 
length and composition of intervening ligands, the strength of quantum mechanical 
coupling can be tuned, leading to the emergence of unique physical properties (e.g., 
optical, electrical, magnetic, mechanical, thermal). Tailoring the ligand and thus the 
distance between metal nanocrystals can cause the nanocrystal assemblies to undergo 
an insulator-to-metal transition and allow tuning of optical dielectric functions. Selection of 
the ligand chemistry on semiconductor nanocrystals has been used to tailor the energies, 
types, concentrations, and lifetimes of carriers in the construction of efficient solar 
photovoltaic devices. Combinations of nanocrystals with different or orthogonal physical 
properties promise the design of materials with exotic or multiple functionalities to 
achieve, for example, adaptive materials that transduce stimuli-responses in multiple 
domains. 
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Simulation and experimental transmission electron microscope (TEM) image of a multi-layer assembly of 
GaF3:Yb/Er rhombic nanoplates capped with dendrimeric ligands. The bulky dendrimeric ligands create 
coronas around the plates and create a directionally offset architecture in the multi-layer 
assemblies. The rhombic plates in the TEM image (right) have dimensions of 16.6 and 19.8 nm on their 
short and long sides, respectively. Source: Reprinted with permission from K. C. Elbert et al. ACS Nano 13, 
14241–14251, 2019. Copyright 2019 American Chemical Society. 

1. Basic Research Needs Workshop on Synthesis Science for Energy Relevant Technology; Department
of Energy, Basic Energy Sciences: Washington, DC, 2016. https://science.osti.gov/-/media/bes/pdf/
reports/2017/BRN_SS_Rpt_web.pdf?la=en&hash=24BA7C6B4BCE086EC5F3877F24DCE1CBCCF
D5303

2. Basic Energy Sciences Roundtable Opportunities for Basic Research for Next-Generation Quantum
Systems; Department of Energy, Basic Energy Sciences: Washington, DC, 2017.
https://science.osti.gov/-/media/bes/pdf/reports/2018/Quantum_systems.pdf?la=en&hash=
291099097EBCCFAB99D86F60F62EA061F996424C.

3. Basic Energy Sciences Roundtable Opportunities for Quantum Computing in Chemical and Materials
Sciences; Department of Energy, Basic Energy Sciences: Washington, DC, 2017.
https://science.osti.gov/-/media/bes/pdf/reports/2018/Quantum_computing.pdf?la=en&hash=
C767B23CFFD250A01F846D3B6FB62143BEC258B0

4. Basic Research Needs Workshop on Quantum Materials for Energy Relevant Technology;
Department of Energy, Basic Energy Sciences: Washington, DC, 2016. https://science.osti.gov/-
/media/bes/pdf/reports/2016/BRNQM_rpt_Final_12-09-2016.pdf?la=en&hash=
E7760711641883FFC9F110D70385937D6A31C64F

5. Basic Research Needs for Microelectronics; Department of Energy, Basic Energy Sciences:
Washington, DC, 2018. https://science.osti.gov/-/media/bes/pdf/reports/2019/BRN_
Microelectronics_rpt.pdf?la=en&hash=F55FE252A4623B1A2117DA810F70DA958E563A45

6. Basic Research Needs for Catalysis Science to Transform Energy Technologies; Department of
Energy, Basic Energy Sciences: Washington, DC, 2017. https://science.osti.gov/-/media/bes/
pdf/reports/2017/BRN_CatalysisScience_rpt.pdf?la=en&hash=8067E44FB6592545F07CB59D7670
BF2B069E39D3

https://science.osti.gov/-/media/bes/pdf/reports/2017/BRN_SS_Rpt_web.pdf?la=en&hash=24BA7C6B4BCE086EC5F3877F24DCE1CBCCFD5303
https://science.osti.gov/-/media/bes/pdf/reports/2017/BRN_SS_Rpt_web.pdf?la=en&hash=24BA7C6B4BCE086EC5F3877F24DCE1CBCCFD5303
https://science.osti.gov/-/media/bes/pdf/reports/2017/BRN_SS_Rpt_web.pdf?la=en&hash=24BA7C6B4BCE086EC5F3877F24DCE1CBCCFD5303
https://science.osti.gov/-/media/bes/pdf/reports/2018/Quantum_systems.pdf?la=en&hash=291099097EBCCFAB99D86F60F62EA061F996424C
https://science.osti.gov/-/media/bes/pdf/reports/2018/Quantum_systems.pdf?la=en&hash=291099097EBCCFAB99D86F60F62EA061F996424C
https://science.osti.gov/-/media/bes/pdf/reports/2018/Quantum_computing.pdf?la=en&hash=C767B23CFFD250A01F846D3B6FB62143BEC258B0
https://science.osti.gov/-/media/bes/pdf/reports/2018/Quantum_computing.pdf?la=en&hash=C767B23CFFD250A01F846D3B6FB62143BEC258B0
https://science.osti.gov/-/media/bes/pdf/reports/2016/BRNQM_rpt_Final_12-09-2016.pdf?la=en&hash=E7760711641883FFC9F110D70385937D6A31C64F
https://science.osti.gov/-/media/bes/pdf/reports/2016/BRNQM_rpt_Final_12-09-2016.pdf?la=en&hash=E7760711641883FFC9F110D70385937D6A31C64F
https://science.osti.gov/-/media/bes/pdf/reports/2016/BRNQM_rpt_Final_12-09-2016.pdf?la=en&hash=E7760711641883FFC9F110D70385937D6A31C64F
https://science.osti.gov/-/media/bes/pdf/reports/2019/BRN_Microelectronics_rpt.pdf?la=en&hash=F55FE252A4623B1A2117DA810F70DA958E563A45
https://science.osti.gov/-/media/bes/pdf/reports/2019/BRN_Microelectronics_rpt.pdf?la=en&hash=F55FE252A4623B1A2117DA810F70DA958E563A45
https://science.osti.gov/-/media/bes/pdf/reports/2017/BRN_CatalysisScience_rpt.pdf?la=en&hash=8067E44FB6592545F07CB59D7670BF2B069E39D3
https://science.osti.gov/-/media/bes/pdf/reports/2017/BRN_CatalysisScience_rpt.pdf?la=en&hash=8067E44FB6592545F07CB59D7670BF2B069E39D3
https://science.osti.gov/-/media/bes/pdf/reports/2017/BRN_CatalysisScience_rpt.pdf?la=en&hash=8067E44FB6592545F07CB59D7670BF2B069E39D3


22 

7. Report of the Basic Research Needs Workshop on Next Generation Electrical Energy Storage;
Department of Energy, Basic Energy Sciences: Washington, DC, 2017. https://science.osti.gov/-
/media/bes/pdf/reports/2017/BRN_NGEES_rpt.pdf?la=en&hash=AE01DA34A0F1F17E42261F0B7
BC416868C9C51AB

8. Basic Research Needs for Materials Under Extreme Environments; Department of Energy, Basic
Energy Sciences: Washington, DC, 2008. https://science.osti.gov/-/media/bes/pdf/reports/files/
Materials_under_Extreme_Environments_rpt.pdf

9. Huffman, M.A.; Fryszkowska, A.; Alvizo, O.; Borra-Garske, M.; Campos, K.R.; et al., Design of An
in Vitro Biocatalytic Cascade for the Manufacture of Islatravir. Science 2019, 366, 1255.

10. Pedersen, T.G.; Flindt, C.; Pedersen, J.; Mortensen, N.A.; Jauho, A.-P.; Pedersen, K. Graphene
Antidot Lattices: Designed Defects and Spin Qubits. Phys. Rev. Lett. 2008, 100, 136804.

11. Ye, X.; Chen, J.; Diroll, B.T.; Murray, C.B. Tunable Plasmonic Coupling in Self-Assembled Binary
Nanocrystal Superlattices Studied by Correlated Optical Microspectrophotometry and Electron
Microscopy. Nano Lett. 2013, 13, 1291–1297.

12. Baskakov, I.V.; Legname, G.; Baldwin, M.A.; Prusiner, S.B.; Cohen, F.E. Pathway Complexity of
Prion Protein Assembly into Amyloid. J. Biol. Chem. 2002, 277, 21140–21148.

13. Misra, N.; Lees, D.; Zhang, T.; Schwartz, R. Pathway Complexity of Model Virus Capsid Assembly
Systems. Comput. Math. Methods Med. 2008, 9.

14. Santini, S.; Wei, G.; Mousseau, N.; Derreumaux, P. Pathway Complexity of Alzheimer's β-Amyloid
Aβ16-22 Peptide Assembly. Structure 2004, 12, 1245–1255.

15. Korevaar, P.A.; George, S.J.; Markvoort, A.J.; Smulders, M.M.J.; Hilbers, P.A.J.; et al. Pathway
Complexity in Supramolecular Polymerization. Nature 2012, 481, 492.

16. Korevaar, P.A.; Grenier, C.; Markvoort, A.J.; Schenning, A.P.H.J.; de Greef, T.F.A.; Meijer, E.W.
Model-Driven Optimization of Multicomponent Self-Assembly Processes, Proc. Nat. Acad. Sci.
2013, 110, 17205–17210.

17. Korevaar, P.A.; Newcomb, C.J.; Meijer, E.W.; Stupp, S.I. Pathway Selection in Peptide Amphiphile
Assembly. J. Am. Chem. Soc. 2014, 136, 8540–8543.

18. Ogi, S.; Fukui, T.; Jue, M.L.; Takeuchi, M.; Sugiyasu, K. Kinetic Control over Pathway Complexity
in Supramolecular Polymerization through Modulating the Energy Landscape by Rational Molecular
Design. Angew. Chem. Int. Ed. 2014, 53, 14363–14367.

19. Tidhar, Y.; Weissman, H.; Tworowski, D.; Rybtchinski, B. Mechanism of Crystalline Self‐Assembly
in Aqueous Medium: A Combined Cryo‐TEM/Kinetic Study. Chem. Eur. J. 2014, 20, 10332–10342.

20. Song, R.-Q. Hoheisel, T.N.; Sai, H.; Li, Zi.;J. Carloni, D.; et al. Formation of Periodically-Ordered
Calcium Phosphate Nanostructures by Block Copolymer-Directed Self-Assembly. Chem.Mater. 2016,
28, 838–847.

21. Xing, J.; Schweighauser, L.; Okada, S.; Harano, K.; Nakamur, E. Atomistic Structures and Dynamics
of Prenucleation Clusters in MOF-2 and MOF-5 Syntheses. Nat. Commun. 2019, 10, article 3608.

22. Zhang, Y.; Srinivasan, B.; Vo, T.; Pal, S.; Kumar, S.; Gang, O. Selective Re-Programming
Transforms Nanoparticle Superlattices. Nat. Mater. 2015, 14, 840–847.

23. Mahamulkar, S.; Yin, K.; Agrawal, P.K.; Davis, R.J.; Jones, C.W.; et al. Formation and
Oxidation/Gasification of Carbonaceous Deposits: A Review. Ind. Eng. Chem. Res. 2016, 55, 9760.

24. Lia, M.; Ober, C.K. Block Copolymer Patterns and Templates. Mater. Today 2006, 9, (9), 30–39.

https://science.osti.gov/-/media/bes/pdf/reports/2017/BRN_NGEES_rpt.pdf?la=en&hash=AE01DA34A0F1F17E42261F0B7BC416868C9C51AB
https://science.osti.gov/-/media/bes/pdf/reports/2017/BRN_NGEES_rpt.pdf?la=en&hash=AE01DA34A0F1F17E42261F0B7BC416868C9C51AB
https://science.osti.gov/-/media/bes/pdf/reports/2017/BRN_NGEES_rpt.pdf?la=en&hash=AE01DA34A0F1F17E42261F0B7BC416868C9C51AB
https://science.osti.gov/-/media/bes/pdf/reports/files/Materials_under_Extreme_Environments_rpt.pdf
https://science.osti.gov/-/media/bes/pdf/reports/files/Materials_under_Extreme_Environments_rpt.pdf


23 

25. Hashiguchi, B.G.; Bischof, S.M.; Konnick, M.K.; Periana, R.A. Designing Catalysts for
Functionalization of Unactivated C–H Bonds Based on the CH Activation Reaction. Acc. Chem. Res.
2012, 45, (6), 885–898.

26. Rudenko, A.E.; Thompson, B.C. Optimization of Direct Arylation Polymerization (DArP) through
the Identification and Control of Defects in Polymer Structure. J. Polym. Sci., Part A: Polym. Chem.
2015, 53, 135–147.

27. Robertson, I.D.; Yourdkhani, M.; Centellas, P.J.; Aw, J.E.; Ivanoff, D.G.; et al. Rapid Energy-
Efficient Manufacturing of Polymers and Composites via Frontal Polymerization. Nature 2018, 557,
223–227.

28. Zhang, H.; Ning, H.; Busbee, J.; Shen, Z.; Kiggins, C.; et al. Electroplating Lithium Transition Metal
Oxides. Sci. Adv. 2017, 3, e1602427.

29. Zheng, Z,; Chen, B.; Fritz, N.; Gurumukhi, Y.; Cook, J.; et al. Lithiation Induced Stress
Concentration for 3D Metal Scaffold Structured Silicon Anodes, J. Electrochem. Soc. 2019, 166,
A2083–A2090. DOI: 10.1149/2.1031910jes.

30. Frontana-Uribe, B.A.; Little, R.D.; Ibanez, J.G.; Palmad, A.; Vasquez-Medrano, R. Organic
Electrosynthesis: A Promising Green Methodology in Organic Chemistry. Green Chem. 2010, 12,
2099–2119.

31. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford
University Press: Oxford, UK, 2001.

32. Aizenberg, J.; Weaver, J.C.; Thanawala, M.S.; Sundar, V.C.; Morse, D.E.; Fratzl, P. Skeleton of
Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale. Science 2005, 309, 275–
278.

33. Wang, D.H.; Kou, R.; Choi, D.; Yang, Z.G.; Nie, Z.M.; et al. Ternary Self-Assembly of Ordered
Metal Oxide-Graphene Nanocomposites for Electrochemical Energy Storage. ACS Nano 2010, 4,
1587–1595.

34. Zhang, M.; Magagnosc, D.J.; Liberal, I.; Yu, Y.; Yun, H.; et al. High-Strength Magnetically
Switchable Plasmonic Nanorods Assembled from a Binary Nanocrystal Mixture. Nat. Nanotechnol.
2017, 12, 228.

35. Tian, Y.; Lhermitte, J.R.; Bai, L.; Vo, T.; Xin, H.L.; et al. Ordered Three-Dimensional Nanomaterials
Using DNA-Prescribed and Valence-Controlled Material Voxels. Nat. Mater, 2020, 19, 789.

36. Yang, X.; Sun, P.; Zhang, H.; Xia, Z.; Waldman, R.Z.; et al. Polyphenol‐Sensitized Atomic Layer
Deposition for Membrane Interface Hydrophilization. Adv. Funct. Mater. 2020, 30, 1910062.

37. Courty, A.; Mermet, A.; Albouy, P.A.; Duval, E.; Pileni, M.P. Vibrational Coherence of Self-
Organized Silver Nanocrystals in f.c.c. Supra-crystals. Nat. Mater. 2005, 4, 395–398.

38. Xie, C.; Chen, C.; Yu, Y.; Su, J.; Li, Y.; et al. Tandem Catalysis for CO2 Hydrogenation to C2–C4
Hydrocarbons. Nano Lett. 2017, 17, 3798–3802.

39. Li, X.; Guo, Z.; Xiao, C.; Goh, T.W.; Tesfagaber, D.; Huang, W. Tandem Catalysis by Palladium
Nanoclusters Encapsulated in Metal–Organic Frameworks. ACS Catal. 2014, 4, 3490–3497.

40. Yamada, Y.; Tsung, C.-K.; Huang, W.; Huo, Z.; Habas, S.E.; et al. Nanocrystal Bilayer for Tandem
Catalysis. Nat. Chem. 2011, 3, 372.

41. Sun, S.H.; Murray, C.B.; Weller, D.; Folks, L.; Moser, A.; Monodisperse FePt Nanoparticles and
Ferromagnetic FePt Nanocrystal Superlattices. Science 2000, 287, 1989–1992.



24 

42. Cheon, J.; Park, J I.; Choi, J.S.; Jun, Y.W.; Kim, S.; et al. Magnetic Superlattices and Their Nanoscale
Phase Transition Effects. Proc. Nat. Acad. Sci. 2006, 103, 3023–302.

43. Maye, M.M.; Nykypanchuk, D.; Cuisinier, M.; van der Lelie, D.; Gang, O. Stepwise Surface
Encoding for High-Throughput Assembly of Nanoclusters. Nat. Mater. 2009, 8, 388–391.

44. Xiong, H.M.; Sfeir, M.Y.; Gang, O. Assembly, Structure and Optical Response of Three-Dimensional
Dynamically Tunable Multicomponent Superlattices. Nano Lett. 2010, 10, 4456–4462.

45. Kuzyk, A.; Schreiber, R.; Fan, Z.Y.; Pardatscher, G.; Roller, E.M.; et al. DNA-Based Self-Assembly
of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature 2012, 483, 311–314.

46. Podsiadlo, P.; Lee, B.; Prakapenka, V.B.; Krylova, G.V.; Schaller, R. D.; et al. High-Pressure
Structural Stability and Elasticity of Supercrystals Self-Assembled from Nanocrystals. Nano Lett.
2011, 11, 579–588.

47. Redl, F.X.; Cho, K.S.; Murray, C.B.; O’Brien, S. Three-Dimensional Binary Superlattices of
Magnetic Nanocrystals and Semiconductor Quantum Dots. Nature 2003, 423, 968–971.

48. Shevchenko, E.V.; Talapin, D.V.; Kotov, N.A.; O’Brien, S.; Murray, C.B. Structural Diversity in
Binary Nanoparticle Superlattices. Nature 2006, 439, 55–59.

49. Kalsin, A.M.; Fialkowski, M.; Paszewski, M.; Smoukov, S.K.; Bishop, K.J.M.; Grzybowski, B.A.
Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-like Lattice. Science
2006, 312, 420–424.

50. Evers, W.H.; Friedrich, H.; Filion, L.; Dijkstra, M.; Vanmaekelbergh, D. Observation of a Ternary
Nanocrystal Superlattice and Its Structural Characterization by Electron Tomography. Angew. Chem.
Int. Ed. 2009, 48, 9655–9657.

51. Sunarso, J.; Baumann, S.; Serra, J.M.; Meulenberg, W.A.; Liu, S.; et al. Mixed Ionic–Electronic
Conducting (MIEC) Ceramic-Based Membranes for Oxygen Separation. J. Membr. Sci. 2008, 320,
13–41.



 

25 

PRD 2: Integrate Multiscale Models and Tools to Enable Adaptive Control of 
Manufacturing Processes 

Summary 
With the advent of new, advanced digital manufacturing technology, the need to develop models that 
accurately describe manufacturing processes, product performance, and materials is pressing. Reliable, 
computationally non-taxing physical models are essential to enable rapid advancement toward science-
based manufacturing. Increasingly powerful computational resources are now available and can be 
leveraged toward this goal by linking models across length and time scales as shown in Figure 9. The 
current manufacturing enterprise in the United States relies upon highly skilled and experienced 
operators, for whom controlling the manufacturing process can be more of an art than a science. A 
combination of multiscale modeling capabilities, in situ diagnostics, online decision-making frameworks, 
and operator experience is needed to realize adaptive, automated manufacturing processes with built-in 
component qualification. 

 
Figure 9.  Multiscale modeling consists of linking models across orders of magnitude on temporal and 
spatial scales. Source: Image provided by Lawrence Livermore National Laboratory. 

Several fundamental scientific advances are needed to achieve this vision: 

1. Multiscale physics-based models that can capture and predict the parameter space of specific 
manufacturing processes and material characteristics during fabrication. 

2. Fast and accurate in situ diagnostics and characterization tools with high spatial and temporal 
resolution. 

3. In-process decision making frameworks that are informed by multiscale models in real time, and in 
situ diagnostics and use of data science techniques to enable adaptive manufacturing processes. 
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The state of the art in modeling and 
simulations of manufacturing processes 
relies upon high-performance 
computing (HPC) resources to capture 
the multiphysics, multiscale, and 
dynamic environment of many 
emerging processes. Great strides have 
been made to date in, for example, 
modeling laser-matter interactions and 
melt-pool dynamics for selective laser 
melting (SLM) in metal powder-bed 
additive manufacturing (AM) shown in  
Figure 10. Since these high-fidelity 
simulation examples require massive 
computing resources and exceedingly 
long execution times, they are often 
impractical for manufacturing. Multiple 
models with ambiguous input/output compatibilities are often relied upon to span the required size 
scales.1-3 Coarse models that are faster and more practical have been developed at the expense of 
inaccurate physics and/or unrealistic boundary conditions. 

Modeling and simulation have provided significant advancement in the scientific understanding of AM 
polymeric systems. Atomistic models and molecular dynamics simulations use ensembles of the most 
basic possible constituents to understand the fundamental behavior of these materials. These models 
require enormous computational costs, limiting their output to irrelevantly small time and spatial scales. 
Coarser models and stochastically based simulations, 
such as dissipative particle dynamics (DPD), can 
provide information over tens of microseconds and 
hundreds of nanometers, such as a simulation of spider 
silk in tension, shown in Figure 11.4 They represent an 
improvement over atomistic methods, leaving a 
significant challenge for any model or combination of 
models to span the manufacturing-relevant time and 
length scales, up to the continuum regime at which 
most production systems operate. Typically, these 
costly and complex models only inform the macroscale 
process simulations, rather than explicitly couple to 
them; the latter would enable more realistic 
representations. Developing and using simulations that 
can describe complex processes and materials is crucial 
for understanding the fundamental underlying science, 
but moving toward efficient lower-order models for in-
process control is a long-standing goal. 

Modeling and simulation alone cannot result in 
science-based manufacturing. Measurements of process 
parameters, characterization of materials in real time, 
empirical data, and in situ diagnostic capabilities are 
also essential. To exemplify this reality, an image of 
the melt pool and back-spatter of particles in an SLM 
process, shown in Figure 10 (right hand side), was generated using a special in situ x-ray setup. It 

 
Figure 10. (a) A model of a laser interacting with metal 
powder to create a melt pool in SLM processing. This HPC 
simulation includes ray tracing of the laser, phase changing 
and consolidation of the metal particles, and the dynamics of 
fluid flow. (b) Data from an in situ x-ray experiment of a SLM 
system showing the melt pool and back-spatter of material, 
qualitatively similar to the model. Source: From S.A. Khairallah 
et al. Science 368(6491), 660-665, 2020. 

 
Figure 11. An example of a DPD simulation 
showing spider silk at various tensile strains 
and ultimately failing. Green represents 
amorphous structure (31-helices and β-turns), 
and red corresponds to crystalline regions. 
Source: L. Pan et al. Nat. Commun. 11, 1332, 
2020. Licensed under a Creative Commons 
Attribution 4.0 International License. 

https://science.sciencemag.org/content/368/6491/660
https://science.sciencemag.org/content/368/6491/660
https://www.nature.com/articles/s41467-020-14988-5
https://www.nature.com/articles/s41467-020-14988-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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required the construction of a custom-designed, simplified SLM system that was installed in a large-scale, 
synchrotron beamline; it does not even represent a functioning manufacturing system. These types of 
experiments are important for the validation of models and to gain intuitive understanding of the 
underlying physics; but ultimately, on-machine diagnostics are needed to realize the vision of online 
decision-making frameworks in manufacturing systems. 

Statistical process control and monitoring of machine stability are currently possible within some 
manufacturing systems. Direct observations and in-line measurements of the actual components being 
fabricated remain limited, especially those capable of real-time defect detection during manufacturing.5,6 
The processes equipped with in situ diagnostics for material and component observation are typically 
restricted to visible and infrared cameras with marginal spatial resolution and inadequate speed, and do 
not benefit from in-process decision making. Most of the detailed characterization and metrology are 
conducted post-fabrication and typically are time consuming, are costly if conducted nondestructively, or 
cause sample damage otherwise.  

Applying data science techniques to fabrication processes will facilitate synergy between modeling and 
simulations and in situ diagnostics, which enable adaptive manufacturing, capable of in-process decision 
making. It will allow, for the first time, the fabrication of materials, components, and chemicals that are 
qualified upon manufacturing completion, thus reducing and eventually eliminating the need for post-
fabrication inspection, metrology, and characterization. Machine learning algorithms and other data 
fusion methods are needed to analyze and to synthesize the potentially enormous and orthogonal data 
streams to understand the genesis of defects and to mitigate or eliminate these defects on-the-fly through 
intelligent process parameter changes. 

The impact of an adaptive, automated, and intelligent manufacturing ecosystem will be extraordinary. The 
ability to adjust process parameters on-the-fly in response to built-in in-process intelligence will result in 
the high-throughput production of qualified components at significant cost and time savings that stem 
from the elimination of post-fabrication characterization and inspection. It also will bring the vision of 
“first time right” manufacturing and near 100% production yield to reality. 

This PRD seeks to address the following key questions: What are the frameworks required to model, 
monitor, and ultimately control manufacturing processes that tightly couple physics and chemistry across 
scales? How can complex multiscale models be translated to fast surrogate models for process control? 

Scientific Challenges 
A primary challenge is that advanced manufacturing processes span multiple scales and multiple physical 
phenomena that must be coupled to effectively simulate their emergent complex and nonlinear behavior. 
Today’s physics-based models involve sophisticated numerical procedures, with arrays of interdependent 
equations and variables that naturally lead to large-scale, computationally intensive modeling. Gaining 
insights into parameter sensitivity and into uncertainty propagation through different physical regimes and 
length scales is crucial; current approaches rely on modeling everything to the highest fidelity, yet are 
unable to deterministically capture all the details. Ultimately, fast and accurate surrogate models are 
needed to impact material and component manufacturing in-process and understand the underlying 
physics, with highly refined large-scale models being used to develop these surrogates. In-depth 
understanding of the manufacturing process sufficient to generate reduced-order, fast, surrogate models 
also remains a barrier to realizing this vision. 

The drive to achieve adaptive control and in-process decision making necessitates having the ability to 
conduct in situ measurements, such as geometric tolerance, temperature, defect detection and distinction, 
chemical composition, and more. The relevant length and time scales associated with these measurements 
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are process specific and can be challenging to achieve. For example, in metal powder-bed AM, extreme 
temperatures in excess of 3000° C and thermal ramp rates approaching 10,000° C/sec are not uncommon. 
In addition, the laser spot size is typically ~50 µm, and the corresponding melt pool can be as small as 
100–200 µm across. The melt pool also can be moving at tens of millimeters per second; and the 
consolidated part’s feature size can range from ~200 µm to centimeters with a surface roughness of 
<50 µm, all of which are relevant quality metrics. Micro-scale defects, such as voids and pores with 
diameters of 5–10 µm, can substantially deteriorate material strength and integrity. Some aspects of the 
laser-induced melting processes can be observed in situ now, as shown in Figure 10, at the cost of 
building a simplified manufacturing system inside of a large synchrotron beamline; however, such a 
system would not be broadly deployable and could not be integrated into an in-process decision making 
framework. Other manufacturing processes and materials have their own specific size, timescale, and 
other requirements for in situ diagnostics. 

Another challenge associated with achieving adaptive control of manufacturing processes is data fusion 
and in-process decision making. It is likely that multiple, orthogonal sensing modalities will be needed to 
understand the emerging manufacturing processes; and given the necessary speed and resolution, the 
generated amounts of data have the risk of being extremely large. How to synthesize and mine these data 
sets in an efficient way to generate actionable decisions currently is largely unknown. It is not even 
known which measurements are most relevant and what combinations of parameters may reveal defects 
or predict upcoming manufacturing errors. While machine learning and other data science methods are 
advancing rapidly, how to apply these techniques to emerging manufacturing systems and materials 
remains an open question. Figure 12 shows an example of a simple and early-stage demonstration of this 
concept, in which image analysis and high-speed video capture were used to train a machine learning 
algorithm for process control of a microfluidic assembly process.7 Combining the large data sets 
generated continuously through the process with the in-process models to alter the process parameters 
based on geometry of components is a grand challenge. 

Figure 12. An example of an automated microfluidic assembly sorting system. (1) A digital camera 
captures images of microencapsulation events in real time. (2) An image classification algorithm 
assesses whether microencapsulation is in the desired fluid dynamic dripping state (A) or the undesired 
wetting (B), jetting (C), or rupturing (D) states. (3) The predicted class of microencapsulation informs a 
valving system that sorts desired and undesired events. (4) Sorted final microcapsules and non-dripping 
events accumulate in collection and rejection jars, respectively. Source: A. Chu et al. Lab on a Chip 
19(10), 1808-1817, 2019. 

https://pubs.rsc.org/en/content/articlelanding/2019/lc/c8lc01394b#!divAbstract
https://pubs.rsc.org/en/content/articlelanding/2019/lc/c8lc01394b#!divAbstract
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Research Thrusts 
Thrust 1. Validated multiscale, multiphysics models 
To better understand the existing and emerging manufacturing processes, detailed and accurate process 
models are required. These multiscale, multiphysics models must be computationally efficient and 
physically sound. Most process models used today fall into two categories: (1) computationally practical 
models that do not accurately represent the physics owing to assumptions and simplifications 
incorporated into the model to reduce computational cost and (2) high-fidelity models that accurately 
capture the physics but are so computationally intensive that they require HPC resources and significant 
time (days to weeks) to converge to a solution. To truly understand the physics of the relevant processes, 
a detailed model spanning multiple length scales is needed, and HPC codes and hardware are required. 
These simulations are too expensive to be used in an in-process adaptive control scheme; instead, they 
can inform surrogate models and guide relevant diagnostics and measurements because they elucidate the 
relevant physics. Even the existing most-complex process models have difficulty spanning size scales 
from molecular levels to the macroscale. Synthesis and processing are closely coupled to the actual 
manufacturing process in today’s advanced fabrication methods. The difficulty of spanning these scales 
while combining normally disparate physics remains to be overcome, and any models that could do so 
would constitute a significant advancement in the understanding of manufacturing. 

Thrust 2. High-speed, in situ diagnostics and characterization tools 
Diagnostic analysis and characterization for synthesized molecules, fabricated materials, and full 
components from emerging and advanced manufacturing processes are critical for scientific 
understanding and model validation. This thrust focuses on specific needs for high-speed, in situ tools to 
enable adaptive control in manufacturing; additional needs for characterization tools are laid out in PRD 
3. To realize the vision of adaptive and intelligent on-the-fly control, more sophisticated and advanced
diagnostic tools are required. Sensors that can accurately conduct in-process metrology, temperature
measurement, chemical analysis, and other measurement modalities are required. These measurements
must be time-efficient, on the order of the smallest timescales associated with the process itself, and must
be analyzed similarly fast. Additionally, these sensors, diagnostics, and characterization tools must have
excellent spatial resolution, on the order of the smallest relevant length scales of a given manufacturing
process, i.e., microns or even hundreds of nanometers. The acquired data must be stored, moved,
synthesized, and analyzed at sufficiently high rates to allow for corrective action by the intelligent
manufacturing system, which is enabled by these diagnostics coupled with data science algorithms and
fast surrogate models.

Thrust 3. Data processing and fusion 
Data analysis and advanced modeling represent key steps in enabling in situ evaluation and qualification, 
i.e., interpretation of the measured data and using the findings to develop useful databases. Advanced
manufacturing is a complex multidimensional process, so the data needed to evaluate the quality of the
output cover multiple length scales and different phases of the material. Therefore, the measured data
would be obtained from a variety of sensors and as multimodal signals. For online monitoring of
advanced manufacturing, one important area of development is the fusion of the process-, chemistry-, and
material-specific data that are heterogeneous and multidimensional.

For example, the genesis of materials created through many advanced manufacturing methods is that they 
are derived from a photoinitiation-based chemical reaction, with post-processing that requires chemical 
synthesis and photoresist development. Of particular importance is the need to recognize the significant 
deviations in the (commonly overlooked) attainable chemical compositions and microstructures of 
additively manufactured materials compared with those of the same materials that are conventionally 
produced; the importance of developing a deep understanding of the parameter space of chemically 
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produced materials cannot be overstated. Vat photopolymerization, a subset of AM techniques that 
achieves spatial patterning via photopolymerization of a liquid photopolymer in a vat, stands out because 
of its high print resolution and rapid fabricate speeds.8–12 Incorporating dynamic covalent chemistries 13,14 
or supramolecular chemistries13 enables the design and fabrication of self-healing materials, ceramics, 
and—less commonly—metals by placing them in the framework of an “in situ chemical reactor,” as 
shown in Figure 13. 

Figure 13. “Chemical reactor” framework for ceramic vat photopolymerization. (A) Zinc oxide 
microstructures fabricated via the use of zinc nitrate containing aqueous photoresins with two-photon 
lithography. The use of metal nitrates enabled the solution combustion synthesis of metal oxides with the 
polymer binder acting as the combustion fuel. Source: Adapted with permission from D. W. Yee et al. 
Adv. Mater. 31(33), 1901345, 2019, © 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.15 (B) 
Photopolymerization-induced phase separation during digital light processing printing results in a 
bicontinuous structure of polymer and metal alkoxides. Thermal treatment of the 3D printed object results 
in decomposition of the polymer and condensation of the metal alkoxides to form glass. Source: 
Adapted with permission by Nature Publishing Group: Nat. Mater., Three-dimensional printing of 
multicomponent glasses using phase-separating resins, D.G. Moore et al.,19(2), 212–217, 2020.16

The breadth of chemistries and chemical reactions, as well as concern for defects, drive another important 
characteristic for in situ evaluation, practical computational cost. Computational hardware requirements 
and numerical procedures need to be sufficiently affordable to enable online monitoring and decision 
making while accurately capturing properties of a broad range of chemistries. New computational 
infrastructure, informatics, algorithms, and numerical analysis are needed to enable the data processing 
and fusion. 

Thrust 4. Fast, predictive models 
The current state-of-the-art models are beginning to predict advanced manufacturing and processing 
physics; they typically require using clusters of HPC resources over many days or weeks. To enable in 
situ evaluation and redesign of the process and/or a component, reliance on a fast, predictive model in real 
time is critical. A common approach to understand and predict a system that is not well understood in a 
time-sensitive application is machine learning. Machine learning typically requires large-scale data sets to 
train the model offline; and given the range of variabilities and parameters, obtaining the relevant large 
set of data may not be tractable. It is imperative to invent new methods to develop fast, predictive real-
time models for advanced manufacturing, which may leverage heterogeneous data, physics-based models, 

https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201901345
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201901345
https://www.nature.com/articles/s41563-019-0525-y
https://www.nature.com/articles/s41563-019-0525-y
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machine learning, model fusion, and uncertainty propagation. One way to reduce the modeling cost is to 
consider only the parameters of interest and importance, which are guided by the in-process decisions. 
The purpose and application of the model outcome can inform the required degree of accuracy and level 
of coupling and fidelity, and such intelligent modeling can substantially reduce the required computing 
resources and cost. 

Thrust 5. Adaptive control and decision making 
The combination of real-time data acquisition and advanced modeling will enable component quality 
evaluation during manufacturing. The ultimate goal is to create an adaptive, intelligent process based on 
the in-process observed data and fast models. This adaptive decision making and process control will be 
capable of implementing self-directed design and/or process modification during manufacturing. The 
fundamental concept is to evaluate the quality of a manufactured material, chemical, and component in 
real time and to continuously adapt to modify the process parameters or designed geometry. As 
manufacturing, design, and evaluation take place simultaneously and evolve adaptively, advanced 
manufacturing will take one step closer to the paradigm of “born qualified,” so that the final part is ready 
and safe to use immediately upon completion. This approach also automatically generates a digital twin 
that can be employed throughout the life cycle of the part to understand aging and other long-term 
performance. This will substantially reduce the lead time and reliably certify the resulting products. 

Science and Technology Impact 
Through the potential scientific breakthroughs elucidated by this PRD, the vision of a science-based 
manufacturing enterprise in the United States can be realized. Core to this concept is the ability to enable 
first-time-right manufacturing via a manufacturing framework that includes adaptive control and in-
process decision making. This framework would be enabled by a combination of complex multiscale, 
multiphysics models, fast surrogate models, advanced in situ diagnostics, and algorithms including 
machine learning methods to synthesize data and make decisions about process parameters and/or 
component redesign during the manufacturing process. 

The payoff from realizing this vision will be improved chemical processes and qualified materials and 
components that possess optimal properties at the first fabrication and every time thereafter. This payoff 
will allow for US industry to approach the long-standing goal of near 100% yield on produced parts while 
reducing the need for and cost associated with the design-fabricate-test iteration, as well as tooling 
expense and part inspection cost. Similarly, energy consumption during the manufacturing process could 
more easily be predicted and optimized, further reducing cost. The economic benefit of this concept 
would be enormous and is difficult to quantify.  

With the successful implementation of this vision, new, more complicated designs with extreme 
tolerances can be physically realized. As advanced design methods emerge, such as topology optimization 
and statistical exploration of design spaces, higher-performance but more exotic and difficult-to-
manufacture structures and components can be conceived. Currently, these designs push manufacturing 
processes to their limit and often cannot be pursued even in specialized research laboratories. If the 
framework proposed herein is implemented, these much more challenging components may become 
commonplace. In addition, it will be possible to know a priori if a structure is manufacturable; and this 
information can be fed back to the design algorithm for consideration and redesign, eliminating failed 
builds and detailed postmortem characterization and analysis. 

Qualified, on-demand manufacturing of high-value chemicals, materials, and components with advanced 
designs will benefit nearly all industrial sectors. In the energy sector alone, the impact will be 
transformative for technologies that include chemical reactors, catalysts, batteries and energy storage 
devices, photovoltaic systems, metamaterials, and transportation systems. For example, many energy 
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transport and conversion systems could be redesigned to leverage geometric complexity and new 
materials enabled by this concept. The cost of manufacturing development also will be radically reduced. 
As one example, lightweight, energy-absorbing, and thermally and mechanically robust materials are 
important for fuel-efficient transportation, ranging from ground vehicles to aircraft and spacecraft.  
Figure 14 shows a possible example of an ultra-lightweight and ultra-stiff architected material that could 
move from boutique, lab-scale fabrication to truly manufacturable components.17 This new manufacturing 
paradigm would open new avenues for creating next-generation chemicals, materials, and systems across 
countless industrial sectors. 

 
Figure 14. Stiffness scaling and elastic surface variations. Normalized Young’s modulus E[001]/Es as a 
function of relative density fl for bicontinuous columnar (red), Schwarz primitive triply periodic minimal 
surface (TPMS; blue), and hollow octet (gray) architectures. Regression fits for the ten lowest relative 
densities from each architecture are depicted as dashed lines, assuming a relation E[·]/Es = C fl–, with 
the corresponding scaling exponent—shown next to each fit. The elastic surfaces for each structure, 
along with their 2D projections, are shown for three selected relative densities. Close-to-constant 
anisotropy is observed for the bicontinuous architecture as opposed to the TPMS and octet geometries. 
Source: C. M. Portela et al. Proc. Nat. Acad. Sci. 117(11), 5686–5693, 2020. Used by permission. 
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PRD 3: Unravel the Fundamentals of Manufacturing Processes Through 
Innovations in Operando Characterization 

Summary 
Many manufacturing processes are still practiced as empirical art rather than science, which poses a 
significant barrier to achieving resiliency, minimizing energy consumption, and innovating new 
technologies. Frequently, there is insufficient fundamental understanding to tailor and control chemical 
processes and materials manufacturing so that they perform exactly as desired. In situ characterization 
(observation of processes under conditions that replicate real-world and real-time conditions) and 
operando characterization (direct visualization and characterization of processes in real time) will provide 
the crucial knowledge needed to transform the science of manufacturing. To provide critical 
understanding, state-of-the-art multi-model characterization capabilities, as well as novel inline sensors, 
are needed to understand chemical and material manufacturing processes across length and time scales, to 
achieve synthesis control starting at the atomic level, to understand device–component interactions, and to 
develop appropriate surrogates.  

The creation of innovative data infrastructures for in situ and operando characterization will help unleash 
the full potential of artificial intelligence and machine learning (AI/ML) to translate large data sets into 
predictive decision-making tools and will have a long-lasting impact on manufacturing. The overarching 
objective is to better align basic research with the technological needs of manufacturing industries, 
promote stronger ties between basic and applied research, and cultivate the next generation of scientists 
and engineers. New research efforts will provide opportunities for close collaboration between 
researchers in national laboratories, academia, and industry. The transformative effects are likely to arrive 
both in direct form, i.e., the characterization yields new information on the processes directly, and 
indirectly, e.g., characterization reveals new possibilities for manipulating the phases present in a process 
or the microstructure of a material. 

This PRD seeks to address key questions: How can manufacturing processes and products be 
“visualized” at microscopic to atomic scales, in real time, and under operating conditions to reveal the 
intricate details of underlying physical or chemical events? How can these insights be used in control 
schemes for decision making? 

Scientific Challenges 
The past decade has seen dramatic progresses in characterization capabilities, most notably the advent of 
high-brilliance, high-energy synchrotron x-rays and high-flux neutrons. It has become feasible to study 
materials and chemical manufacturing processes at manufacturing scale in situ and operando. Many 
research areas, ranging from metal additive manufacturing1 (AM) to soft matter2 and Li-ion batteries,3 are 
developing or harnessing these capabilities. Two areas particularly important to the chemical industry that 
could benefit from operando characterization are catalysis,4 as illustrated in Figure 15, and separation 
sciences, according to a recent report of National Academies of Science, Engineering and Medicine.5 
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Figure 15. Solid catalysts are 
characterized in a miniature chamber 
during operation at the required 
temperature and pressure. The starting 
reagents and products formed during the 
catalytic reaction are recorded. Light 
from the infrared to the x-ray regime is 
used as a nondestructive probe to obtain 
spatially and temporally resolved 
microspectroscopy data. Source: 
Reprinted by permission from Nature 
Publishing Group: Nat. Rev. Mater., Spatial 
and temporal exploration of 
heterogeneous catalysts with synchrotron 
radiation, M. Florian and B.M. 
Weckhuysen, 3, 324, 2018. 

 

Three challenges for this PRD must be addressed to enable in situ and operando characterization for 
transformative manufacturing, including developing new tools for unraveling complex manufacturing 
processes across multiple time and length scales.  

The first scientific challenge is how to probe microstructural responses and changes at local scale and 
under process conditions. Some of the hardest problems in the manufacturing industry, for example, 
include alloy mechanical behaviors related to damage and failure from fatigue, stress, corrosion, cracking, 
or creep, which could be related to the local chemical environment. The ability to predict what happens as 
corrosion starts, cracks form, and damage accumulates, exceeds our ability to measure it. For example, 
what if we could see how hydrogen atoms move around dislocations and crack tips and influence 
ductility? What if we could visualize the motions of point defects under realistic irradiation conditions 
and quantify the efficacy of different types of sinks for defects? What if we could quantify strain in thin 
film structures, say for magnetic devices and energy conversion devices, as they are being grown 
(deposited)? What if we could map transformation strain with sufficient spatial and temporal resolution to 
capture diffusionless transformations?6 What if we could map out corrosion reactions under various 
loading conditions at or near crack tips that are buried inside bulk materials?7 At present, all these open-
ended questions can be answered only partially because of limited spatial and temporal resolution and 
chemical sensitivity of available in situ and operando characterization tools.  

The second scientific challenge is how to interrogate manufacturing processes operando through the 
intelligent creation of surrogates that contain the essential ingredients at production scale but are feasible 
for basic research in laboratory settings. Another way to articulate this challenge is how to convert large-
scale engineering problems into manageable science problems. Many laboratory-scale reactors are used 
for discovering new catalysts and synthesis routes, and various mechanical or physical tests are normal 
practices to derive key materials properties in a simplified but well-controlled environment. If we can 
incorporate operando characterization with these miniaturized reactors and mechanical or physical testing 
devices, allowing simultaneous and multi-modal characterization, we should be able to accelerate 
materials discovery or process optimization. What if we could follow the change of oxidation state of a 
catalyst and the reaction kinetics and product yields for a production process simultaneously. What if we 
could interrogate the microstructural evolution of a material while it is being tested for strength or fatigue 
in real time, allowing unambiguous correlation of structure and property? And what if ML could be 
integrated into this approach and tell us in real time how to change temperature, pressure, or flow rate to 
maximize yields? The motivation is to create a new, integrated approach of discovery toward maximum 
efficiency built upon recent advances in characterization, modeling, and machine learning.  

https://www.nature.com/articles/s41578-018-0044-5
https://www.nature.com/articles/s41578-018-0044-5
https://www.nature.com/articles/s41578-018-0044-5
https://www.nature.com/articles/s41578-018-0044-5
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The third scientific challenge lies in achieving a seamless transition between basic and applied research 
and determining how to engage manufacturers to create an ecosystem spanning from fundamental 
understanding to delivering manufacturing solutions, as aided by advanced computing and artificial 
intelligence. Diffusion, for example, is critical to a variety of manufacturing processes, including 
catalysis, separations, phase transformations, thermo-mechanical processing of materials, and transport 
processes. How could AI/ML be used in combination with characterization at atomic resolution to 
understand how to measure and control diffusion, not only in academic settings but also in applications in 
manufacturing processes? Many innovative ideas show promise in simplified model systems but fail to 
make a meaningful impact on real-world problems because current research is focused exclusively around 
either basic research or applied research. The weak link can be bridging the two. For example, an imaging 
technique can work well for a two-phase system such as Al-Cu8 but needs to be adapted to more industry-
relevant materials for which different contrast mechanisms are required. A desirable outcome would be to 
bridge the gap between discovery-driven basic research and purpose- or solution-oriented applied 
research directed toward transformative manufacturing.  

Research Thrusts 
Thrust 1. In situ characterization under real-world conditions 
Engineering materials often must work and chemical manufacturing is often performed under demanding 
temperature, stress, and other harsh conditions. The objectives of this thrust are to characterize processes 
and materials in situ: that is to visualize microstructures and to use novel online sensors and analytical 
tools to follow reactions under flow, catalytic and separation processes, and interfacial phenomena in 
environments that mimic real-world conditions. For example, in situ methods are needed to understand 
catalyst deactivation mechanisms to ultimately reduce chemical manufacturing costs and improve 
efficiency. The complexity of current and future catalyst systems, particularly hybrids, presents 
formidable challenges in understanding the basic foundations for their performance in response to 
temperature; concentration; or transients in pressure, current, or voltage that perturb the state of a 
chemical reaction and dictate its course. We currently lack the means to directly connect local atomic 
information gleaned from in situ (and operando, discussed in Thrust 2) characterization of primary sites of 
energy conversion and catalyst activity to both (1) rate constants for elementary processes and ultimately 
(2) macroscopic system performance, including Faradaic efficiency, selectivity, and turnover. In addition,
achieving sustainability requires inline characterization in the areas of post-use plastics and facile
separation of plastics, as well as waste treatment and upcycling. Novel tools like single-entity
electrochemistry9—an emerging, inexpensive, and sensitive method—could be used to observe individual
particles, particularly in solution, in systems with natural heterogeneities. In situ characterization can aid
understanding of the effects of impurities to reduce the use of ultra-pure reagents in manufacturing for
cost reduction. Generally speaking, actual manufacturing processes are often associated with high data
rates and demand more sophisticated inline data processing capability and innovative sampling techniques
to extract useful information in real time. The following examples are intended to set the scene for a more
creative approach to manufacturing-relevant science.

An experimental apparatus that creates an environment mimicking real-world conditions is the 
prerequisite for in situ characterization. The sample environments currently available are often limited to 
single variables, such as temperature, and to samples not large enough to represent device performance or 
manufacturing conditions. For example, recent reports point to the importance of novel catalysts for 
breaking down (upcycling) consumer plastics into reusable low–molecular-weight products, based on 
nanoparticles.10 These products rely on multiple characterization methods, ranging from basic molecular 
weight measurement, to 13C magic-angle-spinning (MAS) solid state nuclear magnetic resonance 
(ssNMR) spectroscopy, to electron microscopy of the catalyst microstructures. Upscaling such a process 
from the benchtop to a commercial reactor is highly likely to require new approaches to sampling for true 
operando characterization. Multi-modal in situ characterization also is required for materials 
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manufacturing to connect processing, structure, and properties in integrated experiments and eliminate 
ambiguity when they are measured separately. For example, Persson et al. used in situ x-ray scattering, 
including pole figure and optical reflectance measurements, during blade coating of semiconducting 
polymers, in which strong fibril alignment led to anisotropy in carrier mobility as a function of blade 
speed11 (Figure 16). The Air Force Research Laboratory has designed a sophisticated load frame for 
combined mechanical testing, synchrotron diffraction, and tomographic imaging. Combining such a load 
frame with high-energy diffraction microscopy (HEDM) (Figure 17) can enable mapping of the 3D grain 
structure around a crack,12 for example, and the relationship between the advancing defects and the 
microstructure can be investigated through machine learning.13 More generally, expansion to multiple 
variables and incorporation of ML tools would yield important new science.  

Figure 16. In situ characterization of a blade-coated N2200 thin film (5 mm/s). (a) Schematic of the 
experimental setup and raw data collection. (b) Raw line cut data from wide-angle x-ray scattering 
patterns and calculated S2D for all wavelengths of raw ultraviolet-visible (UV-vis) reflectance data versus 
time after blade passage (vertical axis). (c) Amplitude of the (100) peak and (001) peak from peak fitting 
of each collected pattern, the ration of the (100)/(001) peak amplitudes, and S2D from UV-vis reflectance 
at 700 nm versus time after blade passage in seconds. Source: N.E. Perssonet al., Chem. Mater. 31, 
4133−4147, 2019. 

https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00888
https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00888
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Figure 17. Schematic of an experimental setup featuring a suite of x-ray characterization techniques, 
which include m-CT (micro–computed tomography, NF-HEDM (near-field high-energy x-ray diffraction 
microscopy), FF-HEDM (far-field high-energy x-ray diffraction microscopy), and reciprocal space 
mapping. Source: Reprinted from Acta Mater. 179, P. Diwakar et al., X-ray characterization of the 
micromechanical response ahead of a propagating small fatigue crack in a Ni-based superalloy, 342–
359, 2019, with permission from Elsevier. 

Figure 18 shows an example of multiple sensing and testing modalities (digital imaging correlation, 
acoustic emission, and high-speed camera) for monitoring environmental barrier coatings, critical ceramic 
components for gas turbines, in a relevant engine operating environment including heating, cooling, and a 
high-temperature/high-pressure air/steam mixed jet14 at a facility at the University of Virginia. Another 
example is the Gleeble system, a physical simulator for thermomechanical processing of metals used by 
academia and industry. With the penetrating power of high-energy synchrotron x-rays or neutrons, the 
microstructure of materials can be studied during thermomechanical processing, opening up opportunities 
for better understanding of the metal forming processes. A customized Gleeble system was built for 
synchrotron application15 and is being considered by the European Spallation Neutron Source for its new 
engineering beamline.16 Similar instrumentation is needed for answering fundamental science questions 
underpinning manufacturing issues. At present, the development of such complex sample environment 
lags behind the full light and neutron source capabilities, limiting the full potential of such facilities for 
more innovative in situ characterization.  

Neutron sources have a unique role in advancing manufacturing know-how, because their high 
penetration power and sensitivity to light elements make it possible to use them to study large industrial 
components. The Engineering Diffractometer on the VULCAN beamline17at the Spallation Neutron 
Source at Oak Ridge National Laboratory has been used to study the mechanical properties of industrial 
materials under conditions relevant to manufacturing. Neutron techniques including diffraction and 
imaging would benefit from further development of spatial resolution, from a few millimeters down to 
sub-millimeters, as recently demonstrated.18 They also would benefit from in situ capabilities to handle 
manufacturing processes involving larger components—complementary to those at synchrotrons—such 
as residual stress relaxation during heat treatment of industrial components. Neutron powder diffraction 

https://www.sciencedirect.com/science/article/abs/pii/S1359645419305075?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S1359645419305075?via%3Dihub
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has been routinely used for in situ measurements; and small-angle neutron scattering has been widely 
used for soft materials, as neutrons provide better contrast for soft materials than x-rays.19 It is important 
to connect these capabilities to solve critical manufacturing problems.  

Figure 18. Simulated Engine Materials test facility for thermal barrier coatings and environmental 
coatings at University of Virginia. Source: H.S. Prabha et al. Laser Steam and Load (LSL) Simulated 
Engine Materials Testing Facility, University of Virginia website, https://engineering.virginia.edu/ 
wadley-lsl. 

Manufacturing processes can involve ultrafast events beyond what conventional characterization and even 
synchrotron-based tools can handle; this is where free-electron lasers (FELs) offer a path forward. An 
example of using FEL to understand the science behind industrial materials is an effort by Rolls-Royce to 
follow the shock-driven ω →α phase transformation of zirconium at picosecond time resolution at the 
Linear Coherent Light Source (Figure 19).20 FELs have also been used to study chemical catalytic 
processes, and many opportunities exist to apply that understanding to transform chemical manufacturing 
processes. At present, a major limiting factor for applying FEL techniques to manufacturing problems is 
its low x-ray energy, which could be overcome by higher-energy FELs.  

The scientific challenge is understanding material properties at much higher temporal, spatial, and energy 
resolutions than is possible today. Higher time resolution is particularly important for studying transient 
phenomena during processing, such as rapid cooling of laser metal AM; and higher spatial resolution is 
needed to visualize materials processing down to the finite local scale. In addition, for industry to benefit 
from in situ characterization, findings should be statistically significant, based not on single experimental 
observations but on multiple experiments with a high degree of fidelity. 

https://engineering.virginia.edu/wadley-lsl
https://engineering.virginia.edu/wadley-lsl
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Figure 19. Picosecond dynamics of a 
shock-driven displacive phase 
transformation in zirconium. High-pressure 
solid-state transformations at high strain 
rates are usually observed after the fact, 
either during static holding or after 
unloading, or inferred from interferometry 
measurements of the sample surface. The 
emergence of femtosecond x-ray 
diffraction techniques provides insight into 
the dynamics of short-timescale events 
such as shocks. In this laser pump-probe 
experiment, the response of zirconium to 
laser-driven shocks, over the first few 
nanoseconds of the shock event, 
enabled the transition and orientation 
relationship to be observed in real time 
with picosecond resolution. An 
orientation relationship of (10-10α)//(10-
11ω) was determined that was in conflict 
with quasi-static annealing experiments ω 
→α in zirconium and the two pathways
proposed for titanium. Source: Reprinted
figure with permission from T.D. Swinburne
et al. Picosecond dynamics of a shock-
driven displacive phase transformation in
Zr, Phys. Rev. B 93, 44119, 2016. Copyright
2016 by the American Physical Society.

Thrust 2. Operando characterization to elucidate new science for manufacturing 
processes 
Operando methods interrogate both structure and activity in a simultaneous fashion, under operating 
conditions.21 Current efforts in operando characterization relevant to manufacturing often fall short of the 
appropriate scale. This limitation can be particularly detrimental, for example, for chemical 
manufacturing when upscaling a working process from laboratory to industrial scale. Given that most 
such manufacturing processes are taking place in reactors much larger than the benchtop apparatus, how 
can we create small-scale surrogates to extract information from chemical species under representative 
conditions? Given the physical limits on probing events at the molecular scale in large systems, this 
implies a need to advance the science of sampling from manufacturing systems to characterize reactions 
and materials under relevant circumstances. 

An early example of operando characterization can be traced back to 1997 when researchers from DuPont 
studied Nylon 66 during heat-draw processing, under different temperatures and draw ratios, using 
synchrotron small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering.22 Fast forward to 2019, 
and researchers from the Air Force Research Laboratory performed operando x-ray photon correlation 
spectroscopy (in SAXS geometry) measurements at the National Synchrotron Light Source (NSLS) II 
during 3D printing of a thermoset nanocomposite23 (Figure 20) with silicate particles embedded in the 
extrudate—an epoxy-layered silicate composite ink. They demonstrated that the orientation of the platy 
particles varied markedly along the extruded features as a function of distance from the nozzle. This 
study, although limited to a single feature, opened up a significant space of process improvement through 
optimal control of the alignment of the anisotropic particles as a function of nozzle shape and geometry, 
as the extruded material exits the nozzle and is deposited on the substrate. Extending this type of 

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.144119
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.144119
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.144119
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operando probe to more realistic conditions will require collaborative efforts between user facilities, 
academic researchers, national labs, and industrial users. The report from the 2020 Roundtable on 
Chemical Upcycling of Polymers 24 makes many important points about the challenges of tertiary 
recycling, in which chemical processes are used to break down plastics into smaller molecules that can 
then become feedstocks. Whatever process is used must be viable at the industrial scale to be effective in 
dealing with the vast volumes, which brings challenges with respect to catalysts, reagents, enzymes, or 
biochemical routes. Developing appropriate operando characterization techniques is likely to be crucial in 
this respect, not least for the manufacture of solid state catalysts, which themselves often need multiscale 
structures for support. The previous 2017 BRN workshop report Catalysis Science 25 provides much 
additional detail in this area but quite naturally focuses on the science of the catalysts themselves, as 
opposed to issues related to scaling up to industrial practice. 

Figure 20. Schematic of the extrusion 
printing process and the scattering 
geometry for x-ray photon correlation 
spectroscopy in SAXS geometry. The 
material exits the nozzle at the same 
speed v = 0.1 mm/s as the nozzle is 
moving with respect to the build plate. 
The print (ϕ = π) and extrusion (ϕ = π/2) 
directions are normal to each other, 
and the print head and build plate are 
placed to pass orthogonally to the 
incoming x-ray beam. The scattered x-
ray beam is defined by the scattering 
angle θ marked with dashed orange 
lines. The blue and green sections 
correspond to the extrusion and 
printing directions, respectively, with 
widths 2ΔΦ. Source: K.J. Johnson et al. 
Langmuir 35(26), 8758, 2019. 

Operando characterization through ultrafast imaging and diffraction during laser melting AM has gained 
traction from both academia and industry for obtaining insights into the dynamic process during melting 
of metal powders (see the sidebar). In this case, the spatial resolution of ∼1 µm and framing rates up to 
megahertz are well suited to capturing laser-induced vapor holes (keyholes),26 powder particle ejection, 
liquid metal spatter,27 pore trapping, pore creation, and hot cracking,28 as well as atomic-scale structures 
such as phase transformation through diffraction. Such processes are being improved by incorporating 
multiple path and powder handling capabilities to move closer to the actual 3D printing process. Probing 
chemical reactions at the atomic scale is an enduring challenge for operando characterization. Novel 
multi-modal tools need to be identified and explored. For example, while both pair distribution function 
(PDF) and computed tomography (CT) are well-established techniques, their combination has yielded 
unprecedented insight by spatial mapping of chemical reactions on an industrial alumina catalyst 
containing palladium.29 The PDF-CT experiment showed nonreacting metal particles and a more strongly 
heterogeneous structure in the catalyst than anticipated. Such multi-modal probes point to the potential for 
time-dependent measurements and their broader applications to novel devices such as an artificial nose 
based on porous graphene.30 Control of chemical reactions at atomic resolution also can be achieved by 
using scanning tunneling microscopy, as demonstrated for applications in the semiconductor industry.31 In 
atomic precision advanced manufacturing, for silicon doping, a monolayer of hydrogen atoms on a 
silicon{100} surface acting as a resist is selectively removed and replaced by phosphine molecules to 
accomplish the doping. These examples have shown the feasibility of characterizing and manipulating 
materials at atomic resolution, and much additional effort is still needed.  

https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.9b00766
https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.9b00766
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Sidebar: In Situ/Operando Synchrotron Experiments in Laser Additive 
Manufacturing. 

The advance of laser AM relies on understanding the physics underlying the laser-metal 
interactions, the driving forces controlling the microstructure evolution, and the 
mechanisms responsible for the formation of structure defects. The superior penetrating 
power and brilliance of the high-energy photons at synchrotron facilities have enabled 
ultrafast imaging and diffraction studies of subsurface structural dynamics, leading to 
quantitative measurements of the melt pool, vapor depression, porosity, and crack 
formation, as well as dynamic phase transformation and evolution of microstructures. 
Such in situ/operando synchrotron experiments at the Advanced Photon Source and the 
Stanford Synchrotron Radiation Light Source help the manufacturing industry (1) 
understand how defects are generated and why some materials are difficult to print,(2) 
develop high-fidelity AM processes simulation models, and (3) validate sensory data for in-
process monitoring and closed-loop control. 

The experimental setup at the Advanced Photon Source (b) where x-ray and thermal images (a and e) 
and diffraction data (b) were taken in real time (c) and (d). Source: M.J. Matthews and S.A. Khairallah, 
Lawrence Livermore National Laboratory. 

Operando characterization of the water splitting reaction, among the most desirable ways to convert solar 
energy to hydrogen as a fuel, has been demonstrated by using potential-sensing electrochemical atomic 
force microscopy (AFM) on a modified electrochemical reaction cell32 and infrared (IR) spectroscopy to 
study the catalytic processes at the liquid-solid interface.33 In the AFM example—carried out in a 
laboratory setting—a nanoscale conducting tip senses the electrochemical potential across the 
electrocatalysts on various substrates in the presence of an electrolyte (see Figure 21), allowing direct 
observation of electrical interfacial properties of heterogeneous electrochemical systems during the water 
splitting reaction.34
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Figure 21. (a) The potential-sensing 
electrochemical AFM setup with an 
electrically insulated cantilever (except for 
the exposed tip) as a potential probe. The 
inset is a micrograph of the platinum tip. 
The blue color represents the electrolyte. A 
wide range of (photo) electrochemical 
systems can be studied in operando using 
this cell design. Electrodeposited catalysts 
on conducting indium tin oxide (ITO), 
planar hematite, or nanostructured/ 
mesostructured hematite are connected 
to the circuit via the working electrode 
(WE1), and the illumination is provided 
from the bottom with a 405 nm light-
emitting diode. (b) Band diagram for an 
illuminated semiconductor (sem) 
electrode (for example, hematite) coated 
with a catalyst (cat) layer. Ecat and Etip are 
the Fermi levels of the catalyst and AFM 
tip, which are assumed to be in 
equilibrium. Esol is the redox energy of the 
electrolyte. The difference between Esol 
and Ecat divided by electron charge q is 
the overpotential driving water oxidation. 
Source: Reprinted by permission from 
Nature Publishing Group: Nat. Energy, 
Potential-sensing electrochemical atomic 
force microscopy for in operando analysis 
of water-slitting catalysts and interfaces, 
M. R. Nellist et al. 3, 26–52, 2018. 

 

More energy-related scientific areas that can benefit from operando characterization include biogas 
upgrade, separating methane from carbon dioxide and other gases, and NOx reduction for reducing air 
pollution and climate control. To understand moisture tolerance during biogas separation, combined IR 
spectroscopy and mass spectroscopy (MS) was used operando in a flow chamber containing trace 
amounts of water. The molecular species on the surface of the molecular sieves were detected by IR, and 
simultaneously the gas products downstream were monitored by MS.35 In the case of NOx reduction, 
synchrotron x-ray absorption and emission spectroscopy at the iron absorption edge was used to 
investigate the mechanism of NOx reduction with NH3, converting NOx to harmless N2 and H2O in a 
miniaturized flow cell, aided by iron-containing catalysts.36 A recent article described an approach for 
separating gaseous species based on flexible metal-organic frameworks subject to mechanical loading.37 
Under load, the material absorbs one gas species, e.g., CO2, but not another one, e.g., N2; then the load is 
released, thereby allowing the separated-out gas to be released (Figure 22). The concept is elegant but 
clearly will require many additional steps of scientific discovery and engineering development to bring it 
to industrial scale. 

https://www.nature.com/articles/s41560-017-0048-1
https://www.nature.com/articles/s41560-017-0048-1
https://www.nature.com/articles/s41560-017-0048-1
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Figure 22. (a) Schematic representation of the concept developed in the present study: control of the 
breathing behavior of the flexible MIL-53 metal-organic framework (MOF) by application of an external 
mechanical pressure to provoke a molecular-sieving type of separation, followed by regeneration from 
the unconstrained MOF after release of the mechanical constraint. (b) CO2 isotherm (full-line—
adsorption, dashes—desorption) of the unconstrained MIL-53 evidencing a two-step process indicative 
of the framework breathing. Phase transitions between large pore (LP) and narrow pore (NP) phases are 
indicated by vertical dashed black lines. (c) Evolution of pore size aperture between the LP and NP 
phases of MIL-53. Source: Chanut et al. Nat. Commun. 11, 1216, 2020. Licensed under a Creative 
Commons Attribution 4.0 International License. 

 

Addressing this thrust involves designing and fabricating professional-grade apparatus that emulate 
chemicals or materials manufacturing processing conditions for critical areas such as AM, catalyzed 
chemical synthesis, and polymer processing. This corresponds directly to the oft-stated need for in situ 
environments permitting observation of processes under real-world/real-time conditions (temperature, 
pressure, electromagnetic fields, gaseous and fluids) with minimal loss of spectral resolution.38 Note that 
the large physical size associated with industrial-scale reaction systems, and materials processing in 
general, poses multiple challenges because it tends to force the use of highly penetrating radiation that 
often lacks the requisite sensitivity—hence the remarks elsewhere about the need for advances in 
sampling methods.  

https://www.nature.com/articles/s41467-020-15036-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Thrust 3. Big data, artificial intelligence, and machine learning 
The next important step in advancing manufacturing science is to convert large sets of in situ and 
operando experimental data into new scientific insights and predictive outputs that, in particular, are 
meaningful to industry. Using AI/ML for controlling measurements and interpreting the data is an 
important aspect and is highlighted by a recent BES report.39 To provide unified platforms for data 
acquisition and analysis, BES has initiated a coordinated effort among five light sources and the Center 
for Advanced Mathematics for Energy Research Application (CAMERA)40 and has developed the data 
acquisition software Bluesky41 and the data analysis and visualization software Xi-cam42 at Brookhaven 
National Laboratory and Lawrence Berkeley National Laboratory, respectively. Other promising 
developments include an autonomous SAXS experiment driven by a ML algorithm recently demonstrated 
at an NSLS-II beamline43 and a convolutional neural network used to extract microstructural features 
automatically in tomographic image analysis.44 AI/ML also can enable the analysis of large amounts of 
data quickly, beyond the scope of current post-experimental data analysis software. With increasing 
instrumental capabilities, thousands of measurements could be carried out in a few minutes or hours, in 
both in situ/operando and high-throughput experiments. High-throughput alloy design has been shown to 
be amenable to data analytics, whether the target is thermoelectric materials or high-temperature alloys 
for power generation.45 ML is also being applied to image reconstruction to both improve accuracy and 
streamline the process.46  

Most data analysis algorithms and codes in use today were developed by scientists in their own fields in 
the pre-AI era. Examples include TomoPy* for tomography; GSAS-II †for crystallography; HEXRD,‡ 
IceNine,§ HEXOMAP,** and MIDAS†† for diffraction microscopy; Irena‡‡ for small-angle scattering; and 
Athena§§ for x-ray absorption spectroscopy. To develop next-generation AI/ML-based software, it will be 
essential to use domain-specific knowledge to apply AI/ML in a meaningful and productive manner, 
bringing together beamline scientists, users, and computer scientists. As Steve Jobs said, “Ideas are worth 
nothing unless executed.” 

AI/ML-based algorithms also may be needed to go beyond interpreting measurement results. An oft-
repeated dictum is that we should “measure structures as they form, with theory and modeling to guide 
synthetic processes on the fly.” Because simulations performed at the same resolution can take vastly 
longer than the experiment itself, the reality is that the idea of on-the-fly modeling has not yet 
materialized for most experiments. For example, crystal plasticity models have been shown to benefit 
from HEDM experiments,47 and residual stress measurement can validate finite element models. 
However, at present, those models would take too much time to run to be part of operando experiments. 
This is also evident in the case of high-speed visualization of laser melting, for which a single high-
fidelity simulation that includes liquid and vapor flow occupies hours on a supercomputer, compared with 
milliseconds per experiment. Therefore, the connection between modeling and experiments is vital to 
both, and we need to evaluate the feasibilities of what can be implemented now and what needs to wait till 
more powerful computing infrastructure becomes available.  

This thrust is allied with the increasing demand in virtual or remote experiments that has been accelerated 
by the pandemic of 2020. Such remote experiments can benefit research at university laboratories and 
nanoscience centers, as well as at user facilities. For many years, pharmaceutical companies have used 

 
* TomoPy (Tomographic reconstruction in Python). https://tomopy.readthedocs.io/en/latest/ 
† https://subversion.xray.aps.anl.gov/trac/pyGSAS 
‡ https://github.com/HEXRD/hexrdgui/releases 
§ https://github.com/FrankieLi/IceNine 
** https://github.com/HeLiuCMU/HEXOMAP 
†† https://github.com/marinerhemant/MIDAS 
‡‡ https://usaxs.xray.aps.anl.gov/software/irena 
§§ http://bruceravel.github.io/demeter/documents/Athena/index.html 
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remote access for protein crystallography research. As demonstrated as an unanticipated benefit from 
Covid-19, online meetings and carefully defined remote experiments can be as effective as face-to-face 
meetings and on-site experiments. This development can be particularly important for industrial 
researchers because it can eliminate travel and time away from their quotidian responsibilities, reducing 
R&D costs and expanding the participation of experimentalists to form broader multidisciplinary teams.  

Science and Technology Impact  
This PRD seeks to advance in situ and operando characterization for a lasting impact on manufacturing by 
creating the necessary infrastructure, AI/ML-driven analytics, and solution-driven collaborative research. 
This PRD aims to better align basic research with manufacturing needs so as to unleash the full potential 
of these powerful capabilities for long-term economic benefits. By presenting challenging applied, real-
world problems, this PRD also will impact the education of the next generation of scientists and 
engineers. 

This PRD will impact manufacturing in the following three ways: 

1. Establish a holistic research infrastructure around in situ and operando characterization, from 
sophisticated sample environments to AI/ML-driven analytics, for understanding materials 
processing-structure-property-performance relationships under real-world operating conditions. 

2. Promote a paradigm shift in materials discoveries and manufacturing innovation based on knowledge 
and understanding, instead of empirical or Edisonian schemes, combining strengths and expertise 
from academia, national laboratories and industrial researchers toward long-term, transformative 
objectives. 

3. Enhance the global competitiveness of US industry in energy-related technologies, especially in areas 
such as quantum materials, renewable energy, environment, and critical materials.  
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PRD 4: Direct Atom and Energy Flow to Realize Sustainable Manufacturing 

Summary 
Manufacturing processes for many industrially important chemicals and materials have approached their 
thermodynamic limits in efficiency. Even if further gains were possible, the growing demand for energy 
and materials services using chemical feedstocks cannot be met sustainably in the decades ahead, a fact 
that jeopardizes the energy and resource security of the United States. Transformative change in 
manufacturing toward sustainability requires the development of revolutionary methodologies that more 
effectively localize and direct chemical and materials transformations at the primary sites of energy 
conversion from a variety of energy inputs (e.g., electrical, thermal, radiative, and mechanical), as well as 
integrated processes that couple kinetics and transport across length scales to dramatically reduce the 
water and energy use and increase efficiency of manufacturing, demanufacturing, and remanufacturing. 
The promise of renewable electricity and abundance of high-quality recycled feedstocks, when coupled to 
these methodologies and processes, has the potential to improve manufacturing by reducing waste and 
pollution while also decarbonizing the manufacturing of existing and future chemicals and materials.  

This PRD seeks to address key questions that include the following: What are the methodologies to 
achieve atom and energy efficiency for sustainable manufacturing? How can science enable adaptive and 
resilient manufacturing across scales to exploit renewable or recycled feedstocks? 

Scientific Challenges 
Approximately 50% of global annual industrial greenhouse gas (GHG) emissions are released during the 
production of five major materials: steel, cement, paper, plastics, and aluminum. A significant fraction of 
the remaining 50% is attributed to the production of other metals, glass, and chemical feedstocks, as well 
as the manufacturing of materials into products.1 Many of these industrially important chemicals and 
materials have been produced for decades, if not centuries. Iterative improvements in the efficiency of 
their production have approached either practical or thermodynamic limits.2  

As demand grows for energy and materials services, both of which are overwhelmingly reliant on 
chemical feedstocks, so will stresses on the ways and means of production (Figure 23).3,4 It remains 
unclear whether adequate resources can be secured and managed for primary production in higher volume 
using today’s best-practiced manufacturing processes without also incurring significant economic and 
environmental costs. On the current path, manufacturing supply chains appear increasingly at risk.  

Basic science needs, described in the three challenges that follow, can be generalized in four areas:  

1. Convergent theoretical and experimental frameworks are needed to understand and control 
multiphase reactions under the influence of chemical and electrochemical potential with respect to 
adsorption, bond activation, transfiguration of bonds, and diffusion of reactive species in complex 
reactive environments. Such frameworks also are needed to understand and control processes where 
transformations are driven by several different energetic inputs. 

2. New research paradigms are needed for designing and integrating conversion and separations; 
coupling highly active catalysts with membranes and solvation; and replacing thermally controlled 
separations used to produce, refine, recover, or recycle important chemical and materials feedstocks. 

3. Design principles are needed to develop next-generation materials and manufacturing processes that 
are intrinsically more circular and that enable remanufacturing to be less wasteful and require less 
energy. 
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Figure 23. (a–b) Estimates of CO2 emissions related to different energy services, including manufacturing, highlighting (for example, by longer pie 
pieces in A) those services that will be the most difficult to decarbonize, and the magnitude of 2014 emissions from those difficult-to-eliminate 
emissions. The shares and emissions shown here reflect a global energy system that relies primarily on fossil fuels. Both (a) the shares and (b) the level 
of emissions related to these difficult-to-decarbonize services are likely to increase in the future. Totals and sectoral breakdowns shown are based 
primarily on data from the International Energy Agency and EDGAR 4.3 databases. Residential and commercial emissions are those produced 
directly by businesses and households; and “Electricity,” “Combined heat & electricity,” and “Heat” represent emissions from the energy sector. (c) 
Schematic of an example integrated system that can provide essential energy services integrated with manufacturing without adding any CO2 to 
the atmosphere. Colors indicate the dominant role of specific technologies and processes: green, electricity generation and transmission; blue, 
hydrogen production and transport; purple, hydrocarbon production and transport; orange, ammonia production and transport; red, carbon 
management; and black, end uses of energy and materials. Source: Reprinted from S.J. Davis et al. Science 360, eaas9793, 2018. 

https://science.sciencemag.org/content/360/6396/eaas9793/tab-article-info
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4. New multiphysics models, in situ and operando characterization capabilities, and data analytics are 
needed to reveal insights into how to couple kinetics and transport across scales and respond to 
changing conditions and environments in adaptive manufacturing processes. 

Challenge 1. Pathways to reduce energy and enhance sustainability for primary 
production of commodity chemicals and materials. 
The manufacturing of chemicals in the United States consumed more than 8 EJ of energy in 2018, 
accounting for ~25% of industrial energy consumption.5 By 2030, chemical manufacturing could account 
for almost 10% of all US energy consumption.6 Of the ~140,000 chemicals produced, the top 18 account 
for 80% of the energy consumption in the chemical sector.7 Although advances in catalysts and process 
intensification are expected to reduce the demand for energy by as much as 20–40%, a paradigm shift 
toward electrification of the chemical industry offers the promise of sustainability long term. Specifically, 
chemical transformations that today use heat and pressure may in the future be facilitated by light- or 
voltage-driven processes; coupling new classes of reactions at the anode and cathode offers compelling 
means for lowering GHG footprints for a broad spectrum of primary production processes. 

To that end, while abundant renewable electricity has created an unprecedented opportunity to electrify 
and enhance sustainability of the primary production of a broad class of chemicals and materials—
provided the electricity comes from zero-emission and renewable sources8,9—more renewable energy is 
needed. The gap is along the lines of terawatts of capacity, in addition to longer-term energy storage (10–
20 days) not feasible with conventional batteries. Thus, advances in energy storage in chemical bonds are 
opportunities that low-cost renewable electricity can facilitate. Historical examples of electrochemistry at 
scale in the manufacturing environment include the chlor-alkali process for chlorine production, the Hall 
process for aluminum, and electrolytic manganese dioxide for alkaline batteries. Electrochemical refining 
and processing of certain metals is already widely practiced and generates high-purity metals such as 
aluminum, zinc, copper, lead, and silver at low cost and in high volume. Advancing the science of 
electrorefining may make possible more sustainable production of other important metals, such as iron for 
steel production and rare earths for magnets for electric vehicles and wind turbines, as well as refined 
feedstocks for cement production and for manufacturing battery components (Figure 24).10–12 Gains on 
these fronts would open the possibility of more cost-competitive midstream management of resources in 
domestic manufacturing systems, obviating the need to export raw materials or concentrates extracted 
from ores for processing only to re-import them as higher-value products. 

The electrification of the chemical industry could lay important groundwork for more sustainable 
production of high-volume chemicals, including ammonia,13 olefins (e.g., ethylene and propylene),14,15 
alcohols (e.g., methanol), epoxides16 (e.g., ethylene oxide or propylene oxide), as well as monomers for 
chemically recyclable commodity polymers (e.g., caprolactam, glycols, and terephthalic acid). Along 
similar lines, low-temperature electrochemical activation of C–H bonds would also be revolutionary; in 
the case of methane, it points to compelling opportunities for a broad range of chemical feedstocks 
ranging from syngas to liquid fuels, oxygenates, and light olefins.17–23 

To prepare for future electrification of the chemical industry, basic energy research into the electrification 
of primary production and the refining of raw materials is needed. Processes undergoing electrification 
will be carried out using transformations at interfaces or in multiphasic media, where the primary sites of 
energy conversion may involve electrons, ions, photons, phonons, and mass at complex phase boundaries. 
Sometimes these transformations may occur at extremes in temperature, pressure, or shear forces. Under 
such conditions, we do not know how to synergistically couple electrical, thermal, radiative, and 
mechanical energy at primary conversion sites to target conversions and direct the process selectively at  
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low intensity. To bridge this 
gap, new theoretical and 
experimental frameworks 
are needed to understand 
adsorption; localized bond 
activation; surface diffusion 
of reactive species; and the 
transfiguration of bonds 
under realistic conditions 
when the transfiguration is 
driven by several energetic 
inputs and gradients in 
chemical potential local to 
the conversion site. We 
further lack molecularly 
informed knowledge for 
tying macroscopic system 
performance factors such as 
rate, Faradaic efficiency, 
catalyst selectivity, and 
lifetime to the fundamental 
energy conversion 
processes involved. Doing 
so would require new 
multiphysics models, in situ 
and operando 
characterization 
capabilities, and data 
analytics that reveal new 
insights into how to couple 
kinetics and transport across 
scales to realize sustainable 
primary production and 
refining. 

Figure 24. Scheme for a low-emission, electrochemically based cement 
plant. An electrochemical reactor powered by renewable electricity 
converts CaCO3 to Ca(OH)2 for use in cement synthesis. The 
decarbonation cell uses the pH gradient produced by neutral-water 
electrolysis to dissolve CaCO3 at the acidic anode and precipitate 
Ca(OH)2 where pH ≥ 12.5. Simultaneously, H2 is generated at the cathode 
and O2/CO2 are generated at the anode. These gas streams can serve 
several alternative roles in a sustainable production system. CO2 can be 
directly captured from the inherently concentrated stream. Electricity or 
heat can be generated from the H2 and O2 via fuel cells or combustors. 
The O2/CO2 oxy-fuel can be recirculated to the kiln for cleaner combustion 
in the cement sintering cycle. CO2 reuse and utilization concepts can be 
employed, such as use in enhanced oil recovery or production of liquid 
fuels. Source: L.D. Ellis et al. Proc. Nat. Acad. Sci. 117(23), 12584–12591, 
2020. Used by permission.  

https://www.pnas.org/content/117/23/12584
https://www.pnas.org/content/117/23/12584
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Challenge 2. Scientific advances to realize lossless and waste-free circularity in 
manufacturing systems. 
Manufacturing systems are linear by design: raw materials are extracted and processed, followed by 
production and assembly, use, and then disposal of the product at the end-of-life or end-of-use. 
Manufacturing for circularity considers how to design for reuse, recycling, or reconfiguration at the end 
of use rather than disposing of the product and how to reduce the need for raw materials. While there is 
considerable industrial interest in circularizing manufacturing systems to improve their sustainability,24–29 
it is not yet clear how to design and deconstruct products efficiently and recover inherently valuable 
chemicals and materials at high purity for recirculation in closed-loop life cycles. This is particularly true 
for emerging technologies such as additive manufacturing (AM).30  

To underscore the problem, an estimated ~5 billion metric tons of plastics and their embodied energy 
(~165 EJ) and value as chemical feedstocks have been irrevocably lost to the global economy because of 
the impracticality of retrieving them.31 Furthermore, there is growing demand for high-quality recycled 
feedstocks for secondary manufacturing of polymer resins, yet these are scarce because of scientific 
challenges in polymer deconstruction and additive removal (i.e., dissociation).32–36 To meet the demand 
for resource circularity will require transformative advances for managing and preventing feedstock 
losses, or for downgrading these valuable resources at the level of individual bonds along polymer chains 
to permit their reuse in fully closed-loop recycling processes (Figure 25). Closed-loop chemical 
circularity has been demonstrated at scale for poly(ethylene terephthalate), high-density polyethylene, 
polystyrene, and nylon-6. However, to date, these processes remain energy intensive, inefficient, and 
intolerant to common polymer additives, impurities, and mixtures. Nonetheless, these early 
demonstrations point to a future in which chemical recycling of commodity polymers could be more 
widely implemented, if further innovation could be realized via breakthroughs in polymers, catalysts, 
processes, and chemical separations for efficient monomer recovery and additive removal. The 
sustainability of future digital manufacturing practices for polymers and composites may likewise hinge 
on the design and development of the next generation of circular polymer resins for AM. 

 
Figure 25. (a) In 2015, the mass of plastic waste was 74% of the mass of resin produced. The graphs show 
the contributions of different polymers to total plastic resin production (values averaged over 2002–2014) 
and waste (2015 values). A small percentage of plastic waste is collected for recycling; the remainder 
goes to landfills, leaks to the environment, or is combusted (the values shown are for plastic packaging 
only). (b) Cycle showing the idealized polymer economy, in which post-consumer waste (PCW) plastics 
undergo chemical recycling to monomer (CRM). Mt=megatonnes; PET=poly(ethylene terephthalate); 
PS= polystyrene; PVC=poly(vinyl chloride). Source: Reprinted by permission from Nature Publishing Group: 
Nat. Rev. Mater., Chemical recycling to monomer for an ideal, circular polymer economy, G.W. Coates 
and Y.D.Y.L. Getzler, 5, 501–516, 2020. 

The recycling of metals, compared with recycling of polymers and composites, is conducted at markedly 
higher rates of ~50% for steel, aluminum, copper, zinc, lead, and nickel.37–41 However, if high purity is 
the primary criterion for assessing the landscape of reuse markets, thermodynamics may be the ultimate 
arbiter, given how few products incorporate metals in pure form. The recycling of complex alloys, 

https://www.nature.com/articles/s41578-020-0190-4
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ceramics, and other inorganic materials remains an obstacle. For alloys in particular, including those 
being developed for AM,42–44 the foundational thermodynamic behavior of alloying elements in those 
materials makes their separation in a recycling process either very energy intensive or practically 
impossible with technology currently available. Electrochemical extractions, separations, and other 
refining processes may further open doors to new and efficient recycling processes for recovering 
important metals for reuse from complex alloys, ceramics, oxides, and other materials used in AM, 
magnets, fuel cells, and batteries for electric vehicles and the grid at end-of-life. The materials complexity 
inherent in these products currently presents formidable but not insurmountable challenges in separations 
to recover resources in high purity for secondary production from recycled materials. 

Realizing circularity in manufacturing systems for specialty and commodity chemicals, polymers, metals, 
and other materials requires scientific breakthroughs that address outstanding challenges in understanding 
and controlling thermal and material entropic losses associated with circularity. These include the dilution 
or mixing of components after the deconstruction of materials in use today. Furthermore, it may be 
necessary to design the next generation of materials for new manufacturing processes that are intrinsically 
more circular, to purposefully design out waste and yet enable emerging technologies. Such designs 
would need to address a critical yet largely unmet need to deliver performance concomitantly with 
reduced complexity to minimize entropic losses in circular manufacturing systems. Innovative strategies 
are likewise needed to lower the consumption of resources and energy in the chemical recycling processes 
necessary to isolate refined feedstocks for remanufacturing. Although separations and feedstock refining 
processes are currently conducted thermally or under thermodynamic control, electrification of these 
processes may be possible to enable them to be sustainable. Exploiting kinetic control may likewise 
present compelling new opportunities to overcome thermodynamics limits for energy and atom efficiency 
in the separation of material components after deconstruction. 

Challenge 3. Enable robust and resilient manufacturing when using unconventional 
energy inputs and feedstocks that exhibit heterogeneity. 
Prospects for scaling production to meet demand using renewable or recycled feedstocks, and even waste, 
are enticing for lowering GHG and environmental impacts. While mineral ores, petroleum hydrocarbon 
gas liquids, and natural gas are raw materials used today in metals, petrochemicals, plastics, and other 
carbon-containing materials, the feedstocks of tomorrow will likely be alternative and more sustainable 
sources such as H2O, CO2, and N2. Electronic waste, waste plastics, manures, sludges, municipal solid 
waste, and flue gases are also emerging feedstocks that are plentiful but geographically dispersed, 
fluctuating in availability, heterogeneous in makeup, often refractory, and expensive to aggregate.45 
Collectively, these materials inputs are rich sources of carbon, hydrogen, nitrogen, and oxygen atoms. 
However, they will need to be reconfigured selectively and efficiently to new carbon–carbon, carbon–
hydrogen, carbon–nitrogen, and carbon–oxygen bonds during chemical production. Understanding and 
controlling such chemical transformations with these unconventional feedstocks requires an inversion of 
precedents in reaction discovery, design, and engineering: compounds that have historically been 
regarded as non-reactive combustion and waste products could become plausible reactants if they could 
be reduced to usable chemicals by thermochemical, electrochemical, photochemical, and biological routes 
(Figure 26). Transforming highly oxidized feedstocks also may require new sources for the energy that 
today typically comes from H2-derived from fossil fuels but in the future may be supplied by lower-
carbon energy sources, such as renewable electricity that will fluctuate in availability. 

In situations where materials and energy inputs are expensive to aggregate, or where the product has 
dispersion benefits, smaller-scale modular systems provide advantages over large centralized 
manufacturing facilities in use today, including resiliency, individual capital, reduced risk, and reduced 
time to market.46 To realize atom and energy efficiency, distributed manufacturing at smaller scale 
requires new methodologies, catalysts, and reactor designs that can accommodate or adapt to feedstock 
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heterogeneity and production scale, rather than miniature versions of larger-scale facilities. The need for 
smaller-scale processes does not preclude the large-scale facilities used now; indeed, refined 
intermediates from small-scale plants are more easily transported than the raw material, and they may 
feed larger-scale facilities where downstream manufacturing processes may be conducted more 
efficiently. 46,47  

Basic scientific efforts to realize resilient manufacturing with unconventional yet sustainable energy 
sources and feedstocks must address catalyst resiliency under variable operating conditions, often in the 
condensed phase. Scientific advancements in high-throughput characterization of variable feedstock 
compositions and energy inputs to enable rapid adjustments of processing conditions in operando are 
needed. Designing catalysts that can handle feedstock and energy input variability would also be 
impactful. Understanding how to integrate conversion and separations to drive key processes under 
nonequilibrium control also may provide opportunities to improve efficiency and lower the intensity of 
unit processes: examples are coupling highly active catalysts with membranes and using multiple 
solvents.  

 
Figure 26. Coupled catalytic pathways toward long-chain commodity chemicals. Today, CO2 may be 
converted to syngas at very high selectivity using silver- or gold-based catalysts (top left). Alternatively, 
CO2 can be converted into a wide range of hydrocarbon and oxygenate products using copper-, tin-, 
or palladium-based catalysts (bottom left). These products can then be used as inputs for genetically 
engineered enzymes and bacteria to convert to more complex commodity chemicals. Source: From 
P. De Luna et al., Science 364, eaav3506, 2019. Reprinted with permission from AAAS. 

Researchers lack a complete understanding of solvation effects in complex reaction mixtures having 
multiple liquid phases under non-ideal conditions. In multiphase reaction sorption, catalyst distribution 
and catalyst lifetime are exceptionally challenging to control and sustain in manufacturing processes. 
Further, the phases may be used to remove and capture inorganics, acids, bases, and various catalyst 
poisons as well as remove products from reactants. Electrocatalysis enabling the use of renewable 
electrons to provide the driving force for reactions is likely to have a more important role. An 
understanding of the influences that control Faradaic efficiency is needed so that energy inputs can be 
used more efficiently. Theory will need to be developed that can accurately describe multiphase reactions 
under the influence of external electrical potential on rate and selectivity. 

A summary of research directions focused on advancing the basic science to enable sustainable 
manufacturing is detailed below. 

https://science.sciencemag.org/content/364/6438/eaav3506.editor-summary
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Research Thrusts 
Thrust 1. Harness diverse forms of energy for atom- and energy-efficient manufacturing 
Revolutionary discoveries in methodologies and processes that achieve higher atom and energy efficiency 
in producing commodity chemicals and materials are needed to change course toward more sustainable 
manufacturing. Basic research to enable such a manufacturing revolution could range from the discovery 
of new reagents, reaction pathways and intermediates to electrocatalyst design and entirely new reactor 
concepts for high efficiency and throughput. If realized, these discoveries could lead to disruptive 
innovations for lowering the resource, carbon, and energy intensity of primary production across 
industries, ranging from extractive metallurgy to the production of commodity and specialty chemicals. 

Addressing this challenge will require the advancement of scientific methods that harness diverse forms 
of energy more productively than is possible today to achieve a desired transformation under mild 
conditions with high Faradaic efficiency and with minimal or no waste generated. Efforts building on 
such discoveries will make further inroads by developing new research frameworks to understand how to 
implement such methods in manufacturing processes so that they synergize with kinetics and transport 
across scales to direct transformations selectively and efficiently.  

Increasing the efficiency of chemical transformations requires reducing the difference between the 
standard chemical state of molecules before the reaction and at their activated state, compared with 
current best practice. Although researchers are beginning to understand how the excess potentials of 
ground and activated states are determined by the reaction environment, it is unclear to what extent the 
two are linked. Uncoupling manipulations of ground and transition states will enable new design 
parameters for chemical transformations. One way of achieving such manipulations is through catalysts 
that maintain reacting molecules in a high-energy state while stabilizing transition states. An example of 
such approaches is manipulating entatic states of reactants under confinement, e.g., in porous media or in 
the active sites in biocatalysts. Using either light or electrical energy for the (re)generation of reactive 
intermediates and co-factors along the reaction coordinate could provide valuable chemicals in more eco-
friendly processes.48 This could include chemical looping (mediated) reactor systems. Examples include 
electrochemical regeneration of active metals, such as lithium, which spontaneously reacts with nitrogen 
to form lithium nitride. Lithium nitride can then react with a proton source to generate ammonia49 (Figure 
27) and light or electrical energy for reducing iron oxide nanoparticles to generate reactive iron 
nanoparticles for hydrogen generation.50  

It will be increasingly important to be able to use electrochemical potential and electrochemically driven 
gradients in chemical potential, locally at interfaces and spatially in reactors, to manipulate the reaction 
coordinate or control the selectivity and efficiency in chemical transformations. The molecular basis for 
the overpotential in potential-driven chemical transformation remains highly obscure, but it is 
foundational to the sustainability of electrochemical production and refining of chemical feedstocks used 
in cement, steel, alloys, magnets, ceramics, polymers, and batteries. Likewise, it remains a challenge to 
differentiate the chemical basis for reactivity from deactivation in a catalytic process implementing 
several energetic inputs. This indicates an imminent need to develop more advanced in situ, operando, 
and multi-modal characterization capabilities to connect the scales (i.e., energy and space) and to more 
effectively characterize transient processes at catalytic sites in a time-resolved manner with chemical 
specificity. There is also a critical need for new theoretical frameworks and atomistic simulations from 
first principles to map reaction coordinates under realistic reactive environments when mediated by 
catalysts, particularly for light- and voltage-driven processes, as well as in energetically coupled systems. 

To accelerate the discovery and development of novel and more sustainable manufacturing 
methodologies, it will be necessary to seamlessly integrate data analytics across workflows. The aim will 
be to understand the basis by which catalyst systems realize their activity, selectivity, stability, or  
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durability in a process with 
different feedstocks or energy 
inputs, and how such 
characteristics in turn influence 
the energy, carbon, and water 
intensity of the process. This will 
require the development of new 
ML algorithms that are physics-, 
chemistry-, materials-, and 
process-aware so that 
comprehensive assessments of 
both successful and failed 
experiments quickly lead to new 
discoveries and new knowledge. 
The parallel development of 
custom-purposed instrumentation, 
capabilities, and data management 
for automated experimentation 
will reduce the time, and in some 
cases cost, necessary to elucidate 
the design rules for new catalytic 
processes and manufacturing 
methodologies. If paired 
successfully, combined 
approaches could lead to 
fundamental knowledge for 
connecting the scales in 
sustainable manufacturing and to 
highly adept artificial intelligence 
regarding how to direct electrified 
manufacturing processes in 
response to specific inputs. 

Thrust 2. Minimize entropic 
losses to enable circular 
manufacturing systems 
Next-generation materials and 
methodologies that allow for 

precise and energy-efficient reconfigurations of chemical bonds, as well as reversible stimulated 
deconstructive transformations, are essential for realizing circularity in manufacturing systems. In the 
absence of such innovations, recycling invariably will lead to significant quantities of waste and will 
possibly exacerbate the consumption of resources and energy to cope with entropic losses in the process. 
Achieving circularity by closing the loop in manufacturing, demanufacturing, and remanufacturing can 
prevent raw materials from reaching criticality.  

Basic energy research in resource circularity will advance by managing complexity across scales and in 
recycling processes in endeavoring to recover constituent resources in sufficient purity for recirculation. For 
polymers, this will include the development of innovative polymer chemistries for quantitative scrap 
recovery, as well as new chemical or catalytic depolymerization methodologies to transform synthetic or 
natural polymers back to re-polymerizable monomers with low intensity. Reaction coordinates for polymer  

 
Figure 27. Overcoming transport limitations in electrochemical 
ammonia synthesis under non-aqueous conditions with near-unity 
Faradaic efficiency using tailored gas diffusion electrodes (GDEs). 
(a) A hydrophobic GDE with an aqueous electrolyte, where well-
defined gas–liquid contacting exists. (b) A hydrophobic GDE with a 
non-aqueous electrolyte, where considerable wetting of the carbon 
fibers occurs, effectively flooding the catalyst. (c) A catalyst-coated 
steel cloth is shown. A lack of substantial capillary action and the 
presence of a non-zero pressure (P) gradient across the cloth 
prevent complete catalyst flooding. (d) Proton donor cycling is 
shown in a cell with a proton-producing anode. Source: Reprinted 
by permission from Nature Publishing Group: Nat. Catal., Non-
aqueous gas diffusion electrodes for rapid ammonia synthesis from 
nitrogen and water-splitting-derived hydrogen, N. Lazouski et al. 3, 
463–469, 2020.  

https://www.nature.com/articles/s41929-020-0455-8
https://www.nature.com/articles/s41929-020-0455-8
https://www.nature.com/articles/s41929-020-0455-8
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deconstruction may be driven thermally, mechanically, photochemically, or electrochemically, or by using a 
combination of inputs and catalysts that are tolerant to common additives and acquired impurities. For metals, 
it will be important to lay new foundations by which alloys and other inorganic materials may be 
deconstructed to remanufacturable building blocks, e.g., using new extractive or electrorefining 
methods.51 The science of combining reactions and separations for efficient deconstruction and resource 
recovery in circular manufacturing 
systems is presently underdeveloped; it 
could provide new opportunities for 
managing complexity by controlling 
bond reconfiguration and molecular 
separation events. Further inroads to 
resource circularity may be made 
through the development of new 
materials with useful properties, and 
through reduced complexity to 
minimize entropy losses in resource 
recovery from additives or other 
components added to products. 
Advances in data analytics and 
machine learning will be critical to 
accelerating the co-development of 
materials and processes with molecular 
precision by fully elucidating the 
interdependence of variables as they 
relate to entropy losses within the 
closed-loop product life cycle. By 
analogy to the Carnot cycle, this 
fundamental yet molecular-level 
understanding of entropy in circular 
manufacturing systems is foundational 
to future successes in the sustainability 
of resource recovery for reuse. 

Advances in circularity are likely to 
be in step with future manufacturing 
practices, which are making the shift 
to digital processes.52,53 Catalyzing 
this shift has been AM and 3D 
printing, which enables rapid 
production on any scale of nearly 
finished parts entirely from digital 
information. For parts printed from 
polymers or metals, a burgeoning 
group of layer-by-layer and extrusion 
processes are being developed 
alongside printable material 
formulations that are overwhelmingly 
not recyclable. For polymers and 
composites, it is also possible to print 
parts using digital light manufacturing 
(Figure 28).54–57 To ensure the future 

 
Figure 28. Scheme of a 3D printed part emerging from the HARP 
3D printer. (a) A hard, machinable polyurethane acrylate part 
with a hole drilled against the print direction. Traditional 
noncontinuous layer-by-layer printing techniques typically 
delaminate and fracture when drilled in this orientation. (b) A 
post-treated silicon carbide ceramic printed lattice stands up to 
a propane torch (~2000 °C). (c–d) A printed butadiene rubber 
structure in a relaxed state (c) and under tension (d). (e) 
Polybutadiene rubber returns to expanded lattice after 
compression. (f) A ~1.2-m hard polyurethane acrylate lattice 
printed in less than 3 h. Scale bars, 1 cm. Source: From D.A. 
Walker et al. Science 366, 6463, 360–364, 2019. Reprinted with 
permission from AAAS. 

https://science.sciencemag.org/content/366/6463/360
https://science.sciencemag.org/content/366/6463/360
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sustainability of AM,58 the molecular design of printable materials for AM must be revisited to unlock 
circularity. Lossless recovery of the embodied resources will require the development of new materials 
and chemistries for precise control over transformation, transfiguration, and reversibility of chemical 
bonds from printing to use to recycling. Innovative technologies also could emerge from the design of 
new chemistries for both metal alloys and polymers that are resilient to contamination/material mixing 
during end-of-life processing; development of processes that are resilient to suboptimal chemistries in 
heterogeneous waste streams; and novel low-energy, high-throughput multiphase separation techniques 
that can, for example, prevent liquid copper from wetting steel scrap,59 remove trace iron from aluminum 
melts,60 or selectively and sequentially recycle polymers from mixed-polymer waste streams.61–64 

Thrust 3. Design adaptive methodologies to exploit unconventional, renewable, and 
recycled feedstocks in manufacturing 
Transformative breakthroughs in sustainable manufacturing of chemicals and materials could arise from 
disruptive technologies that make use of unconventional feedstocks that are either recycled from products 
at end-of-life, bio-sourced, considered waste, or even the byproducts of combustion. Understanding how 
to utilize such feedstocks effectively and efficiently in manufacturing is particularly challenging because 
of their unpredictable heterogeneity, which is typically not accommodated using current manufacturing 
methodologies. Developing future manufacturing processes that are tolerant of and even adaptive to 
feedstock heterogeneity during production is therefore critical to sustainable and resilient production, and 
it may lower water use as well as the carbon and energy footprint of the process by obviating the need for 
extensive feedstock refinement (Figure 29). 

 
Figure 29. Adaptive manufacturing that incorporates inputs with strong fluctuations and 
heterogeneity will require innovative chemical processing. Source: Image provided by Pacific 
Northwest National Laboratory. 
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The design of new manufacturing methodologies that are adaptive to feedstock source and heterogeneity 
may take advantage of a variety of energetic inputs or catalysts to direct chemical transformations 
efficiently, either selectively or specifically. For processes employing a catalyst, tailoring active sites 
alongside the reactive environment using site-isolation or catalyst confinement in a selectively permeable 
matrix may unlock new mechanisms for addressing feedstock heterogeneity or variability between 
production runs. Selectivity may be further influenced by chemical or electrochemical potential on 
(photo)electrodes, which can be modulated in real time to redirect reaction coordinates to a desired 
outcome.65,66 To understand how such catalyst systems respond to changing operating conditions, energy 
inputs, and feedstock heterogeneity, it is necessary to advance computation and modeling to unravel the 
complexity of variables dictating selectivity, yield, stability, and turnover rate. It also may be beneficial to 
combine cooperative catalysts in responsive and adaptive networks to actively manage feedstock 
heterogeneity in situ, e.g., by transforming reactive contaminants in an input stream to chemically inert 
species. Catalysts and networks also could be put to work for circular manufacturing systems, in which 
new methodologies are needed to create purified metal and polymer/monomer streams that can be 
processed similarly to virgin resources.  

Both the heterogeneity of the feedstock and the likelihood (if not necessity) of smaller-scale distributed 
processing plants require the development of new fundamental knowledge in adaptive manufacturing that 
is not currently available. Specifically, the molecular basis for achieving high thermodynamic efficiency 
and high selectivity at ambient conditions is poorly understood but is of critical importance at small scale. 
Reactor designs that afford process intensification through enhanced transport or reactive separations may 
be needed for atom and energy efficiency. Directing primary energy and chemical conversion processes at 
interfaces to exploit areal kinetics, rather than volumetric kinetics, also may be needed, e.g., in membrane 
reactors, electrocatalytic reactor systems, and micro- and meso-channel reactor designs in which rates of 
mass transfer and heat transfer can greatly exceed those typically exhibited by the volumetric reaction 
systems in use today. Processes using unconventional feedstocks, particular waste or complex recyclates, 
may be run in condensed multiphase systems in which a greater understanding of the underlying 
thermodynamics, solvent effects, transport, and kinetics for condensed phase transformations is needed; 
the theory of condensed phase reactions and processes lags theory for gas–solid systems. Catalyst 
deactivation mechanisms also differ considerably in the condensed phase. For processes that will be run 
in gas–solid phases—including processes using H2, H2O, O2, CH4, CO, CO2, N2, NH3—fluctuations in 
input remain a challenge that can be addressed in adaptive manufacturing systems. To enable robust 
manufacturing systems that exploit unconventional, renewable, and recycled feedstocks alongside 
responsive catalysts and networks in tailored reactor designs, novel sensors and data science will be 
needed that enable rapid adaptive control, both feed-forward and feed-back, to contend with the 
fluctuating feeds.  

Science And Technology Impacts 
Globally, GHG emissions attributed to chemical and petrochemical processes currently amount to ~1.24 
Gt of CO2 equivalents annually.7 Discoveries aimed at lowering the intensity of their production through 
electrification and other means would substantially improve the sustainability of manufacturing systems 
on a global scale. To cope with fluctuating resources for energy, raw materials, or other resources, future 
manufacturing facilities that are distributed and smaller in scale may be advantageous and more 
sustainable. The transition to distributed production could lower both operating and capital costs, as well 
as promote resilience to changes in feedstock composition or grade, changes or seasonality in market 
demands, and unavoidable shutdowns due to natural disasters or pandemics. Exploiting the potential 
benefits of forced variable or periodic operation in distributed chemical and materials production requires 
breakthroughs that can be achieved only through basic science, as the impacts of the various driving 
forces on reaction pathways and the kinetics of the transformations remain poorly understood.  
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A convergence of basic energy research needs in both materials and recycling processes is needed to 
address outstanding challenges in manufacturing circularity, given the complexity of manufactured 
products, the unpredictability of waste streams undergoing reprocessing for reuse, and the desire to 
increase the recycled content of manufactured products to lower GHG emissions. Circularity in 
manufacturing systems also improves their sustainability by reducing supply chain interdependencies and 
prioritizing recycling strategies for recovering embodied resources in specific forms. If entropic losses are 
minimized in such processes, so in turn are the energy and environmental costs, increasing the likelihood 
that end-of-life products will be collected and processed for recirculation. Compared with business-as-
usual, a circular economy of polymers has the potential to reduce the annual volume of polymer waste 
entering our oceans, reduce GHG emissions and overall energy requirements, and reduce virgin plastic 
production.67 Similar gains have been demonstrated or are anticipated for circularity in metals for steel, 
aluminum, lead, zinc, noble metals, alloys, rare earths, and feedstocks for building materials, batteries, 
photovoltaics, fuel cells, electrolyzers, and other energy-converting and storage devices.27–29,37–41 

Realizing the technology impact of reinventing sustainable manufacturing will enhance computation, 
materials, and chemistry understanding. Making strides in the new multiphysics models coupled to in situ 
characterization capabilities, data analytics, and theory that accurately describe multiphase reactions 
under potential will provide powerful cross-cutting science yielding insights into kinetics and transport 
phenomena across scales. New materials for catalyst supports, electrodes, membranes, and materials 
enabling reactive separations will be realized for production, including refining feedstocks from 
recyclates for reuse. Additional synergies are expected as new design principles are developed for next-
generation hard and soft materials that are intrinsically more circular. As tools and methods emerge for 
predicting how operating conditions and catalysts must adapt to varying inputs, for understanding how 
reactive steps couple to form cascades of reactions, for deconstructing complex materials, and for 
coupling reactions and manufacturing processes to produce new materials, new science will also emerge 
that will be transformative.  
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PRD 5: Co-Design Materials, Processes, and Products to Revolutionize 
Manufacturing  

Summary 
Early-stage experimental and computational research often begins with a homogenized material or 
chemical property that is important for a given application, such as high stiffness, high conductivity, or 
high reaction selectivity. This property is then explored using a variety of constituents or configurations, 
usually at a single length scale, to establish processing protocols that achieve the desired values of the 
target property. The resulting material or process is then considered for use in a specific component in a 
system that collectively has the functionality needed for a targeted application. As a result, fundamental 
chemical and materials research is usually a sequential process viewed through a lens of one or two 
objectives at each scale, with little attention paid to potential coupling between scales, objectives, or 
components. A powerful alternative to this sequential approach is co-design, in which information sets 
from multiple phases of research and development are used in an integrated way. The core premise of this 
PRD is that a rich set of basic science challenges exist that, if addressed, will allow co-design to 
powerfully improve the materials, processes, and products in many manufacturing settings.  

In end-use environments, however, a system is almost always a complex set of interacting components 
that are combined to create a product or device. In this setting, the behavior of one component often has 
many impacts on other components and ultimately on the entire system. The overall behavior of a system 
developed in a sequential manner is frequently impacted by unanticipated consequences arising from a 
lack of understanding at the interfaces or interconnections between components. Because of the 
complexity of multiscale and multidisciplinary systems, practical manufacturing processes are often 
empirically optimized without a fundamental science basis. This situation strongly limits capabilities to 
adapt processes or materials to situations outside the immediate envelope in which they have been 
developed. 

The descriptions above highlight the critical challenges of finding science-based approaches to integrate 
multiscale/multiphysics knowledge, including emergent behaviors among interacting system components, 
to enable informed decisions regarding materials selection and creation. Figure 30 depicts an example 
situation in which insights are beginning to be obtained into the role of phase change and defects in 
complex nano- and micro-scale material structures, and their impacts on properties and performance for 
additive manufacturing (AM) with metals. Similar descriptions also can be given in many chemical and 
physical settings. Tools are needed to overcome the nonintuitive nature of manufacturing design that 
involves nonlinear interactions and discontinuities. There is also increasing emphasis on the system’s life-
cycle behavior through concepts such as maintainability, durability, and resilience. Approaches are 
needed to account for these long-term behaviors and to connect them with fundamental insights into 
synthesis and processing strategies. Strengthening the connections between science-based development of 
system components and multi-objective performance characteristics, such as resilience, will create 
significant opportunities for agile design and manufacturing.  

There is a need to develop fundamental science approaches that enable co-design of molecules and 
material(s) and/or system(s) involving multiple and competing objectives and trade-offs between many 
aspects of a system’s full lifetime performance goals. Several recent mathematical and scientific 
developments provide a foundation for tackling this co-design challenge. Mathematical optimization and 
artificial intelligence offer a plethora of systematic methods to explore high-dimensional nonlinear design 
spaces with multiple objectives. The introduction of exascale computing can provide the necessary 
computing power to explore design and processing options in ways that previously were unattainable. 
Machine learning and uncertainty quantification also will be vital tools in efficiently exploring high-
dimensional multiphysics models. These developments, however, will require concomitant advances in 
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knowledge of the fundamental mechanisms that ultimately control the performance of individual 
materials and assemblies of components, and advanced tools and methodologies to reliably measure 
markers of these mechanisms on a wide range of length and time scales. 

Figure 30. Tight relationship among process-structure-property-performance of a metal-based system for 
additive manufacturing. Source: Reprinted with permission from R.A. Roach et al., Using additive 
manufacturing as a pathway to change the qualification paradigm, presented at International Solid 
Freeform Fabrication Symposium, Austin, TX, August 13–15, 2018. 

This PRD seeks to address key questions that include these: How can bottom-up scientific discovery be 
combined with top-down system-focused design to identify new and efficient manufacturing modalities? 
What new approaches will allow the control of matter in the presence of impurities and/or 
nonequilibrium states? How can science enable multiple performance objectives to be achieved 
simultaneously for complex, multicomponent processes? 

Scientific Challenges  
To address these key questions, a number of scientific challenges must be overcome. 

The first challenge includes the need for new, fundamental insights into phase changes, defects, 
impurities, complex compositions, and nonequilibrium character in processing and their impacts on the 
performance of the top-level system needs. As materials, molecules, or processes move from discovery to 
application and manufacturing, multiple complicating factors tend to arise that risk becoming 
“showstoppers.”1 Examples of these factors include impacts of defects or trace impurities, particularly in 
multi-component or nonequilibrium materials, and long–time scale processes such as aging. A key aspect 
of basic science approaches for co-design is to both understand and predict these influential factors at the 
systems level. Doing so could lead to new strategies for control over the behavior of materials and 
systems, e.g., creating metastable states with unique properties. This challenge is especially important in 
efforts to develop products that are characterized not by individual physical properties (e.g., high thermal 
conductivity) but by broader goals of manufacturability, systems-level performance needs, and life cycle 
requirements. Fundamental insights into these complex characteristics are likely to lead to unexpected 
discoveries of excellent performance through simultaneous manipulation of multiple structure-
composition-processing parameters.  

Additionally, approaches are needed to integrate uncertainties associated with interacting components 
across multiple length scales, “from beaker to barrel” and “from atoms to attributes,” to quantify robust 
co-design. Although multiscale approaches have been a mainstay of basic research for many years, the 

https://www.osti.gov/servlets/purl/1532627
https://www.osti.gov/servlets/purl/1532627


 

69 

enormous diversity of scales that are relevant in manufacturing settings is daunting. The concepts of 
uncertainty and robustness in developing new systems are closely related. It may often be preferable to 
develop a system that is more robust against variations in manufacturing conditions or operating 
environments, rather than one that nominally has higher performance but requires far tighter bounds. 
There is a great need for systematic approaches that can translate information about uncertainties and 
robustness in a predictive manner, from short time and length scales that are accessible with high fidelity 
across orders of magnitude, to the longer and larger scales relevant in manufacturing. This task goes far 
beyond simply propagating experimental uncertainties toward quantitative, scientific measures of 
systems-level behavior and the relevant contribution from each interacting component or process choice. 
Enormous opportunities exist not only in the development of new products but also in new manufacturing 
processes. Fundamental developments in processes can lead to dramatic shifts in manufacturing.2 

It is important to acknowledge that new manufacturing technologies require research and development to 
control and manage the uncertainties in their end products. Research on this topic involves experimental 
measurements and large simulations, which result in huge quantities of data to store and analyze. This 
challenge needs to be addressed by alleviating data storage requirements via continuously developing 
accessible data compression methodologies and efficient data sharing protocols and platforms.3 
Furthermore, there is a need for real-time control and error-correction methods over multiple length and 
time scales through analysis of these data at the speed of manufacturing processes, as discussed in PRD 2.  

A third scientific challenge is achieving bottom-up design across many time and length scales or systems-
focused co-design from system scales to achieve inherently resilient systems. The aspects of a system that 
make it resilient differ among manufacturing sectors; but in every sector, resilience is an overarching 
factor in successful systems. In today’s world, resilience is often sought or added at later stages in a 
research path. There are opportunities for creative research, however, to develop broad approaches that 
make chemicals or materials inherently resilient. These approaches could include bottom-up design in 
which resilient properties cascade from small to larger scales or emerge naturally at larger scales. Finding 
active techniques to express the needs on small scales, via descriptions of system-scale properties by 
system-focused design, also would reap huge benefits. Resilience can be a property of manufactured 
products, but it is also an important goal in manufacturing processes. The notion of resilient processes is 
very important, for example, in chemicals processing, where feedstocks can include enormous numbers of 
components with composition that varies over short and long periods of time.4 

Another challenge includes exploiting strong feedback between experimental data and modeling in high-
dimensional domains to achieve co-design of multifunctional systems, including information from both 
successful and “failed” experiments. Iterative interactions between modeling and experiment are already 
commonplace. The prevalence of “big data” tools has great potential in co-design of systems, but an 
Edisonian application of these methods is unlikely to lead to significant breakthroughs. When considered 
on the full spectrum of relevant length and time scales, multifunctional systems are characterized by high-
dimensional domains in which data are sparse and often highly uncertain. Important challenges exist in 
developing approaches to this class of problems that make appropriate use of (multi)physics-based 
models or constraints and that recognize the resource costs associated with various kinds of experiments. 
At the same time, techniques allowing strong coupling and feedback among experimental data—including 
data obtained from diverse sources—and computationally driven search methods are greatly needed to 
explore the co-design space and to identify high-value experiments or data gaps. Examples of an approach 
like this for materials and molecular discovery are shown in Figure 31 and Figure 32, respectively.  
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Figure 31. (a) The adaptive design loop where the key challenge is to minimize the number of iterations it 
takes to discover a new material with desired properties by finding a reliable surrogate to the true unknown 
function f(x). Existing work on materials design is largely based on following one or two of the green arrows. 
The approach introduces the adaptive experimental design step that uses uncertainties, e(x), to balance 
the trade-off between exploration and exploitation in suggesting the next experiment or calculation to be 
performed. (b) The loop in practice, where EGO (efficient global optimization), KG (knowledge gradient), 
and MOCU (mean objective cost of uncertainty) are acquisition functions or selectors that choose the next 
optimal experiment or calculation. Source: T. Lookman et al., Curr. Opin. Solid State Mater. Sci. 21(3), 121–
128, 2017. 
 

 
Figure 32. Components-to-systems loop is closed by data-driven hypothesis generation in DOE’s Liquid 
Sunlight Alliance Hub. Source: Used by permission from the Liquid Sunlight Alliance (LiSA) and LiSA/Caltech,  
liquidsunlightalliance.org/co-design. 
Finally, this PRD challenges the scientific community to use co-design to generate materials and systems 
with superlative performance properties. Innovative combinations of knowledge from multiple stages in 
the development of manufacturing processes could unlock examples of outstanding performance that 

https://www.sciencedirect.com/science/article/abs/pii/S1359028616301528?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S1359028616301528?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S1359028616301528?via%3Dihub
https://www.liquidsunlightalliance.org/co-design
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cannot be anticipated by more sequential approaches. Broadening even further, a co-design approach 
brings with it the grand challenge to simultaneously consider manufacturability, performance, reliability, 
resiliency, and sustainability, which are at the heart of all the PRDs combined.  

Research Thrusts 
Thrust 1. Achieve knowledge discovery of structure-performance-process relationships 
across many length and time scales to expand options for co-design. 
By their very nature, systems are assembled from multiple components, which may in turn contain 
individual chemicals and materials or, more commonly, complex mixtures of constituents. To allow the 
broadest range of possibilities for co-design, it is vital that knowledge of performance relationships for 
each component overlie the conditions used to manufacture or operate other components. Many examples 
exist in which simplified metrics used to screen materials for particular uses are found to give at best 
partial information when insights from more detailed process-level descriptions are used.5 Structure-
performance-process relationships have long been a goal of chemical and materials science, but the scope 
at which these relationships are examined needs to expand dramatically to fully realize systems co-design. 
Research progress is needed to reliably extend the structure-process relationships available with current 
methods to far broader ranges of operating environments, and to allow active interactions with other 
materials classes and components without simply sampling the vast search space defined by these 
conditions.  

Thrust 2. Realize multiscale co-design approaches for desired behaviors and decision-
making at systems scales. 
Co-design is often thought of as a staged process in which information flows from “smaller” to “larger” 
scales. In this environment, it is not necessary to achieve a perfect outcome at each scale before 
proceeding. Instead, a key goal is to make more reliable decisions about options at the next scale. 
Developing science-driven ways to allow system-focused design, in which desired properties from the 
system scale drive exploratory work at smaller scales, has immense potential. Success in this domain 
cannot arise simply from formal methods. Rather, creative efforts to incorporate learnings from broad 
classes of materials or examples of interacting components must inform co-design strategies. It is likely 
that success in these endeavors will emerge initially from focused case studies that combine investigators 
with diverse expertise.  

Although the concept of system-focused co-design has many facets, a particularly challenging area is 
nonequilibrium processes. If fundamental principles can be used to better understand these processes from 
the viewpoint of chemical and materials synthesis, it will be possible to exploit the emergent phenomena 
from these studies in a manufacturing context. Advances in this area will create the integrated modeling 
and prediction necessary for advanced materials synthesis and device-level operation in many kinds of 
materials, including but not limited to metals and ceramics.6 

Thrust 3. Elucidate formation pathways of matter in equilibrium and nonequilibrium 
states, including the impacts of defects, impurities, multiple length scales, complex 
processes, and rates to identify influences on systems performance. 
Complex assemblies of molecules and materials in multifunctional systems can vary over the multiple 
time scales associated with manufacturing steps, and over the much longer time scales associated with 
their life cycles. In both cases, many opportunities exist to describe the pathways associated with the 
formation and evolution of matter at fundamental levels. In many instances, crucial system-scale impacts 
arise from highly localized events, such as the deliberate or unavoidable incorporation of defects or 
interactions with trace contaminants. Preparing matter in nonequilibrium states is a powerful tool for 
creating design options, but these kinds of materials are subject to evolution on multiple time and length 
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scales. Mechanistic insights that go beyond observational records for nonequilibrium states would have 
great value. It is perhaps tempting to view aging and degradation as engineering challenges to work 
around; but if phenomena of this type are understood fundamentally, then it will be possible to mitigate 
these challenges in powerful ways during co-design. Mechanistic studies of these processes can also open 
up previously unanticipated avenues for producing new properties.7  

Thrust 4. Impart tunability, durability, and resilience by understanding uncertainty 
associated with interacting components in multi-material, multifunctional assemblies 
and processes. 
Tunability, durability, and resilience are indirect properties that are far harder to quantify than directly 
observable characteristics such as electrical conductivity. Many open questions exist in quantifying how 
properties directly measurable at the small scales typically accessed in basic research can be used to 
predict and ultimately control these indirect properties at the systems level. A core challenge in this area 
is to understand what kinds of uncertainties can arise at each scale and how these can be manifested at 
large scales in more complex assemblies. In this context, it is important to note that, at a manufacturing 
level, it can be just as critical to control the distribution of properties in a system as it is to maximize the 
performance of the “best” possible individual outcome.8,9 Research opportunities exist in using diverse 
sources of experimental and modeling data to meaningfully predict the distribution of performance 
expected in systems operated under conditions outside those for which direct tests are possible. One 
avenue for this research will be to use fundamental insights to place empirical ideas in accelerated testing 
on a firmer footing that can reduce the overall time required to test complex systems.  

Science and Technology Impacts 
The primary outcome of this PRD will be science-based tools for design, scalability, and manufacturing 
of complex systems where the level of system complexity is far beyond human intuition. Current 
empirical and experience-based design and optimization for one or two objectives or functionalities 
cannot account for nonlinear coupling among multiple components, emergent behavior across the scales, 
or the significance of uncertainties in the overall system behavior. Historically, the design evolution of 
complex systems typically required decades to achieve energy-efficient and widely deployable systems. 
Fundamental principles and science-based tools for co-design will have an immediate effect on the 
development of energy-efficient systems that are inherently resilient and durable. An example is shown in 
the sidebar “Improvement in Water Desalination.” Top-down co-design approaches will reveal new 
fundamental questions about interactions among components in complex systems; and mechanistically 
grounded tools will provide agility, allowing rapid response to changing needs in manufacturing. These 
approaches will also provide opportunities to lean in to complexity, thus achieving energy and time 
efficiencies in the development of new chemical- and materials-based technologies. An example of what 
is possible is shown in the sidebar “Designing Complex Materials.” 

Advanced modeling tools will be vital to harnessing the complexity of transformative manufacturing. 
Modeling across the many relevant scales will enable a fundamental understanding of materials design 
and formation, allowing successful design of reliable materials for transformative manufacturing. First 
principles modeling will be enabled by extension to broader scales (via, for example, ab initio molecular 
dynamics) to model real-world systems, including contaminants, co-solvents, and so on.10 Information 
from modeling, especially as made possible using exascale computing resources, will enable system-wide 
quantification of manufacturing uncertainty. Advanced computational methods development will be 
needed for this focus, and BES computational user facilities will play a critical role in adapting these 
methods to more complex, real-world condition predictive modeling. 
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Sidebar: Improvements in Water Desalination through a Co-Design Approach 
The energy efficiency of membranes for 
water desalination, relative to 
alternative strategies such as distillation, 
have led to membranes dominating 
worldwide desalination installations. 
One simple metric that quantifies the 
performance of a membrane is its 
permeability. Higher permeability 
means higher throughput, and this 
observation underlies the fact that 
increasing membrane permeability is 
often a central research goal in this 
field. Process-level models, however, 
have shown that increasing 
permeability above levels that are 
already commercially feasible has at 
best a small impact on the energy use 
or capital cost for water desalination.11 
These models indicate that more 
impact can be gained by focusing on 
developing more selective membranes, 
even though existing membranes 
already reject well over 99% of salt 
under typical conditions. This is one of 
many examples of how careful 
consideration of process modeling can 
allow fundamental research to focus on 
performance metrics that will have the 
greatest long-term impact, especially 
when those metrics are not intuitively 
obvious. 

Scanning electron microscopy (SEM) images of 
membranes formed from phase inversion. Upper left: 
a cross-section of an asymmetric ultrafiltration (UF) 
membrane with finger-like macrovoids cast from 9% 
polysulfone (PSf) in dimethylformamide (DMF). Upper 
right: a cross-section of an asymmetric UF membrane 
with a sponge-like structure cast from 12% PSf in DMF. 
Lower left: a top view of a hand-cast PSf UF 
membrane. Lower right: a top view of a commercial 
0.22 μm nominal pore size polyvinylidene fluoride 
microfiltration membrane. Source: Reprinted with 
permission by Nature Publishing Group: Nat. Rev. 
Mater., J.R. Werber et al. Materials for next-
generation desalination and water purification 
membranes, 1, 16018, 2016. 

https://www.nature.com/articles/natrevmats201618?WT.feed_name=subjects_environmental-sciences
https://www.nature.com/articles/natrevmats201618?WT.feed_name=subjects_environmental-sciences
https://www.nature.com/articles/natrevmats201618?WT.feed_name=subjects_environmental-sciences
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Sidebar: Designing Complex Materials by Combining Understanding 
of Material Properties, Processing, and Assembly 

Transformative 
manufacturing will 
require a holistic 
approach to 
materials, processes, 
and production 
designs. Cutting 
edge integration of 
optimization tools 
and additive 
manufacturing processes with holistic system-focused design paradigms will enable the 
concurrent optimization of design topologies, material constructs, and assembly methods. 
To this end, optimization design tools are experiencing a recent revival.12 Additive 
manufacturing offers unprecedented opportunities to design complex structures 
optimized for performance envelopes inaccessible under conventional manufacturing 
constraints. It can also promote the realization of engineered materials with 
microstructures and properties that are impossible via traditional synthesis techniques. 

Control of grain texture in AM Inconel 718 via electron-beam melting. 
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4. Panel Reports

The Basic Research Needs Workshop for Transformative Manufacturing was structured around six 
panels, including a panel focused on crosscutting themes.  

Panel 1: Precision Synthesis Science  

Panel 2: Processing and Scale-up Science  

Panel 3: Systems Integration Science  

Panel 4: Sustainable Manufacturing  

Panel 5: Digital Manufacturing 

Panel 6: Crosscutting Topics  

The panel reports formed the basis for identifying the five PRDs described in Chapter 2. 
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Panel 1: Precision Synthesis Science 

Introduction 
Precision synthesis of materials through deposition, assembly, or processing leading to deterministic 
organization from the atomic to the macroscopic scale—particularly when driven by information content 
built into the basic constituents—is the ne plus ultra of materials science. Because phenomena like 
electron conduction, spin coherence, photon adsorption, charge separation, and phonon transport are 
intimately connected to material architecture from the atomic to the mesoscale—including the 
arrangement of defects and interfaces—a science of precision synthesis will deliver unprecedented 
chemical, thermal, optical, electrical, magnetic, and mechanical functions. Recent advances in chemical 
methods are enabling the atomic precision so prized in molecules to be translated to the synthesis and 
assembly of larger, more complex organic, inorganic and hybrid materials. When combined with recent 
advances in high-performance computing—both for simulating synthetic processes through physics-based 
models and for applying machine learning (ML) and artificial intelligence (AI) to predicting structure-
function and synthesis-structure relationships—the possibility of precision synthesis across scales lies 
within our grasp, provided fundamental challenges in controlling and scaling synthetic processes can be 
overcome. This panel explored the current status of and challenges and opportunities associated with 
experimental, computational, and combined experimental-computational approaches in precision 
synthesis science. The findings are broadly grouped into two themes: 

• Advancing Autonomous Synthesis and Processing for Materials Manufacturing

• Achieving Materials with Designed Functions and Structures Via Atomically and Molecularly Precise
Synthesis and Processing to Transform Manufacturing

In both cases, the panel’s focus was guided by the recognition that the intersection of precision synthesis 
science with transformative manufacturing places an emphasis on concepts of scale-up, high-throughput 
processes, feedback through real time in situ diagnostics and analyses, and materials systems and 
integration across scales. 

Current Status and Recent Advances  
Theme 1. Advance autonomous synthesis and processing for materials manufacturing 
1. Exploit advances in physics-based models, theory, and computation for ML/AI-constrained synthesis

and processing

A grand challenge for synthesis and processing would be to predict and make, with atomic-scale 
precision, a given material or molecule with a prespecified function. Recent advances in physics-based 
models, theory, and computation through ML/AI-constrained synthesis and processing have brought us 
closer to this goal and created several future research opportunities. Automated high-throughput ab initio 
calculations have rapidly facilitated rapid materials synthesis and discovery of a number of new 
functional materials.1–5 A predictive “grand unified theory of materials and chemical synthesis” for 
synthesis and processing does not exist; but a combination of automation and interpretable ML techniques 
to create AI-driven synthesis-driven platforms has the potential to considerably advance existing brute-
force serial and combinatorial screening approaches, provided enough data are available for the models. 
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2. Develop high-throughput synthesis, processing, and characterization techniques  

In the past 20 years, high-throughput 
experimentation (HTE) has been used 
by the chemical industry to speed up the 
research and development process. 
Examples include the accelerated 
development of new pharmaceuticals,6 
coatings7 and thermoplastics.8,9 Large 
industrial HTE platforms typically 
include rapid synthetic and analytical 
workflows enabled by fully integrated 
automation and database software. 
Methods such as design of experiments 
are often implemented to cover a 
broader swath of variable space. More 
recently, ultraminiaturization has been 
applied to increase throughput and 
decrease costs.10 Advances in flow 
chemistry have been paired with HTE 
for use in ultraminiaturization and to 
permit real-time adjustment of reaction 
parameters.11 Moving forward, as 
shown in Figure 33, the integration of 
computational chemistry and AI with HTE and automation offers the promise of truly integrated and 
autonomous research platform.12–14 These advances are very recent and have only been applied at the 
proof-of-concept level; but, when combined with large integrated HTE workflows, they may ultimately 
provide a very powerful toolkit for industrial research and development. 

3. Identify structure and function signatures for real-time, autonomous manufacturing 

Automated synthesis with real-time feedback control was identified as a stretch goal. Arguably, the ability 
to apply that level of “smart” automation to synthesis and processing in manufacturing is an even more 
ambitious target. Requirements would include a deep understanding of correlations between each step of 
the synthesis or processing step and a resulting outcome for the product in terms of manufacturing-
relevant elements of structure or function. Establishing that knowledge could be aided by developing 
physics (chemistry)-based theories and models, as discussed in Theme 1, item 1, which could form the 
basis for new ML/AI tools for that synthesis or processing step. Alternatively, experimental training sets 
could be used to develop the desired algorithms for synthesis control. In either case, however, real-time 
algorithm-directed control will need real-time feedback from the system to inform its next step.  

Theme 2. Achieve materials with designed functions and structures via atomically and 
molecularly precise synthesis and processing to transform manufacturing  
1. Develop new scalable synthetic routes to organic, inorganic, and hybrid materials  

Chemists have long sought to develop methods and strategies to synthesize materials with precise 
structures. Much progress has been made in the precision syntheses of, for example, polymers,15–17 
nanomaterials,18 and composites,19 including extending control over composition and phase to achieve 
exquisite manipulation of dimensionality (0D, 1D, 2D), surface and interface properties, and other 
characteristics.20,21 However, challenges remain in maintaining the same level of precision when these 

 
Figure 33. Autonomous mobile robot and experimental 
stations. Source: Reprinted with permission by Nature 
Publishing Group: Nature, A mobile robotic chemist, B. Burger 
et al. 583, 237–241, 2020.  

https://www.nature.com/articles/s41586-020-2442-2?utm_campaign=The%20Batch&utm_source=hs_email&utm_medium=email&_hsenc=p2ANqtz-88EY8DHzeTG1phP4jDGzFuskd3ekrMAZ_5Chr9gTAMAI5aH-TVnkcpFLfvK8X5rly8JBKj
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reactions are carried out at large scale. Furthermore, “scalable” can have very different meanings 
depending on the material. For many new quantum technologies, “scalable” means deterministic 
placement, organization, or patterning at the level of atoms or molecules and transitioning from exotic 
systems to solid state materials. Of the scalable methods for synthesis of classical materials, there are a 
few stand-out techniques, such as continuous flow synthesis with or without droplet microreactors,22–24 
spray pyrolysis,25 chemical vapor deposition,26,27 scanning tunneling techniques,28 and 3D printing,29 that 
show potential. Opportunities exist to enable the large-scale synthesis of greater compositional and 
architectural complexity and precision. Quantum materials30 present a particular challenge, and new 
routes are needed for their scalable synthesis. 

2. Understand the chemical and physical forces that direct the synthesis and processing of molecules and
nanomaterials to realize targeted functions

Ideally, manufacturing of atomically and molecularly precise materials would be based on a deterministic 
understanding of the final structure and function obtained from a defined set of constituent building 
blocks, whether they consist of atoms, molecules, polymers, particles, or some combination of these 
disparate units. Moreover, the desired end state may well be nonequilibrium and require control over the 
formation pathway to end in a kinetically trapped state. Compounding the challenge in deterministic 
manufacturing of atomically and molecularly precise materials is the need to understand how co-varying 
factors associated with the manufacturing process itself, such as temperature, surface chemistry, and rate 
of reaction, impact the pathways and outcomes of synthesis and processing. Significant strides have been 
made in understanding—and thus predicting—phase diagrams for many systems of interest, such as 
colloidal arrays, block copolymer films, and epitaxial heterostructures. However, formation pathways, 
kinetically accessible nonequilibrium states, systems of disparate building blocks, and the impact of 
manufacturing processes lie beyond our current ability to predict either outcomes, pathways, or rates. A 
major challenge also lies in quantitatively accounting for the effects of surfaces and interfaces on both the 
materials processing and the resulting function. 

3. Create and translate the scientific understanding of spatial and compositional control down to atomic
scales in 0D, 1D, 2D, and 3D (and with arbitrary design) at manufacturing-relevant scales

With the push to realize atomically and molecularly precise, 0D, 1D, and 2D building blocks; understand 
their structure and function; and scale their synthesis to manufacturing scales, mastery of precise spatial 
and compositional control and subsequent organization and integration is required for a broad range of 
energy technologies. Bottom-up assembly enables the organization of nanomaterials at subnanometer-
scale resolution, often by (weak) van der Waals interactions. However, assembly techniques often yield 
architectures that are close-packed and lack the flexibility to form sparse and open architectures with the 
exquisite geometrical definition possible at larger scales by top-down methods of lithography. 
Overcoming these challenges requires fundamental understanding of the chemical and physical forces that 
are at play and that can be introduced to direct the assembly of nanomaterials.  

4. Determine structure-function relationships across multiple scales, in complex organizations, and at
interfaces

New and superior function can be derived when materials are organized across multiple scales, with 
hierarchical ordering and with interfacial complexity. Current examples are inorganic solid electrolytes 
with superionic conductivity realized using superatoms as building blocks for artificial crystals,31 catalysts 
with superior transport properties and efficiency achieved via metal organic frameworks with ordered 
macro- and micro-pores,32 superconductivity obtained in 2D layered heterostructures with precisely 
controlled inter-layer rotation,33 energy-efficient separations realized using atomically thin crystals with 
atomically precise pores (see Figure 34),34 and quantum technologies achieved by positioning multiple 
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nanomaterials in junctions and cavities.35,36 The complexities that emerge over multiple scales and at 
interfaces are often beyond human intuition, and the phase-space is too large to be explored by trial-and-
error. Accelerating discovery will require inversion of the make-then-measure mode of research. 
Knowing a priori the hierarchical structure, organization, and interfaces needed to obtain desired 
properties will be critical to increasing the rate and efficiency by which new materials can be 
manufactured and phenomena realized. 

 
Figure 34. The images provide an example of how new and superior function can be achieved when 
materials are organized across multiple scales, with hierarchical order, and with interfacial complexity. 
Materials with remarkable fluid and chemical transport properties have been designed and created from 
2D materials building blocks only a single atom thick, with atomically precise pores, and from 2D materials 
laminates with precisely controlled interstitial spaces. Source: Reprinted from A. Boretti et al. npj Clean 
Water 1, 1–11, 2018. Licensed under a Creative Commons Attribution 4.0 International License.  

 
Basic Scientific Challenges and Opportunities  
Challenges  
Theme 1. Advance autonomous synthesis and processing for materials manufacturing  
1. Access nonequilibrium, kinetically trapped metastable materials structures and compositions  

The discovery and manufacture of complex materials and materials structures—with multiple, and often 
competing, functionalities—can require as-yet unidentified synthetic routes and processing chemistry. 
Targeted synthesis of multi-component, hierarchical, and nonequilibrium materials requires exploring and 
mastering enormous phase spaces defined by material composition and processing history; efficient 
strategies are needed to predict, explore, and navigate complex materials and processing spaces. Because 
of recent developments in automated synthesis and data collection approaches,37,38 advances in data 
repositories and platforms,39–41 and new theory and simulation approaches,42,43 physics-informed 
autonomous experimentation now has strong potential to revolutionize materials discovery, facilitating 
the study and ultimately the manufacture of ambitious classes of materials. Targeted design principles of 
system engineering will allow not only design of required building blocks but also, critically, fabrication 
pathways, as synthesis routes for many desired materials are unknown. There are now opportunities to 
create steered synthesis approaches reliant on AI/ML that provide routes to nonequilibrium materials. 
Further research in this area can deliver fundamental knowledge for future digital manufacturing 
technologies that will similarly rely on active computation and control of processing. 

https://www.nature.com/articles/s41545-018-0004-z
https://www.nature.com/articles/s41545-018-0004-z
http://creativecommons.org/licenses/by/4.0/
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2. Construct large data sets based on experiment and prediction that adequately capture kinetic and
thermodynamic parameters

Critical to autonomous synthesis approaches is the accessibility of relevant data—via rapid, on-the-fly 
acquisition or via real-time connectivity with curated databases—of sufficient quality and quantity to 
guide robotics-coupled AI approaches based on ML algorithms. Current robotic automation offers precise 
control over reaction conditions for certain classes of materials, as well as the ability to rapidly and 
systematically vary reaction parameters. Thus it can generate reliable and comprehensive data sets from 
which to discover and design atomically defined functional materials.44 Prior examples include core-shell 
nanocrystals for LED lighting,45 upconversion of nanoparticles with atomically precise placed lanthanide 
dopants for bioimaging,46 and metal-organic framework photocatalysts for chemical transformation and 
water splitting.47 Future work allowing for the statistical quantification of the total experimental space and 
for the likelihood of crystal formation would drive the synthesis of ever-more-complex atomically defined 
materials and materials structures. New automated capabilities for synthesizing multicomponent 
structures could dramatically accelerate time-consuming, multi-step synthesis workflows; and AI-guided 
synthesis could generate meaningful data for increasingly complex materials under different conditions by 
intelligent sample screening and optimization. 

3. Obtain actionable signatures for real-time analytics to support autonomous synthesis and processing

A key challenge for applying autonomous synthesis and processing in manufacturing is to identify a real-
time assessable “signature” or measurement observables associated with the desired product outcome. 
Complexity arises when the outcome is, for example, not an easily characterized structural feature, such 
as a single atomic defect, or is a multi-component and/or multi-functional product. In these cases, 
designing diagnostic-model feedback loops will require uncovering the key, detectable signature of the 
targeted outcome. Using AI-enabled autonomous synthesis to develop new syntheses or discover new 
materials is a clear science-of-synthesis challenge; but in manufacturing, the challenges lie instead in the 
areas of process control and improved efficiency minimization through reduced reagent consumption, 
waste, and/or the ability to make use of less-pure feedstocks. With the advancing robotic synthesis 
approaches, and advancing data acquisition and curation platforms, there is now the opportunity to 
develop protocols to acquire or mine relevant data to enable AI control of complex molecular or materials 
synthesis/processing relevant to manufacturing. These studies also will be in a position to map out 
relevant structure/function signatures for real-time feedback process control. Addressing critical 
questions—such as whether ML/AI-driven synthesis also could be used for faster discovery of pathways-
to-product (including precursor development) with improved efficiency and optimal yield—will help 
validate the usefulness of the autonomous synthesis and processing approaches to transform 
manufacturing.  

Theme 2. Achieve materials with designed functions and structures via atomically and 
molecularly precise synthesis and processing to transform manufacturing  
1. Design materials and products and those used in manufacturing processes for two or more materials

properties

Basic research needs in precision synthesis and in the context of manufacturing often incorporate goals 
and objectives related to fundamental understanding of how to impart two or more often orthogonal 
properties into a single material. Remarkable materials with two or more application-specific 
manufacturing-oriented properties have been developed by iterating around the chemistry of a known 
material possessing one critical property. However, this approach tends to explore and develop 
understanding of only local solutions to design problems, whereas those problems present substantially 
more complicated landscapes for which global exploration and understanding are often required. 
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Materials genome and ML approaches and related research needs highlighted elsewhere in this report will 
undoubtedly play a major role in materials design for two properties: identifying parameter spaces over 
which to effectively search, and efficient experimental design. However, knowledge gaps continue to 
exist in developing methods of high-throughput precision synthesis and characterization to use in 
conjunction with computational models and tools. 

2. Create interfaces between dissimilar materials

The combination of dissimilar materials at the atomic scale (for example, see Figure 35) offers 
opportunities for structures and devices with new function. In many applications, such as electronic, 

optoelectronic, magnetic and spintronic devices, the 
interface properties are the essential ingredients. 
Future applications may involve creating and 
controlling topological surface and edge states at 
interfaces with potential applications in topological 
quantum computation and quantum information 
systems.48 Examples include Majorana fermions49 
and other more exotic states such as parafermions.50 
The challenge in creating the interfaces with desired 
properties is controlling the interfacial bonding, 
interdiffusion, reactions, and defects. It is 
particularly difficult to predict the interfacial 
structure between materials with different bonding 
and crystal structure. For example, what is the 
nature of the association between covalently bonded 
and ionically bonded materials? Can interfacial 
bonding layers be predicted and realized? Can 
general rules for creating interfacial bonding layers 
and surfactants at the atomic scale be generated that 
would allow disparate inorganic materials to be 
combined into artificial structures with novel 
properties? Can the properties be predicted? These 
are both experimental and theoretical challenges 
requiring an atomic-level approach. Current growth 
processes such as molecular beam epitaxy, pulsed 
laser deposition, metal organic vapor phase epitaxy, 
and atomic layer deposition processes—combined 

with in situ scanning and other surface science probes, such as angle resolved photoemission 
spectroscopy—offer the precise control and feedback needed to address these challenges. 

3. Enable control of surface chemistry to direct synthesis and processing and tailor materials functions

Surface chemistry will play a key role in transformative manufacturing. The ability to direct chemical 
reactions on surfaces with atomic-level control over composition, position, and phase will enable 
atomically precise manufacturing of materials for energy. Surface chemistry underpins many technologies 
used in semiconductor manufacturing, including chemical vapor deposition, atomic layer deposition, and 
atomic layer etching. Selective growth of materials with the ability to tailor the composition and phase 
will allow for the synthesis of novel catalysts, energy harvesting devices, and materials for energy storage 
and energy conversion. Patterns created on surfaces using scanning probe or scanning beam methods can 
be amplified by selective surface chemistry on the patterned regions to grow complex materials and 
devices. Surface chemistry is a versatile strategy to functionalize structures created using other 

Figure 35. Transmission electron microscopy 
image of an epitaxial semiconductor/ 
semi-metal/semiconductor heterostructure grown 
by molecular beam epitaxy. This is a 
heterostructure of two dissimilar materials: a zinc 
blend, covalently bonded semiconductor and an 
embedded rock salt, an ionically bonded semi-
metal creating an embedded metallic layer. 
Source: Used by permission of Chris Palmstrom, 
UC–Santa Barbara 
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techniques, such as additive manufacturing (AM), to impart the desired electrical, optical, or chemical 
properties. Templated growth is a method to create atomically precise pores and cavities through surface 
chemistry for applications such as shape-selective catalysts51 and selective sorbents for water treatment.52 
Spatial control over surface chemistry, either in solution or through reactive chemical vapors, can be 
achieved using directed beams of photons or ions to provide the energy needed to overcome reaction 
barriers.53 These methods are employed to create 2D patterns by lithography,54 or 3D structures using 
techniques such as multi-photon polymerization for high-resolution AM.55 

4. Enable high-throughput, massively parallel, positioning of materials over multiple scales down to the
atomic scale

Precision synthesis has demonstrated the ability to produce atomically precise structures in a wide range 
of materials via a wide variety of approaches, including chemistry, self-assembly, and top-down 
controlled assembly. However, transformative manufacturing must create complex systems comprising a 
hierarchy of components and subsystems. In the atoms-to-microns regime, there are promising 
developments in bottom-up self-assembly such as DNA origami56 and other biomolecule-enabled 
assembly processes.57 These approaches have the potential for massively parallel assembly, but they 
currently are limited by increasing error rates as the size and complexity increases. Top-down controlled 
assembly processes at the atomic scale have recently demonstrated that useful structures can be produced 
with an additive approach,58 but serial processes operating at the atomic scale are simply too slow for all 
but the extreme end of the high-value spectrum of products. Going massively parallel with micro-
electromechanical system nanopositioners is promising for top-down approaches. As the atomically 
precise top-down assembly approaches begin to create nano-electromechanical system nanopositioning 
devices, the level of parallelism can scale dramatically.  

5. Manage defects

Defects in manufacturing associated with either materials or processing can take on many roles and must 
be managed accordingly. Atomic and molecular defects in crystals have long been prized for the colors 
they create in minerals, including precious stones such as ruby (Cr3+:Al2O3) and sapphire 
(Fe2+,Ti4+:Al2O3), laser materials such as ruby and neodymium yttrium aluminum garnet (Nd:Y3Al5O12, 
YAG), and spin qubits, such as the nitrogen-vacancy pairs in diamond quantum emitters capable of 
photon indistinguishability,59 which address emerging needs in quantum information science. However, 
computational and experimental methods are needed to design and create defects for quantum information 
science, to identify compositions that create suitable electronic structures, and to position defects with 
accuracy in junctions and cavities to form charge and spin qubits or photonic nodes.60 Geometric and 
topological defects also can be advantageous. While most materials and systems are designed to be 
periodic, introducing defects that break symmetry can yield materials with “exotic” properties.61 
Geometric defects have been used to design optical, acoustic, and mechanical materials with 
unconventional or superior properties.62,63 For example, advances in targeted design methodologies used 
to design optical metamaterials are uncovering arrangements of building blocks with defects and/or 
aperiodicity that allow for the realization of new functions.64 Expanding computational design and 
creating techniques that enable precise control of defects in 2D and 3D are necessary to realize 
computational design of materials and structures with unprecedented and targeted physical properties.  

6. Enable targeted design of materials synthesis, structures, and functions

Inverse design aims to begin with a desired specific property, and then subsequently identify or develop a 
stable and synthesizable material possessing precisely that property. There have been several examples of 
attempts at inverse design in recent years with varying degrees of success. While accuracy of theory can 
be a limitation in certain cases, a major bottleneck nowadays is the lack of a reliable synthetic pathway to 
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an identified material or structure: although state-of-the-art theory can predict with good accuracy the 
(meta)stability of a given bulk crystalline compound, there are no general theoretical frameworks for 
predicting whether a given compound can be made. Although the space of crystalline compounds is vast, 
the possibilities become exponentially greater if one considers structural features such as defects, and if 
one includes interfaces, patterns, and other efficacious combinations of materials. While ab initio methods 
and intuition can help predict the stability of many crystalline materials and molecules, there remain 
significant challenges to theory in predicting the stability of structures beyond bulk crystals, such as 
complex interfaces and heterogeneous systems with defects. Additionally, although there have been 
significant advances in time-dependent ab initio methods and kinetic modeling, practical prediction of 
materials dynamics, including synthetic pathways and stabilities, in relevant environments continues to be 
a challenge. Standard synthetic efforts have been successful in uncovering promising new compounds 
based on intuition, and rules derived empirically using advanced theory that explain the resulting 
properties in detail; but advances in precision synthesis and ML offer an opportunity to further develop 
and more tightly integrate theory, data science, and experiment for materials design and synthesis. A 
tightly integrated iterative loop, starting with theory and proceeding with synthesis and characterization, 
can accelerate the discovery of new materials and enable the targeted design of precision materials with 
desired functionalities, while deepening our understanding of the theory of materials. 

Opportunities  
Theme 1. Advance autonomous synthesis and processing for materials manufacturing 
1. Develop maps of reaction pathways and routes to controlling them and providing feedback to refine

theory

The rapid and automated synthesis of materials and materials structures with atomic precision—combined 
with data acquisition techniques, with data storage and dissemination platforms, and with interpretable 
AI/ML models—can lead to rich data sets. This information can refine state-of-the-art ab initio theory and 
kinetic models, leading to predictive time-dependent behavior beyond ground states and steady states. 
Past work using ML algorithms trained on reaction data has been used to successfully predict reaction 
outcomes. High-throughput workflows for lanthanide-doped nanoparticles have allowed the validation of 
a rate equation modeling approach,65 enabling the screening of any combination of dopants in silico to 
predict their spectra. Beyond simple rate equation–based models, ML has the potential to transform the 
nature, efficiency, and accuracy of interatomic potentials—leading to simulations with chemical and 
structural specificity—and do so orders of magnitude faster. ML can also potentially inform the 
approximate functionals used in ab initio methods themselves, improving the treatment of strong 
correlation effects to enable better prediction of reaction barriers and kinetics. 

2. Enable faster discovery of efficient pathways to products (including precursor development) that are
structurally phase-pure and have optimal functionality

The development of new materials, in particular polymeric materials, is a long process with many low-
probability events. For example, taking a new feedstock to make a new monomer, then developing a new 
polymerization process to make a new-to-the world polymer with unknown properties and applications, is 
almost certainly destined for failure. To discover more efficient processes to create novel materials with 
optimal properties, one emerging strategy is to discover new ways to use existing monomers, from readily 
available sources, to make polymers that are different from yet similar, to existing polymeric materials. 
With this strategy, the only barrier to the development of a new material is the identification of a new 
polymerization pathway. One example of how this tactic has been recently employed is the isospecific 
polymerization of propylene oxide (iPPO). The atactic version of this polymer (aPPO) has been used 
commercially for decades as a midsegment in polyurethanes. Similar to aPPO, iPPO is a photodegradable 
polymer; however, in contrast to aPPO, iPPO is a polymer that strain-hardens to form a material with 
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ultimate tensile strength comparable to that of Nylon-6,6.66 This material has promise as a replacement for 
non-degradable polyolefin and polyamide marine nets and lines, which contribute to more than half of 
ocean plastics.  

3. Create materials with functions optimized for energy applications

Transformative manufacturing will impact the entire spectrum of energy applications, including energy 
harvesting (solar, thermoelectric, piezoelectric), energy conversion (fuel cells, LEDs, motors), energy 
storage (batteries, capacitors) and energy transmission (superconductors, wide bandgap semiconductors). 
In virtually all of these applications, efficiency and performance are dictated by the ability to create a 
pristine interface between dissimilar materials. Interfacial control can be extremely challenging because 
issues such as lattice mismatch, high interfacial surface energy, chemical incompatibility, interdiffusion, 
and contamination can lead to poor interfaces and degraded performance. Consequently, the design and 
synthesis of materials for energy applications must include both the particular function, such as light 
absorption or energy storage, and facile integration within the device to produce high-quality interfaces 
with few defects. Quite often, the performance of energy devices can be improved by including a third 
component, such as a buffer layer or additive, that stabilizes the interface between two functional 
materials. The design of high-quality interfaces and the discovery of effective additives and buffer layers 
can be accelerated by high-throughput experimentation, AI, and multiscale modeling. 

Theme 2. Achieve materials with designed functions and structures via atomically and 
molecularly precise synthesis and processing to transform manufacturing  
1. Realize application-specific hierarchical, multifunctional materials and structures

The complex functions of energy production, storage, and use are enabled by hierarchical materials 
design, often involving heterogeneous materials. Although remarkable structures have been created in 
research environments, major gaps in the ability to manufacture such materials exist at two levels. First, 
there is an inadequate understanding of the underlying controls on their formation, whether in the 
synthesis of the fundamental building blocks or the processing of those blocks to predictably produce the 
targeted hierarchy with a desired uniformity and distribution of defects. Second, the scalable synthesis 
and processing methods needed for manufacturing is lacking. In hierarchical materials, function is an 
emergent outcome of organization at multiple length scales, so the organization at larger length scale is 
dependent on that at shorter length scales. Consequently, the challenges associated with predicting 
pathways, equilibrium end states, and kinetic traps discussed above are greatly amplified. Changes in 
atomic and molecular structure or processing conditions at one scale cascade through larger length scales; 
they grow, at best, combinatorially and, at worst, exponentially as a result of nonlinearities in cross-scale 
coupling. Even for systems in which hierarchical organization has been mastered at the lab scale, the 
sensitivity to local conditions and the difficulty of controlling materials critical events, such as nucleation 
or phase separation, render scale-up equally challenging. Still, there are notable exceptions when such 
problems are largely conquered by instituting global controls, such as substrates with physical or 
chemical patterning that forces targeted outcomes.67 Such examples offer hope that a general strategy to 
achieve scalability is possible. 

2. Develop a fundamental understanding of materials with emergent properties over multiple scales

The capability to predict structure-property relationships in multiscale materials is challenged by the 
disparate phenomena that govern behaviors at vastly different scales. However, recent advances in 
multiscale modeling and ML provide promising opportunities to predict structure-property relationships 
in multiscale materials. Another complexity of multicomponent systems is the abundance of interfaces, 
which can advantageously or disadvantageously dominate a system’s properties. Developing tools to 
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understand and predict the structure and properties of interfaces is therefore another critical component of 
advancing the manufacturing of complex materials with desired behaviors. Here, new opportunities are 
provided by recently developed microscopy and scattering capabilities sensitive to the interfacial atomic 
structure,68 and computational methods that can powerfully predict interfacial structure and properties.69 
Overall, the use of physics- and ML-based approaches for predicting complex structure-function and 
interface-function relationships is poised to accelerate the design, synthesis, and scale-up and processing 
of materials. Potential impacts include improved target functionality; reduced uncertainty; increased 
efficiency; reduced energy consumption; and accelerated manufacturing of scalable, durable, lightweight, 
and recyclable materials for next-generation energy technologies. 

3. Position single or multiple nanomaterials for quantum electronic and photonic technologies

The application of low-dimensional materials in unconventional energy and quantum devices requires 
control over their positioning at the nanometer scale, and yet, often with arbitrary complexity over the 
macroscale. For example, many quantum computing schemes require the positioning of charge and spin 
qubits with single-digit nanometer precision. This control can be achieved by matching bottom-up 
assembly with top-down fabrication methods to integrate the best of these different techniques. For 
example, lithographic definition of topographical features has been used to direct the assembly of block 
copolymers and inorganic nanomaterials. Figure 36 shows examples of the deterministic assembly of 
colloidal nanocrystals with tailored size, shape, and composition using size- and shape-engineered, 
functional and/or sacrificial templates. In these examples, the arrangement of nanomaterials allows the 
sculpting of the interaction of light with matter. These strategies have been used to position single 
upconverting nanocrystals (which absorb infrared light and emit in the visible) in metal nanohole arrays, 
and to create upconverting nanocrystal–metal nanorod heterodimers, both of which use the plasmonic 
character of the nanostructured metals to amplify the upconverted luminescence. Topographical templates 
also have been used to assemble artificial metamolecules, in which nanocrystals serve as the building 
blocks of oligomeric structures and can form closely packed and open architectures. For metal 
nanocrystals, these assemblies have arrangements that “sculpt” rotation- and polarization-dependent, 
hybridized electric and magnetic plasmonic modes. The development of computational inverse design 
techniques motivates the establishment of assembly methods to realize more complex and arbitrary 
assembly arrangements.  

Figure 36. (a) Assembly of upconverting luminescent nanophosphors (UCNPs) in gold nanohole arrays70 and 
(b) gold nanorod–UCNP heterodimers, both of which amplify luminescence efficiency.71 (c) Close-packed
gold nanocrystal oligomers72 and (d) open gold nanorod trimers, with rotation- and polarization-
dependent, hybridized electric and magnetic plasmon modes.73 Sources: (a) Reprinted with permission
from M. Saboktakin et al., ACS Nano 7, 7186–7192, 2013. Copyright 2013 American Chemical Society. (b)
Reprinted with permission from N.J. Greybush et al., ACS Nano 8, 9482–9491, 2014. Copyright 2014 American
Chemical Society. (c) Reprinted with permission from N.J. Greybush et al., ACS Nano 11, 2917–2927, 2017.
Copyright 2017 American Chemical Society

https://pubs.acs.org/doi/10.1021/nn402598e
https://pubs.acs.org/doi/10.1021/nn503675a
https://pubs.acs.org/doi/10.1021/acsnano.6b08189
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4. Improve efficiency through manufacturing and the material lifecycle

A paradigm change is needed by which the product and the process-to-product are designed for optimal 
efficiencies to enable critical reductions in energy consumption and emissions. For example, the amount 
of energy required per unit of output (J/kg, e.g.) needs to be minimized. Each step in a multi-step process 
can be a target for improved efficiency, or a series of processes can be consolidated into a more efficient 
process. In a case where the process itself cannot be rendered more efficient and net energy is wasted, that 
wasted energy, often heat, could be recovered. Similarly, to reduce emissions, the amount of energy used 
for the process or the nature of the fuel itself can be targeted, and a feedstock can be chosen for “atom 
efficiency,” so that byproducts and side-reactions are minimized. Beyond reductions in energy and carbon 
intensity, manufacturing with intention would imply extension of the concept of smart design to “use 
intensity.” This is a very broad concept that includes enhanced materials properties for greater longevity 
or other performance metrics, reducing the need for early replacement or even minimizing the quantity 
originally required for a given function. Ultimately, this concept moves manufacturing toward a circular 
economy (reuse, repair, recycle). 

Conclusion 
The promise of precision synthesis to transform manufacturing lies in the ability to take full advantage of 
the intimate connection between the function of a material and its architecture from the atomic to the 
mesoscale. Realizing that promise depends on the development of autonomous synthesis and processing 
capabilities. This approach should take advantage of recent advances in high-throughput synthesis, 
identification of structure-function signatures, and development of physics-based computational models. 
Tackling the fundamental challenges of pathway engineering is necessary to access kinetically trapped 
metastable states and construct experimental and computational databases needed to constrain kinetic and 
thermodynamic parameters. Doing so will offer the opportunity to rapidly predict efficient reaction 
pathways to target architectures, as well as routes to control them, with optimized functions for energy 
applications. To be able to use these autonomous capabilities for atomically precise manufacturing of 
materials with designed structure and function, it is highly desirable to take advantage of newly developed 
scalable synthetic routes, advances in understanding chemical drivers and physical forces underlying 
synthetic routes, the tremendous progress in atomic-scale spatial and compositional control of 
nanomaterials, and recent knowledge of structure-function relationships across scales. The new scientific 
challenges lie in designing materials for multiple functions, designing and controlling interfaces, 
exploiting surface chemistry as a means to direct synthesis and tailor function, managing defects, 
achieving massively parallel atomic-scale positioning of materials, and gaining a predictive understanding 
of the synthesis-structure-function relationship. Success in these endeavors affords the opportunity to 
realize application-specific hierarchical, multifunctional materials, as well as a fundamental 
understanding of their emergent properties over multiple scales; achieve manufacturing-scale production 
of quantum information, microelectronic and photonic devices; and reduce energy and emissions through 
manufacturing and the materials lifecycle. 
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Panel 2: Processing and Scale-Up Science 

Introduction 
Bringing a new technology to the world requires the ability to process both the starting constituents and 
manufacture final products efficiently at scale. Reducing the cost and environmental footprint of 
manufacturing fuels, chemicals, and materials remains a significant scientific and engineering challenge. 
Indeed, enabling a material to be produced in previously unattainable quantities or at much lower cost can 
be as challenging as the discovery of the material itself. Moreover, the often-complicated processing steps 
considered acceptable in prototyping must be simplified to enable volume manufacturing of final 
products, by either scaling up or numbering up. However, deep understanding of the science underpinning 
scale-up across length scales and the associated processes are often limited, making scaling up costly and 
slow. 

The intent of this panel was to identify where new basic science can best advance processing and scale-up 
of materials important for the nation and world. This effort includes assessing the state of the art in 
processing and scale-up science, describing how processing may evolve in a future state with new raw 
material and energy inputs, delineating science gaps, and identifying where basic science will make the 
greatest impact on processing and scale-up. 

Recent Advances 
Benign and efficient energy processing 
As industries move to minimize waste and the impact of manufacturing on energy consumption and the 
environment, new scientific understandings are needed to simplify processing, reduce carbon inputs, 
increase product life, and reduce the use of expensive components in processes. Among all US industrial 
processes, petroleum refining (3.9 EJ)1 and chemical manufacturing (4.8 EJ)1 consume about 40% of the 
energy used as fuel in the manufacturing sector (21.0 EJ) (all 2014 data). A large fraction of energy and 
waste is in separations and cleanup. Potential new ways of driving manufacturing processes include using 
alternative energy sources, reducing energy use by improving understanding of the effects of processing 
conditions on structure, and reducing waste through improved catalysis. The latter is the subject of a 
previous Basic Research Needs report.2 

Emerging ways to drive processes using energy sources beyond conventional thermal routes include light 
plus electric fields,3 mechanochemistry,4, 5 sonochemistry,7 microwave heating, and low-temperature 
plasmas,7 in addition to electrocatalysis.8–10 Most conventional metallurgical processes, such as melting 
and sintering, use excess material and energy because of their inherent inefficiencies. Low-thermal-
budget processing is an emerging opportunity for manufacturing of metals, refractory metals, and 
ceramics that is less energy-intensive and enables integration with thermally sensitive materials. For bulk 
materials, emerging low-thermal-budget options include cold sintering,11 which uses a liquid-phase flux 
to assist in densification without high heating, and flash sintering,12 which applies an electric field to 
enable sintering and reactions13 to take place through rapid joule heating,14 and electrically driven 
mass/charge transport. Scientific underpinnings that dramatically reduce the number and complexity of 
processing steps, energy use, and waste scrap are critical. Nascent strategies based on synthetic biology 
also offer potentially efficient pathways to create highly functional hard and soft materials.15, 16 

To reduce process waste, improved catalysts are needed for chemical processes, and their preparation 
methods are critical in defining performance. Conditions that control the molecular interactions can 
dominate the morphology and topology of the active/functional sites.17–22 The inability to monitor and 
control conditions at larger scales remains a challenge, as differing induced charges on particles and 
surfaces alter deposition at scale, including the presence of impurities and the chemical nature of active 
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phase precursors. Even exo- or endothermicity, which are easy to control at small scales but more difficult 
in a manufacturing setting, can diminish the ability to translate catalysts from laboratory to manufacturing 
scales. Recent examples of challenges to scale-up can be found in the literature.17–22 

Alternative carbon sourcing 
Fossil carbon, having an energy content of 2.8 EJ (2010 data), is used as the feedstock of many basic 
chemicals and plastics.1 Renewable and carbon sources that are from waste streams (industrial waste 
gases, municipal solid waste, manures and agricultural wastes, and wastewater sludges) present new 
opportunities. A move toward waste carbon as a feedstock necessitates distributed processing, which 
requires safe conditions, integration of process steps (combining reactions and separations), and the 
ability to use renewable energy. One opportunity is the merger of chemical and biological catalysis to 
form new processes for waste reuse. One example of moving a fundamentally new process from 
laboratory to manufacturing in a relatively short time frame has been the biological processing of waste 
gases (Figure 37), which can be combined with chemical processing to form additional compounds. In 
this manner, biological systems efficiently couple one-carbon compounds into two-carbon compounds—a 
difficult feat with synthetic chemistry—and chemical processes are used to convert a two-carbon alcohol 
to fuels and chemicals, which is difficult for biology. At a large enough scale, alternative carbon sources 
could even displace nonrenewable hydrocarbons used as fuels for transportation. 

Figure 37. Replacing fossil carbon with renewable or waste carbon as the feedstock for bulk chemicals 
could offset more than 3 EJ of fossil resource consumption. A continuous biological process (fermentation) 
has recently been commercialized that processes CO-rich industrial waste gas from sources including 
unrecycled plastic, wet carbon sludges, and industrial waste gases into ethanol. The alcohol can be 
chemically upgraded to high-value products in an integrated catalytic process. The combination of 
biological and chemical processing opens new opportunities to produce chemicals and fuels with higher 
conversion and energy efficiency. Source: Image used by permission of LanzaTech. 

Far-from-equilibrium processing 
Far-from-equilibrium processing bridges the gap between renewable/lower-energy processing and self-
assembly/multiscale processing. Some far-from-equilibrium energy-intensive processes have transitioned 
to lower-energy manufacturing through recent advances in novel techniques, e.g., spark plasma sintering, 
additive manufacturing (AM) of refractory materials. These new processing advances direct energy and 
materials only where they are needed on specific time scales and gradients, e.g., controlling grain 
structure.23 They have the potential to further precisely control local conditions to form compounds with 
precise chemistry, novel structures, increased energy efficiency, minimized defects, and controlled phase 
composition and metastability across length scales. 
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Atomic-level understanding of the properties of matter far from equilibrium and under intense process 
conditions is a challenge across all classes of materials. Manufacturing advanced metals and ceramics is 
energy intensive, often involving high temperatures, long processing times, rapid quenching, radiation, 
and/or high pressures. Their structure–property relationships are often poorly understood,24,25 in part 
because the very structures that provide desirable properties are significantly far from equilibrium. As 
new processing methods emerge, such as rapid solidification AM, the energy landscape changes 
drastically; and understanding must be gained to enable navigating those regions of metastability. Future 
materials, such as those that might provide exceptionally high strengths or ion mobilities, will require 
more radical departures from equilibrium states and the combination of novel compositions and 
innovative processing to arrive at the desired end state. High-performance computing and advanced 
characterization will be needed for composition and processing co-development. Extreme processing 
methods are unlikely to up-scale easily, as precise local control of process conditions and metastability 
across length scales is challenging; and once promising composition and energy spaces are identified, 
there will be significant needs for transforming manufacturing science.  

Additive manufacturing, bottom up, self-assembly, and multiscale processing 
Processing research involving AM and other types of powder or droplet spray-based advanced forming 
methods minimizes materials waste by producing products in their final shape with minimal (or no) 
machining required. However, there is a need to both better understand and control microstructural 
evolution, including grain size and orientation, to improve their strength and ductility, especially in AM. 

For high-quality oxide and compound semiconductor thin films, it is challenging to rapidly accelerate the 
deposition kinetics of molecular beam epitaxy, chemical vapor deposition, and sputtering, while 
maintaining the desired control over features such as epitaxy, orientation relationships, crystalline quality, 
and interface chemistry. For example, pulsed laser deposition is one of the best methods for producing 
high-crystalline-quality oxide films; however, it is one of the most difficult to scale up.26–30 Other physical 
methods—such as sputtering, or chemical methods like plasma-enhanced chemical vapor deposition31 or 
aerosol-assisted chemical vapor deposition32—are modestly scalable. However, they become more 
challenging when multiple cations or anions are required in the final film, necessitating the use of 
multiple targets or precursors, or when the film must be relatively thick. Electrochemical methods are of 
growing interest, for example in manufacturing the ceramic cathodes used in lithium-ion (Li-ion) battery 
electrodes (see the sidebar). They have been demonstrated to grow both ceramic oxides and 
semiconductors in relatively ordered forms.33 

Sidebar: Scale-up of Electrodeposited High-Performance Battery Electrodes 
Current status 

A significant driver of Li-ion battery costs is the many energy-intensive steps involved in 
electrode production, including raw material extraction, electrode material synthesis and 
purification, and electrode fabrication. In addition, despite considerable efforts, the 
performance of Li-ion batteries is still far from ideal, in part because the internal structure 
of the slurry-cast cathode and anode consists of active material dispersed in particulate 
form mixed with electrochemically inactive additives.34 

Opportunity 

Electrodeposition is a well-known path to growing ceramic layers with tightly controlled 
crystallographic orientation and porosity.35 The electrodeposition of high-performance 
LiCoO2 with particular relevance for energy consumption during production was recently 
reported.36 The material was grown from low-grade precursors at temperatures ~500 °C 
below those conventionally used to fabricate LiCoO2, yet the process resulted in Li-ion 



95 

cathodes with better-defined crystallographic orientation and higher active material 
densities than are found in conventionally formed electrodes. 

Scale-up 

Recently, pilot-scale roll-to-roll electrodeposition of a high-performance LiCoO2-based 
cathode was demonstrated by Xerion Advanced Battery Corp. The densely packed 
flake-like morphology of LiCoO2 produced via this roll-to-roll process is presented in the 
image at bottom right in the figure. The chart at the bottom center of the figure illustrates 
the charge and discharge profile of the LiCoO2 electrode, showing the expected 
capacity of about 140 mAh/g despite the use of low-purity electrodeposition precursors. 
The controlled crystallographic orientation places the fast-diffusing lithium plane 
perpendicular to the substrate, resulting in electrodes with high power densities, even 
when the active material is thick. These results indicate the promise of electrodeposition 
as a new paradigm for manufacturing high-performance electrodes for energy storage. 

(a) Schematic of the roll-to-roll process. (b) X-ray diffraction peaks. The near absence of the (003) peak
indicates the strong texturing of the film. (c) Image of 20 ft roll of LiCoO2 coated on metal foil. (d)
Charge-discharge of electrodeposited LiCoO2. (e) Scanning electron microscope image of cross-section
of the LiCoO2. Source: Images used by permission from John Cook, Xerion Advanced Battery Corp

Scientific Challenges and Opportunities 
The scientific opportunities present in processing and scale-up are considerable. As manufacturing strives 
to become more environmentally benign and energy efficient, they must move beyond use of 
nonrenewable carbon sources, create materials that derive function through far-from-equilibrium internal 
structure, and learn to build materials from the bottom up and via self-assembly. It is increasingly 
apparent that major scientific advances will be required in characterization, modeling, and new processing 
methods that enable exquisite control of surfaces, interfaces, and defects. This section describes the 
scientific challenges and opportunities identified in these areas. 
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Metrology and Characterization at Relevant Dimensions for Scale-up
Modern manufacturing requires tight control of conditions and real-time measurement of the properties of 
a product as it moves through the manufacturing process. Collecting and analyzing the data at rapid time 
scales requires the development of new characterization, data analysis, and modeling methods. New 
characterization methods that are capable of collecting large, relevant data sets will increase yield and 
accelerate scale-up, especially when coupled with high-fidelity simulations that facilitate optimization of 
manufacturing processes. 

Polymers and polymer composites are examples of where characterization at relevant dimensions would 
have significant impacts on scale-up. Although there has been progress in understanding the relationship 
between processing and properties for simple polymer systems, researchers lack the ability to 
characterize, in real time, the microstructures formed under high shear and rapid heat-transfer processes 
during manufacturing of high-performance polymer blends and composites. This lack of information 
significantly limits the ability of industry to predict the relationship between properties and processing in 
polymers and composites. Similar issues are present in manufacturing of almost all classes of materials. 

Open questions remain as to how to characterize the three dimensional properties of a material in real 
time in a manufacturing process. Can microstructure, density, thermal conductivity, electrical properties, 
and elastic modulus be determined with high spatial and depth resolution using non-contact, 
spectroscopic, or acoustic methods?37 New understandings of materials physics, particularly at the 
intersection of light–phonon–matter interactions, may enable such characterization. What are the 
opportunities for new x-ray–based characterization approaches? At the even more local scale, can the 
concentration of atomic defects (good and bad) be determined in real time in three dimensions? Can rich 
information provided by advanced metrology methods be processed and interpreted in real time to guide 
manufacturing processes? Success will have a deep and meaningful impact on advanced manufacturing. 

Multiscale Modeling, Measurements, and Systems Design 
Manufacturing of fuels, chemicals, and materials requires that synthetic methods that span from the 
laboratory to pilot, and ultimately, industrial scales. Translating laboratory discoveries into industrial 
manufacturing remains a challenge.  

Multiscale approaches. Commonly used experimental and modeling techniques are scale-specific (in 
both length and time). For materials and products, separate approaches are used to design and predict 
properties and to understand behavior and measure performance. Integrated multiscale physical and 
chemical approaches are needed to address these phenomena, particularly for complex materials. The 
availability of data mining, machine learning algorithms, and new computational tools capable of working 
with up to 300,000,000 atoms will enable new insights and knowledge not available before. Integrated 
multiscale modeling (such as thermal evolution and reaction gas distribution/pathways) of coatings and 
advanced atomic-level characterization capabilities would further our understanding of surface science. 
Modeling across large time regimes (say fs to s) requires combining dynamics and kinetics to account 
simultaneously for multicomponent transport, elementary reaction steps (e.g., microkinetics), and 
physical events (e.g., crystallization, aging, sintering). New approaches are needed for evaluating 
phenomenological kinetics at larger scales, modeling transient data to temporal scaling, and connecting 
equilibrium and far-from-equilibrium states (e.g., numerical solutions of the related, stochastic partial 
differential equations). 

Far from equilibrium. Most multiscale approaches are largely limited to equilibrium processes, and the 
need for modeling of nonequilibrium systems at all scales prevails. Modeling the changes of properties 
caused by environment and process conditions may provide insights that can be used for 
phenomenological models for far-from-equilibrium situations. Output from models will offer input for 
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molecular models for more precise atomistic calculations. Currently, the automotive industry uses a 
similar technique in which empirical constitutive laws provide limited empirical access to anisotropic and 
heterogeneous materials. The challenges for understanding microstructure and texture and their evolution 
during processing and manufacturing remain.38 

Sensors across scales. Future manufacturing requires the identification, adaptation, or development of 
sensors that can be used across scales for monitoring events, processes, and components. Tools need to be 
developed to extract and make sense of large data sets that can be used in industrial settings. Since the 
data sets will come from diverse sources and from an extensive variety of sensing instruments, extraction 
of information from multivariate measurements typically will need to be robust against noise and errors in 
the measurements. Advances in analytic techniques will need to account for the complex structure of 
multivariate measurement errors. A better understanding of the origins of errors for a sensor or 
measurement system is needed. Additionally, improved data analysis tools need to be designed to treat the 
errors in an optimal way. 

The optimal application of realistic error characterization and error-in-variable modeling reduces the cost-
prohibitive replication process that is required to create surrogate estimates for “true” noise 
characteristics. Integration of such methods with multiscale models can lead to more efficient extraction 
of information and improved decision-making. 

Surface Science and Interfaces 
A deeper understanding of surface science and interfaces would greatly enhance processing and scale-up 
and would transform manufacturing. Currently, the ability to realize the full benefits of existing 
computing power and advanced models is limited due to a lack of input data and constitutive relations of 
the physics of surfaces. Such advances would not only enable new materials by control of surfaces and 
interfaces (hybrid materials and composites), but improve traditional technologies (e.g., filtration, 
biofuels, chemicals, catalysts, powder metallurgy). The scientific challenges that arise are addressed 
separately below for surfaces, interphases, and diffusion/transport. 

Free surfaces. Powders, slurries, porous materials, fibers, and membranes possess large surface-area-to-
volume ratios compared with bulk materials. Gaining atomic-level control of surface species and layers 
could allow for the generation of nonequilibrium surfaces, access to new rapid solidification regimes, and 
precision processing control for efficient synthesis and rapid scale-up of materials with large surface-to-
volume ratios, resulting in new processes and materials with unique microstructures and properties. 
Researchers lack an understanding of rapid solidification, solute segregation scales, limited diffusion 
lengths/paths, surface chemistries and rates of formation, nanoscale structures/limitations, and their 
impacts on the final consolidation aspects and rate-controlling processes. Deeper understanding of the 
interactions of nanoscale dispersions, including the factors that control solubility and stability, would 
enable deterministic control of particle-fluid interactions; and their rheology, printing, drying, and 
sintering could be tailored on demand. 

Interphases. For particles suspended in liquid phases and heterogeneous soft materials, interfacial 
properties and processing methods (e.g., application of shear, thermal, or other forces) influence their 
local solidification kinetics, microstructural development, and resulting interphase properties. The 
determination of the dominant atomic and molecular interactions that govern interphase morphology and 
topology is essential. Interphases can also be controlled by the chemical composition of active precursors 
(e.g., reactivity, hydrolysis, surface charges, charge density, structure) and liquid phase, including 
presence of impurities. 
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Diffusion/transport. Surface diffusion, liquid, and solid-state diffusion and permeability data are 
important for materials processing; however, these data sets are limited. Diffusion affects operating 
conditions, structure and performance, control of transport, and durability. For example, the lack of 
precise control of the surface chemistry, composition, thickness, and spatial distribution of oxide powders 
and metal electrodes hinders the performance of rechargeable batteries. Improved understanding would 
benefit the development and manufacturing of advanced membranes and electrodes, accelerating the 
translation of electrochemical materials from academic labs to real-world applications.  

Defect Control and Tolerance 
Once a defect is introduced during manufacturing, it remains throughout the product’s life. While self-
healing materials are now commercialized,39 “intelligent” materials that can self-repair manufacturing 
defects and damage remain out of reach. Defect-tolerant manufacturing coupled with the embedding of 
“intelligence” into a material, which enables automatic detection and repair of defects and damage, would 
expedite processing and scale-up, decrease scrap rate, reduce safety margins, and reduce the overall 
energy inputs into manufacturing. The impacts on materials science and processing would be better life 
prediction, reliability, and part maintainability to reduce life cycle cost and energy. 

Defect control. Many materials made at lab scales cannot be made at industrial scales due to defects 
inherent to scaled-up manufacturing processes. While defects are inherent to any material, and some 
defects highly desirable, what remains needed are better processes to control defects at manufacturing 
scale. Success would enable new energy-efficient and high-performance materials that exhibit 
unprecedented properties and performance (e.g., high specific strength, fatigue life, electrochemical 
energy storage capacity). For example, scalable pathways for achieving the theoretical performance of 
current bulk materials could be enabled. Defect control requires understanding processing pathways to 
enable hierarchical materials and metastable bulk materials to achieve spatially resolved microstructural 
heterogeneity on demand. 

Intelligent materials. Unifying principles for new classes of intelligent materials are needed that address 
fundamental questions: What is the uncertainty propagation during processing as opposed to material 
architectures? How are defects measured and self-reported for repair? What is the specific micro-defect 
correlation to material performance (e.g., grain size control)? And is sufficient understanding currently 
available of microstructural evolution and degradation under loads, or is a better understanding of stress-
induced cracking and materials fracture needed, potentially including the characterization of microscopic 
stress fields, tribo-emission spectroscopy, and quantum molecular dynamics modeling of fracture? 

This level of defect control would enable near-net shape manufacturing of parts with acceptable defect 
size and distribution, potentially impacting simplified processing for conventional ceramics, novel 
powder techniques, and possibly machining/finishing of very hard, brittle materials. New chemically and 
physically driven processes could be developed that have fewer processing steps, alongside novel 
machining and finishing technologies, which also would enhance modeling of the impacts of defects on 
properties and lifetime. Novel inspection techniques that allow in-line detection of defects would impact 
new materials/processes/systems for energy efficiency, e.g., ceramic matrix composites, fuel cells, new 
physics/chemistry-based processes, and new energy cycles. 

Efficient Processing via Combinations of Input Energies 
From hot-rolling of metals to high-pressure, high-temperature reactions, industry is familiar with 
combining heat and pressure to accelerate and direct chemistry. The results reflect a combination of 
thermodynamics (phase behavior, equilibrium) and kinetics (activation barriers, volumes of activation). 
Less traditional combinations also can provide combinations of energy inputs whose sum exceeds that 
needed to activate desired reactions and enhances the selectivity of the process and the longevity of 
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catalysts. A few examples are light plus electric fields,3 mechanochemistry,4, 5 sonochemistry,6 and 
eletrocatalysis.40 

Targeted energy. Alternative sources of energy—such as sonochemistry, low-temperature plasmas, and 
mechanochemistry—are capable of focusing energy in small volumes. While the direct excitation of a 
specific bond within a molecule is generally not possible owing to rapid thermalization of the absorbed 
energy prior to reactions,41 steep spatial gradients within a reaction zone can be constructed to deliver 
excited reactants or remove excited products rapidly enough to enhance reaction selectivity. Systems with 
very short, down to millisecond, contact times may be particularly useful.42,43 In addition to a lack of 
mechanistic and kinetic information, materials development for catalysts used in nonthermal plasma 
systems is needed. 

Methods to study reaction transients44 are needed but must be analyzed carefully to bear on steady state 
performance. Approaches that study transients in the course of steady state operation include isotopic 
transients,45 and modulated excitation spectroscopy46,47 can afford information across the evolution, use, 
and deactivation of catalysts. 

Electrochemical/electrocatalytic. Electrochemical processing is not new. More than 100 years ago, the 
Hall-Heroult process reduced the price of aluminum from that of silver to that of a commodity. In the 
future, the role of electrochemistry may expand to provide additional levers to control reactions. While 
electroplating of metals in film form is widely practiced, more recently, it was discovered that 
electrochemical processing can control, with great precision, the doping and crystallographic orientation 
of broad classes of organic and inorganic materials in both thin and thick films.10,36,48,49 Crystallographic 
control is of particular importance given that many of the most important materials for energy storage and 
production are highly anisotropic and exhibit advanced properties only when highly textured with 
appropriately small defect densities. Electrocatalysis also can extend levers for effecting chemical 
transformations (Figure 38).9,40 

Figure 38. Applied electrical potential is an energy input that regulates energy levels and the availability of 
redox equivalents. Thus it, along with temperature, provides a strong control lever for chemical reactions. 
Source: Image provided by Pacific Northwest National Laboratory 

Targeting the diversity of bonds required to form desired materials via an electrochemical/electrocatalytic 
pathway remains an open challenge and will require development of the electrocatalyst, design/selection 
of the precursor, and electrolyte engineering. Characterizing and controlling the electrochemical 
processes in a manufacturing environment is complicated by the presence of the liquid and sometimes 
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corrosive electrolytes and the diversity of chemical species present in the system. Finally, of particular 
relevance for manufacturing, the discovery of scientific principles to broaden electrochemical processing 
windows is needed (e.g., the use of surfactants). 

Other forms of light. Artificial light-driven processes are another means to use renewable electrons to 
drive reactions. The key challenges will be maximizing the efficiency of converting electrical energy to 
light; improving photon transfer; and learning to control reactivity through reactor configuration, light 
flux, and mass transfer. Nearly monochromatic light-emitting diodes can be used to study the effects of 
specific light wavelengths on reactivity. Still, an understanding of the effects of temperature, dark 
reactions, and characterization of mass transport is needed to optimize light-driven process. 

Overall, improving the efficiency of transformations via combinations of input energy can reduce the 
carbon emissions of many processes. In some cases, there is an added benefit of providing materials with 
improved or even otherwise unavailable characteristics. Finally, using combinations of input energy 
opens new windows for processing in decentralized facilities using renewable electricity. 

Summary 
The challenges of moving innovative discoveries from the laboratory bench to fully integrated industrial-
scale processes are significant and present an area of science that is often neglected. A deep 
understanding of the basic science of processing and scale-up of materials synthesis, shaping, and reuse is 
important for the nation and world. Deeper understandings of how to effectively and efficiently use, at 
scale, new raw material and energy inputs, and of how to tightly control the chemistries, nano- and 
microstructures, and compositions of the materials produced will make great impacts on processing and 
scale-up. The science needs identified in the panel discussion point to a need for operando 
characterization (PRD 2), multiscale models enabling adaptive control (PRD 3), and energy-efficient 
manufacturing (PRD 4).  
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Panel 3: Systems Integration Science 

Introduction 
Systems integration science is a broadly defined topic area that requires a collective understanding of its 
definition. The panel spent considerable time discussing the nuances of the definition. “System” can refer 
to a complex set of interacting components in a product or device, or to a complex environment in which 
a product must function. Systems can be thought about at various scales, including the nanoscale, 
mesoscale, or macroscale. The boundaries defining a system often expand at higher technology readiness 
levels. Systems integration often involves multiple objectives and trade-offs between differing 
performance aspects. Successful application of fundamental research to systems integration would 
increase the probability of success for technology applications and reduce the time required to move 
products to market. Systems integration holds the possibility to transform manufacturing by enabling 
resilience and agility in molecules, materials and processes. 

The current status of systems integration is that a number of key gaps cause technology development to 
stall or fail. Importantly, basic experimental and modeling research can address these gaps. Success in 
those areas will enable breakthroughs in manufacturing, while failure will manifest itself by placing 
unnecessary limitations on defining required chemical or material properties. Some examples of gaps 
include lack of reliability, lack of material and chemical compatibilities, and lack of data and models. A 
lack of reliability in realistic environments often is due to issues that were unanticipated in the initial 
experiment. Typically, the issue would be that the initial work focused purely on idealized reaction 
environments, settings and data sets. This approach significantly limits the ability to harness synergistic 
or emergent phenomena that arise only in interacting systems. Second, a lack of compatibilities among 
molecules, materials, or operations in interacting subsystems results in a lack of understanding of the 
structure-process-property relationships in truly multiscale ways (e.g., from nanometers to kilometers/ 
from atoms to devices). Third, the lack of data and models relevant to manufacturing conditions 
contributes to the production of data that are of value from an academic perspective but cannot provide 
answers economic and energy savings questions that ultimately are needed for development and 
implementation.  

Basic science challenges, opportunities, and needs exist that can guide research and subsequent 
implementation for manufacturing. These do not necessarily appear in a linear fashion but can best be 
envisioned in a collaborative environment encompassing mutual awareness between low and high 
technology readiness level activities. In this environment, basic research would provide novel insights and 
imaginative alternatives informed by industrial processes. Based on discussions, panel 3 presented three 
aims: (1) identify tools and scientific challenges that can be addressed by fundamental research which are 
timely and will impact one or more of the gaps; (2) focus on approaches that are specifically motivated by 
systems integration needs, although there may be commonalities with other aspects of manufacturing-
related science; and (3) find themes that resonate across multiple manufacturing sectors. 

The following points illustrate how the integrative nature of these endeavors has important implications 
for basic research for systems integration understanding. 

(1) Improved measurements and diagnostics under process-relevant conditions. Examples include
opportunities for manufacturing-relevant measurements; design, development; and implementation of
high-speed and real-time on-line and in-line sampling, monitoring, and survey measurement
techniques; and development of enhanced-fidelity low-cost “desktop” instrumentation and methods to
enable faster data turnover.
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(2) Methods to assess and predict chemical products and materials performance under non-ideal
conditions and during operation in complex environments. Because local defects, for example, have
impacts on multiple scales, there is a great need for an understanding of the mechanistic and kinetic
basis for aging and degradation along the mesoscale (from atoms to machined parts). Furthermore,
the ability to identify the robustness of synthesis conditions and operating environments will enable
the determination and quantification of robustness both in a system’s parts and as a whole.

(3) Methods to integrate data from diverse sources. Data collected both at the mesoscale and from
different methods in the same process step enable the down-selection of experiments with a degree of
confidence, while also extending the scope of the systems-based model predictions.

(4) Improvements in systems integration science will directly lead to efficiencies in manufacturing and
production processes. Systems integration spans the length and time scales from basic research to
manufactured processing and production. When data collection, evaluation, and feedback on all these
scales are possible, the resulting manufacturing confidence level and qualification surety will enable
broader sets of variables that can easily be reduced to confident choices of reactants, materials, and
processes in energy-intensive manufacturing settings. These improvements also will catalyze
conceptually new technologies in energy-intensive and energy-creating sectors.

(5) Methods for integrating multiple devices or components that function in complex physical
environments. These methods will be necessary for deploying new technologies in the real world with
minimized incompatibilities, minimized defects, and ensured robustness, thereby allowing for energy
efficiency and economic benefits to a system process.

Basic Research Pathways 
Descriptions of basic research pathways encompass “bottom-up” fundamental research tied to “top-
down” systems processes. Examples include multicompositional and multifunctional materials and 
structures, which comprise many components made of different materials and chemistries to meet use 
requirements. Manufacturing these kinds of products typically require multi-step processes to attain a 
final high-yield pure product or the joining of many different parts for a final manufactured component. 
Chemical production processes, for example, require numerous steps, thus presenting the basic research 
challenge of controlling and tailoring reaction pathway steps to obtain a product with high yield and 
compositional purity along with maximized performance and minimal waste. In materials processing, 
much basic research is focused on the composition, structure, and function of a material, so that a 
component or system consists of a single material with compositional and functional gradients without 
the need for joining. In multicomponent systems, a system usually comprises many components to meet 
the use requirements.  

A second challenge in connecting early-stage research to manufacturing is that functioning products at a 
system level typically make trade-offs among multiple performance measures rather than maximizing a 
single quantity. Advanced modeling and simulation results in an increase in the rate of data acquisition 
and improved quality of data. To enhance system performance and to avoid failures at the system level, 
materials and chemical processes should be modeled, tested, and characterized under conditions as close 
to the use conditions as possible.1,2 For example, a key to success in rapid design and manufacturing is 
that performance be derived and predicted from as-built (and not as-drawn) additive manufacturing (AM) 
parts based on measured microstructural properties. Similar conceptual challenges are common in more 
chemically oriented materials. There is significant interest in tying modeling to real-world manufacturing 
conditions to enable kinetic pathways to thermodynamic conclusions.3,4 Opportunities exist for new 
discoveries using high-throughput capabilities, machine learning, artificial intelligence, and large-scale 
BES user facilities. 
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Finally, it is important to acknowledge that new manufacturing technologies, such as AM, require 
research and development to minimize the uncertainties in the resulting products. This kind of research 
involves experimental measurements and large simulations, which result in huge quantities of data to be 
stored and analyzed. Challenges exist in using appropriate data handling methods to address this 
situation.5 Two thrusts were identified that address the scientific challenges, research directions, potential 
scientific impact, and energy technology impacts associated with these research pathways. 

Thrust 1. Understanding interacting phenomena in integrated systems 
A scientific challenge the panel identified is that complex interacting systems frequently feature emergent 
phenomena across many time and length scales. Multimodal characterization and multiscale modeling 
and prediction using many simultaneous length and time scales can counteract this issue. As a result, the 
community will develop the ability to deliberately incorporate complexity in prediction and understanding 
into their data sets. 

Second, interactions occur between components, at interfaces and at the mesoscale, among additives and 
impurities, and from operating environments.6,7 Moreover, all of these interests can be strongly influenced 
by nonequilibrium processes. Basic chemistry and physics can develop a fundamental understanding of 
these processes, and manufacturing can exploit the emergent phenomena from these studies. The impact 
will be the ability to integrate modeling and prediction to enable advanced materials and chemical 
synthesis and device-level operation.  

Additionally, it is important to understand impacts of chemical contaminants in a system. This capability 
is important both in materials processing and in chemical synthesis and scale-up. Modeling across the 
mesoscale enables a fundamental understanding of materials synthesis, design, and formation necessary 
for the successful design of reliable materials and chemical processes for transformative manufacturing. 
First principles modeling will be enabled by extension to broader scales (e.g., ab initio molecular 
dynamics) to model real-world chemical systems (e.g., contaminants, co-solvents,) and by learning how 
chemical kinetics influence the relevant processes. The use of density functional theory modeling and 
molecular dynamics simulation-based programs will enable chemical design and structural performance 
prediction prior to expensive and environmentally impactful industrial process scale-up. In fact, it affords 
a more straightforward path to chemical synthesis optimization than traditional experimentally based 
methodologies. 

Additionally, information from mesoscale modeling will ultimately enable system-wide quantification of 
manufacturing uncertainty. Currently, much modeling is done by invoking a long list of simplifying 
assumptions that enable inexpensive methods of computation. Advanced computational methods 
development will be needed for this focus to enable more complex, real-world condition predictive 
modeling.8,9 

Third, the functions of a system are often far more than the sum of their parts. Research into the 
fundamental mechanisms of interactions among system components will result in a strong impact in 
efficiency in manufacturing. New capabilities from this knowledge base will be enabled to leverage 
diverse and incomplete data collections from multiple time and length scales. 

Success across this thrust is key to a strong impact on energy technology. In particular, a healthy systems 
integration science effort will require the tightening of the current connection between fundamental 
research and later process development. The goal and result will be the accelerated development of new 
technologies in energy-intensive sectors via efficiencies not possible in a traditional linear relationship 
between basic research, applied research and development, and industrial processing.  
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Thrust 2. Harnessing complexity to create robust and resilient systems 
A scientific challenge identified by the panel is that the limited control of assembly and complexity in 
integrated systems hampers the performance of existing molecules and materials and the conception of 
new processes. Research into the development of methods for predicting systems performance or failure 
will need to link components and phenomena over the entire lifetime of the system. Success in this area 
will exploit phenomena of interacting materials, chemistries, and components, thereby opening the 
envelope of composition, structure, and performance. Another challenge is the requirement of control of 
chemical and materials synthesis at multiple scales. Such control will elucidate a wide palette of options 
for creating processes and materials. The scientific impact will include self-correcting, resilient systems 
that create a diverse set of paths to new materials. 

An example of these challenges comes from work on atomic-scale toughening and strengthening 
mechanisms based on engineered multiscale microstructures. Intermetallic alloys can possess exceptional 
soft magnetic properties, including high permeability, low coercivity, and high saturation induction but 
nonetheless exhibit poor mechanical properties that make them impractical for bulk processing and use at 
ideal compositions. Laser-based additive manufacturing, however, has been shown to be useful for 
traditionally brittle Fe-Co and Fe-Si alloys at near-ideal compositions for electromagnetic applications. 
Molecular dynamics simulations provided insight into the impact of a nanoscale subgrain substructure on 
Fe-Co deformation behavior.10 Furthermore, control of the atomic structure, as measured by the extent of 
the embrittling chemically ordered phases, has been demonstrated in intermetallic alloys through AM and 
characterized using high-fidelity neutron diffraction. As a layer-by-layer rapid solidification process, AM 
was employed to suppress the extent of chemically ordered (B2) phases in a soft ferromagnetic Fe-Co 
alloy (Figure 39). 

Another challenge is developing the ability to control the envelope of performance and robustness in a 
system rather than merely maximizing a single parameter. This will enable the creation of a system that is 
inherently robust or self-correcting and thereby allows results far beyond the sum of its individual parts. 

The potential impact on energy technologies is bold. First, success in this thrust will create pathways to 
materials that are “born qualified,” enabling the confidence, efficiency and speed necessary for 
manufacturing surety.11 Second, it will enable the development of methods necessary for a robust circular 
economy, resource reuse, and extended material lifetimes.  
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Figure 39. Cross-sections of a representative 
as-built Fe-Co thin wall specimen processed 
by laser engineered net shaping (LENS). (a)-
(c) Electron backscatter diffraction maps
showing the as-built grain structure at various
magnifications and locations throughout the
specimen height. The grain structure was
predominantly characterized by a fine
equiaxed morphology. Specimens did not
possess any significant macroscopic defects.
Source: A.B. Kustas et al. Addit. Manuf. 28,
772–780, 2019.

Conclusion 
Progress on the fundamental research challenges defined by systems integration science has potential to 
dramatically improve the agility and resilience of manufacturing processes. Articulating and attacking 
these challenges will require multidisciplinary efforts that span technology readiness levels. One theme 
that is common to many aspects of systems integration science is the need to increase the complexity of 
materials and processes that are considered in fundamental studies. Although this increase in complexity 
can be challenging, it is vital because of the phenomena that arise only in complex systems and for 
systems operating in complex and variable environments. A second theme is the need to integrate data 
from diverse sources. The concepts of multiscale modeling have existed for a long time; but in many 
cases this concept focuses on using data from smaller, faster, or simpler scales to make decisions at 
longer, slower, or more complex scales. Successful systems integration science will require methods and 
researchers who can seamlessly generate and combine data from all scales to enable focusing of 
experimental efforts and process development.  
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Panel 4: Sustainable Manufacturing 

Introduction 
Around half of global annual industrial greenhouse gas (GHG) emissions are released during the 
production of steel, cement, paper, plastics, and aluminum. Of the remaining emissions, most can be 
attributed to the production of chemicals, glass, and the processing of all the above materials into 
products.1 Profit motive alone has been sufficient to prompt a steady improvement in the energy 
efficiency of primary production, largely driven by the desire for reduced energy costs. However, further 
gains have been stalled, as production of many of these materials has approached practical limits using 
today’s best manufacturing practices.2 Therefore, new discoveries in basic science that lead to disruptive 
innovations are needed to dramatically alter the landscape of opportunity in sustainable manufacturing. 
There are early signs that such approaches could include the electrification of materials and chemical 
production, with electricity coming from zero-emission and renewable sources; and reduction of the 
demand for new materials and chemicals by sustaining or upgrading the value of existing materials 
through advances in chemical recycling and upcycling. Understanding the impacts of such advances on 
sustainable primary production and remanufacturing in circular manufacturing systems and associated 
water use is also important. 

Current Status and Recent Advances 
The availability of renewable electricity at low cost has created an opportunity to electrify chemical and 
materials manufacturing.3 By electrifying chemical reactions at scale, it may be possible to reduce carbon 
for these processes, which currently account for 7% of global GHG emissions. In a future electrified 
chemical industry, sustainable, ubiquitous feedstocks—such as water, CO2, and nitrogen—could be 
converted into high-volume chemicals (Figure 40) such as ammonia,4 ethylene,5,6 and epoxides.7 A key 
scientific challenge to realizing this vision is understanding how to synergistically harness various forms 
of energy, including thermal, electrical, radiative, and mechanical energy, to achieve a desired chemical 
reaction under benign conditions. Basic energy research that overcomes this challenge will involve 
understanding the coupling of kinetics and transport, with full accounting of thermodynamics. 
Furthermore, rare species and events at the electrode–electrolyte interface will need to be fully 
understood, requiring advances in experimental methods of probing these, as well as computational 
methods for predicting them. More advanced methods of discriminating molecules at an electrode surface 
will be needed, as will discriminating bonds within a molecule, providing selectivity in electrosynthetic 
transformations. If researchers are successful in these scientific efforts, a foundation will exist on which 
stable electrosynthetic systems can be built; this is, in part, because instability is often a series of rare 
molecular events that, when put together, lead to failure of a system. Through deeper understanding of 
how to electrify chemical synthesis, mild operating conditions may be achieved, which are conducive to 
distributed manufacturing close to where renewable energy is generated. 

Similarly, for materials manufactured in high volumes—such as cement, the most widely produced man-
made material in the world (4.1 billion metric tons per year)8—GHG emissions are staggering. For 
example, as of 2018, each 1000 kg of cement produced net emits nearly 608 kg of CO2, excluding CO2 
from on-site power generation,9 and several gigatons of CO2 per year will be released in creating new 
infrastructure, highlighting the opportunity for reducing CO2 formed during the production of cement.  

Current efforts along those lines include carbon capture from flue gases, use of alternative fuels, or 
development of supplementary cementitious materials. However, flue gas from cement plants is 
considered too impure for economical carbon capture through amine scrubbing. Advances in selective, 
cooperative, and high-capacity CO2 adsorbents (e.g., metal-organic frameworks and other microporous 
materials) and membrane-based separations with greater tolerance of impurities may provide new 
opportunities to address the intolerance and high cost of conventional amine scrubbers. The current use of 
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alternative fuels, such as tires or end-of-life plastics, to power energy-intense thermal processes, while 
practical in lowering costs, does not mitigate primary emissions tied to converting CaCO3 to CaO. 
Furthermore, the use of supplementary materials in concrete has had a limited impact on the carbon 
emissions from Portland cement and may ultimately compromise its physical properties.  

Figure 40. (a) Global energy consumption versus production volumes of the 18 largest-volume chemicals, 
2010. (b) Global GHG emissions versus production volumes of 18 largest-volume chemicals, 2010. Source: 
Reprinted with permission from Technology Roadmap, Energy and GHG Reductions in the Chemical 
Industry via Catalytic Processes, International Energy Agency, June 2013. 

Deep decarbonization of cement manufacturing may therefore require the development of new 
methodologies that lower the energy intensity and emissions in converting CaCO3 to CaO, as well as 
high-temperature calcining and sintering processes downstream in production. To this end, low-
temperature electrochemical methodologies may be particularly impactful, e.g., in decarbonating CaCO3 
to Ca(OH)2 through the design and development of new electrolytic cells and integrated processes.10 

https://www.iea.org/reports/technology-roadmap-energy-and-ghg-reductions-in-the-chemical-industry-via-catalytic-processes
https://www.iea.org/reports/technology-roadmap-energy-and-ghg-reductions-in-the-chemical-industry-via-catalytic-processes
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Ca(OH)2 is an intermediate in the production of many widely used cements and therefore may serve as a 
strategic entry point for the electrification of cement production.11If Ca(OH)2 were produced using low-
cost renewable electricity, it might be possible to alleviate both chemical and thermal sources of GHG 
emissions associated with conventional cement manufacturing practices.  

Advances in electrochemistry also are poised to revolutionize steelmaking by lowering CO2 emissions. 
Steel is a key material in global manufacturing systems. Its uses span commercial and residential 
buildings as well as vehicles for transportation, industrial equipment, and various consumer goods. It is 
also vital to national defense. Shipments from domestic steel mills total ~100 million tons annually. 
However, the manufacturing of iron and steel is energy-intensive. In 2014, ~1.6 EJ of primary energy was 
consumed for that purpose, accounting for ~5% of total energy consumption in US manufacturing that 
year.12 Current methods for producing iron used in steel involve high-temperature reactions between iron 
oxide and coke in a blast furnace. This and other steps in the process result in ~0.1 gigatons of CO2 
emissions in the United States annually12 and 2.6 gigatons of CO2 worldwide.13 While iterative processing 
and furnace optimization provide near-term opportunities for energy savings, over the long term, it may 
be necessary to ensure the sustainability of domestic steelmaking through electrification of key processes.  

To that end, new classes of 
molten oxide electrolytic 
cells have shown early 
promise in deoxygenating 
iron oxide, generating 
metallic iron or its alloys 
(Figure 41). Molten oxide 
electrolysis into liquid 
metal and ideally oxygen 
gas hinges upon the 
development of inert anodes 
capable of sustained oxygen 
evolution.14 This requires a 
deeper understanding than 
is presently available of 
how the anode might be 
designed as both conductive 
and mechanically robust, 

but also resistant to transformation or decomposition in the presence of both the molten oxide electrolyte 
and oxygen gas. The anode should further be resistant to deleterious material reconstructions at applied 
potentials and at high temperatures. Harnessing the predictive power of high-throughput density 
functional theory–based (DFT) computational screens for metals and alloys of arbitrary composition and 
hierarchical complexity may prove useful in identifying new classes of anodes for molten oxide 
electrolysis. Similar screens may further provide insights into the design of molten electrolytes that are 
stable to reduction and lower the overpotential.  

To develop an understanding of process across scales requires the development of advanced spectroscopic 
and microscopic capabilities with x-rays, neutrons, and electrons for identifying key intermediates in the 
redox-driven oxygen atom transfer processes at the anode interface, and tracking of material evolution in 
space and in time to understand how kinetics and transport influence the efficiency. Operando techniques 
unraveling the full complexity of the reaction coordinate would benefit from advanced cell designs for 
such studies, given the extreme environments inherent to the process. Knowledge gleaned for how to 
direct these primary energy and materials conversion processes in electrolytic cells may be further 
leveraged for the development of a scalable, practical, and efficient process. To that end, machine 

 
Figure 41. Illustration of the direct electrochemical conversion of a metal 
oxide (ore) to liquid metal and oxygen gas using electrolysis, which requires 
two electrodes (a cathode and an anode) and an electrolyte. Such a 
process could be used to reduce carbon in the production of important 
metals, including iron for steel-making and rare earths for magnets and 
other materials. Source: M. Esmaily et al. Sci. Rep. 10, 14833, 2020. Licensed 
under the Creative Commons Attribution 4.0 International License.  

https://www.nature.com/articles/s41598-020-71903-0
https://creativecommons.org/licenses/by/4.0/legalcode
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learning could prove useful in establishing a chemistry- and materials-aware framework to co-develop 
electrolytic methodologies and processes through modeling, simulation, and visualization of complex 
interdependencies of system variables across scales. Foundational discoveries in basic science regarding 
how to deoxygenate metal oxides to metals and metal alloys in molten electrolytic systems may find use 
more broadly, e.g., as means to convert rare earth oxides to rare earth metals. 

With regard to the sustainability of battery manufacturing, both lithium carbonate (Li2CO3) and lithium 
hydroxide (LiOH) are used as precursors for the production of cathode powders and metal anodes used in 
the manufacturing of current lithium-ion and future lithium metal batteries for electric vehicles, aircraft, 
and the grid. These salts are also used to produce ceramics and glass. Domestically, raw materials for 
Li2CO3 and LiOH are sourced from mines such as those in Clayton Valley, NV, and King’s Mountain, 
NC. LiOH is typically produced using a salt metathesis: Li2CO3 + Ca(OH)2 → 2 LiOH + CaCO3. This 
process generates dilute aqueous solutions of LiOH (~3%), from which LiOH is obtained after 
concentration and crystallization over long periods. When lime is used in this process, calcium impurities 
are substantial; and removing them increases the time and cost of LiOH manufacturing for key industries 
that require high-purity LiOH in high volumes. Moreover, a further complication in LiOH manufacturing 
comes with scale as a result of the voluminous nature of CaCO3 precipitates.  

Strategies for efficiently producing LiOH directly from raw material sources, or more effectively 
converting Li2CO3 or other lithium salts to battery-grade LiOH, are needed to address the sustainability of 
lithium feedstock production for use in manufacturing and energy systems. By analogy to the sustainable 
processes identified for the electrification of cement production, electrification of LiOH production from 
LiCl, Li2CO3, Li2SO4, or other lithium salts from concentrates, leachates, or brines would require the 
development of new and selective electrolytic systems. It would also require advanced membranes and 
electrolytes with which it might be possible improve the efficiency of the process. If such advances are 
realized, highly pure lithium feedstocks may be put to use in the production of lithium metal for future 
manufacturing of higher–energy-density batteries than are currently available. There are also substantive 
opportunities to realize circularity in supply chains for battery manufacturing, e.g., in recovering valuable 
and in some cases critical raw materials, such as cobalt, nickel, and other mineral resources (Figure 42). 

Sustainable manufacturing increasingly must deal with not only the means and methods of production but 
also end-of-life. Modern society has largely adopted linear product life cycles: “make–use–dispose.” For 
plastics and polymers generally, this approach is particularly wasteful (Figure 43). Approximately 40% of 
post-consumer waste for plastic packaging is landfilled, functionally isolating it from domestic 
manufacturing systems.15 Another 25% is incinerated for energy recovery,15 which generates GHGs and 
may release toxic combustion products into the environment near incineration facilities. Some plastics, 
such as polyvinyl chloride, are not incinerated because of the difficulties in managing the impacts of toxic 
combustion products. Recycling rates are low and vary widely by polymer. More often, the recovered 
materials are sorted so that only the most easily recycled streams are processed for reuse, e.g., clear 
plastics of linear and high-molecular-weight polyethylene terephthalate or high-density polyethylene. 
Intrinsic recycling opportunities for different plastics are tied to the foundational polymer chemistry and 
the lability or reversibility of constituent polymer bonds, as well as extrinsic factors such as the 
prevalence of additives or impurities in the polymer. The latter are typically sorted out using manual and 
automated processes at recycling facilities, e.g., based on color, density, product class, and other sortable 
features. Assuming the plastics can be cleaned and sorted, mechanical reprocessing leads to a variety of 
chain degradation mechanisms that lower the overall molecular weight of the material, which negatively 
impacts other physical and chemical traits of the polymers and renders them significantly altered.  
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Figure 42. Batteries may be recycled after removing cells from their packs, after which constituent elements 
are extracted. Most efforts today are focused on the cathode, which contains most of the difficult-to-
obtain raw materials such as cobalt, nickel, and lithium. Recycling becomes challenging when cathode 
chemistries vary. Using today’s best practices, only 30–40% of a battery’s embodied mineral resources are 
recovered. Advances in recovery and refinement are needed to realize circularity in battery 
manufacturing. Source: Image provided by Argonne National Laboratory. 

Because of the tendency for polymers to be downgraded during recycling, only ~2% of all recovered 
plastic waste is returned to the same manufacturing loop for similar product classes. More often, the waste 
must be mixed with virgin materials to meet manufacturing specifications for conversion into products. 
The remaining waste typically leaks into the environment, where it may have substantial environmental 
impacts, largely associated with degradation products and the leaching of toxic additives from the 
processed materials over time. Whereas energy and monetary investments in a product are lost when the 
product is disposed of, these investments are retained with circular life cycles that reuse product 
components, chemicals, and materials.16,17 Creating such circular life cycles requires improved 
understanding and scientific advancements in both materials and the processes related to reuse (e.g., reuse 
as-is, remanufacturing, and recycling of chemicals and materials associated with end-of-life products). 
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Figure 43. The majority of used plastics go to landfills and incineration, where materials are lost forever as a 
resource. Only ~16% of plastics waste is reprocessed to make new plastics; the “leakage” into oceans is 
primarily due to lapses in landfill management or a complete lack of waste-disposal systems. From a 
resource-efficiency and conservation perspective, this analysis suggests that a huge amount of potential 
value is currently being lost—value that could instead be captured by better approaches to reusing 
plastics waste. There are three principal approaches to the reuse of plastics: mechanical recycling, 
chemical recycling, and processing the plastics waste back to basic feedstocks. All these approaches 
have suffered from a vicious cycle in which a lack of raw materials due to low rates of recovery of used 
plastics has limited their growth and dampened interest in their further development and investment; this 
could now be reversed. Mechanical recycling takes used plastic and physically processes it back to resin 
pellets, which results in substantial downgrading of the materials due to cleavage of the polymer chains in 
the process. A key challenge is finding how to preserve the performance quality of resins through 
recycling steps and avert the deterioration that currently occurs—which may be possible through 
chemical recycling via which polymers are reverted back to monomers and thereafter refined. Source: 
Exhibit from “No time to waste: What plastics recycling could offer,” September 2018, McKinsey & 
Company, www.mckinsey.com. Copyright 2020 McKinsey & Company. All rights reserved. Reprinted by 
permission. 

 

To circularize product life cycles, several challenges related to the design, recovery, and re-processing of 
products, chemicals, and materials must be addressed. End-of-life product collection processes often 
allow materials and chemicals to be mixed (e.g., mixed plastics and steel mixed with aluminum).18,19 In 
addition, used chemicals and materials are often contaminated, e.g., food waste on plastic and grease on 
steel. Products in need of recycling often are made up of several types of polymers, wood, metals, glass, 
and other materials. Even plastic products may come as mixtures of two or more resins, blends or 
laminates (e.g., flexible packaging for food and beverage). During use, plastics are oxidized, which 
subsequently makes them more susceptible to thermal and mechanical degradation during reprocessing. 
Residues and other contaminants retained in the polymer waste can diffuse and redistribute when 
processed from melts; that process can lead to further degradation of properties such as decreases in 
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elongation at break, fracture toughness, melting point, or degree of crystallinity, and even changes in 
appearance. Trends toward circularization of manufacturing systems have pointed to the need for 
remedies, which could come via chemical recycling. Although there are current research directions in 
chemical recycling toward valuable chemical feedstocks (i.e., upcycling), examples of recycling to 
monomers are rarer. A complete understanding of the opportunity to integrate monomer-to-monomer 
circularity in polymer manufacturing is needed to determine the impact of such innovations on sustainable 
manufacturing beyond what already has been accomplished for polyethylene terephthalate. 

Scientific Challenges and Opportunities 
A molecular-level and structural-level understanding of chemicals and materials is needed to sustainably 
synthesize them in primary production, e.g., via electrification, and even circularize their reentry in 
manufacturing systems. Such knowledge is required to design chemicals and materials for processing, 
use, and reprocessing for their use across multiple, circular life cycles. For example, in the design of the 
next generation of circular polymers, monomers will need to be chosen not only to deliver specific 
thermomechanical properties for different product classes but also to deliver on the promise of circularity 
through energy- and atom-efficient polymerization and depolymerization.20 Hence, catalysts enabling 
selective depolymerization will be impactful. If the science of pairing catalysts and polymers becomes 
fully developed in time by nurturing these activities now, it may be possible to kickstart a circular 
economy of polymers and composites. For the purposes of reprocessing, new methods and approaches are 
needed that are less sensitive to impurities in feedstocks from recycling streams that may be contaminated 
or have mixed content. These new methods/approaches also may need to adapt to time-varying changes in 
feedstock impurities. 

A key barrier to effective circularity is the difficulty of recycling heterogeneous waste streams at end-of-
life.21,11 The creation of materials/chemicals for a given use often involves the creation of a mixture (or 
alloy), e.g., a polymer mixed with plasticizers and colorants, or iron alloyed with chromium and carbon. 
The next use cycle may require a different mix/alloy, and it is generally energy-/carbon-intensive to return 
the materials/chemicals to their unmixed (pure) state. Key scientific challenges include the design of new 
chemistries for metal alloys and polymers that are resilient to contamination/material mixing during end-
of-life processing; development of manufacturing processes that are resilient to suboptimal chemistries 
from heterogeneous waste streams; and novel low-energy, high-throughput multi-phase separation 
techniques that can, for example, prevent liquid copper from wetting steel scrap or remove trace iron from 
aluminum melts. To address these scientific challenges, potential research directions include the study of 
recycling-friendly materials, the degree to which material properties can be achieved through processing 
of a limited set of base chemistries, and material detection and separation in different (multiple) phases. 
The potential scientific impacts include a greater understanding of the thermodynamics of separation at 
elevated temperatures, and the recycling of immiscible polymers. Consequently, the significant positive 
impacts on the industrial system will include increased recycling rates and the availability of recycled 
content in the material supply chain; this will reduce the production of GHG emissions, the energy 
intensity of the process, and the water use tied to recovery and refinement (e.g., separations). In addition, 
such advances are expected to lead to increased recycling of materials within the United States, enhancing 
the nation’s material independence and security. 

The anticipated demand for more circular materials in manufacturing systems may lead to a disruption of 
conventional approaches to experimentation to accelerate the discovery process. Even leading-edge 
approaches for engaging in scientific discovery today are capital-intensive and often require years to 
deliver potential solutions. In the laboratories of tomorrow, it may be that accelerated materials and 
process discovery for next-generation manufacturing processes will be aided by autonomous (i.e., self-
driving) laboratories where automated experimentation platforms are augmented with artificial 
intelligence (AI) (Figure 44). Here, novel methods based on AI can be used to generate and subsequently 
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screen experimental procedures for making and even deconstructing materials by hypothesizing about 
their outcomes based on previous experiments. Some of these methods may be unassisted while others 
may be designed to keep an expert in the loop. By either scheme, these loops provide unbiased and 
informed feedback, which may reduce the number of experiments needed for the discovery of circular 
materials. When these loops are further executed by robots in the lab, making use of fully automated 
workflows, autonomous experimentation can even shorten the timeframe in which discoveries are made 
and, in the long term, the costs associated with discovery.  

New sustainability goals and 
commitments, on the part of 
industry and of governing 
institutions and agencies, that 
reflect a broader societal shift 
toward a circular economy are 
placing new demands on 
materials and manufacturing 
systems. As a result, companies 
in the chemicals and materials 
industries must redesign their 
products to meet emerging 
sustainability constraints 
without sacrificing product 
performance. To address these 
challenges, machine learning 
(ML) -based materials design 
and optimization capabilities22 
could enable us to identify 
chemistries and processing 
routes that are most likely to 
simultaneously satisfy a large 
number of property targets and constraints. Large, publicly accessible materials data sets would enable the 
training of accurate ML models and intuitive visualizations23 that could then be used by product designers 
to efficiently “design for sustainability” using the results of those ML models. 

These developments will allow materials scientists to rapidly explore and advance the “Pareto frontier” of 
materials performance, i.e., the materials that offer optimal trade-offs among many conflicting properties 
of interest. Visualization tools similar in spirit to Ashby charts24 will enable the designers responsible for 
the insertion of new materials into products to understand the advantages offered by these emerging, ML-
designed sustainable materials. This virtuous cycle of rapid materials development followed by rapid 
insertion of improved materials into products would enhance the competitiveness of American 
manufacturers by enabling agility in the face of fast-changing consumer preferences and regulations 
related to sustainability. 

Conclusions 
Basic energy research in sustainable manufacturing should address the primary means of production of 
important chemicals and materials, as well as the means to recirculate those resources in circular 
manufacturing systems. Doing so will provide unprecedented opportunity to lower the intensity of 
manufacturing on a global scale. For example, manufacturing processes conducted today using energy-, 
carbon-, and water-intensive thermal processes might in the future be conducted electrochemically, 
photochemically, or by coupling several types of energy inputs to direct chemical transformations 

 
Figure 44. Modules involved in next-generation self-driving laboratories, 
which are empowered by artificial intelligence for experiment 
planning, device scheduling, data analysis, and researcher 
communication. A control software (top right) orchestrates individual 
modules of the self-driving laboratories. Modules highlighted in gray 
are directly involved in the experimentation process, either to plan 
new experiments or to execute recommended experiments. Modules 
highlighted in yellow improve the user-friendliness and practicality of 
self-driving laboratories and facilitate long-term data storage or 
communication with researchers. Source: Reprinted from Trends 
Chem. 1(3), F. Hase et al., Next-generation experimentation with self-
driving laboratories, 282–291, 2019, with permission from Elsevier.  

https://www.sciencedirect.com/science/article/pii/S258959741930019X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S258959741930019X?via%3Dihub
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selectively and with tolerance of less refined feedstocks. Advances in catalysis using these 
unconventional energy inputs will provide further gains in efficiency. If those are successful, it also may 
be possible to increase the recyclability of consumer products and, in stride, increase the amount of 
recycled content of future manufactured products. For example, catalyst design could focus on selectivity 
in transformations in chemically heterogeneous environments such that manufacturing can produce a 
desired chemical or material from less refined feedstocks, as is typical of recyclates. Doing so will 
increase the resilience of manufacturing systems by providing access to critical resources and feedstocks 
from waste, rather than extracting them to meet demand, which is growing at an unsustainable rate.  

Underlying the scientific challenges in sustainable manufacturing are the fundamental processes by which 
losses, entropic and otherwise, are managed at all stages of production, use, recovery, and refinement for 
reuse. To understand these losses will require the development of new in situ characterization capabilities, 
data analytics, and theory to understand from multiphysics models how kinetics and transport phenomena 
across scales are tied to fundamental processes associated with chemical transformations in bonds and at 
active sites in complex reactive environments. Similar insights will be needed to address outstanding 
challenges in reactive separations, which could be the key to refining feedstocks from recyclates for 
reuse. Through such insights, it may be possible to design and develop a next generation of hard and soft 
materials that are intrinsically more recyclable by minimizing entropic losses.  

It may be possible to accelerate the discovery of more sustainable materials, manufacturing, and recycling 
processes by automating workflows through advanced instrumentation, data analytics, and machine 
learning. Fully autonomous workflows are also possible when processes are coupled to robotics and AI is 
used to inform and control robotic workflow. AI can analyze the outcomes of experiments to refine 
hypotheses for the governing behavior and interdependencies to ensure that only the most informative 
experiments are executed in the next round of tests in pursuit of a goal. It will also allow researchers to 
test more-complex and nuanced hypotheses in energy and manufacturing systems. These can be executed 
across scales in ways not previously imagined, resulting in a transformative impact on the generation of 
knowledge and the foundations of science for sustainable manufacturing.  
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Panel 5: Digital Manufacturing 

Introduction 
Digital manufacturing applies computational tools to simulate and control manufacturing processes—
from design to final product. The precise control of these processing steps has led to significant advances 
in design optimization methods as well as the fabrication of materials with spatially tailored properties. 
New capabilities are emerging to maximize the performance of digitally manufactured materials against 
multiple constraints (e.g., maximizing one or more properties, while minimizing the amount of material 
needed). Digital manufacturing methods have recently emerged that enable voxel-level control of the 
structure and composition of materials across an unprecedented range of length scales and classes of 
materials.1–3 Such methods also provide the ability to construct digital twins that intimately link process 
and properties.  

Despite many recent advances, digital manufacturing has largely progressed in the forward direction only. 
A pre-programmed input drives a machine toward a physical output (product) that attempts to exactly 
match the intended design. Processing outcomes can be agnostic to differences in equipment used, 
operators, time-of-day, feedstock, and combinations thereof. Manufacturing at digital speeds requires 
methods that elevate beyond automation, toward autonomous operation in which computational design, 
process actions, and outcome dynamically adapt based on observation and experience. The end result 
would be transformative manufacturing methods that are capable of making decisions to achieve the 
intent behind design requirements, i.e., components that are “born certified” rather than strictly following 
a predetermined set of processes. 

Science Challenges and Opportunities  
Rapid developments in advanced manufacturing techniques have led to the integration of what would 
traditionally be considered materials processing with the manufacturing of macroscopic components. This 
opens up the design space in the sense that material properties can be varied and tailored through multiple 
pathways: from chemical to microstructural to macroscopic (including shape, topology, and 
compositional configuration). This emerging capability brings about a concomitant challenge of 
constitutive solid properties becoming a function of manufacturing, rendering digital manufacturing 
inherently multiscale. Both processing and manufacturing operations typically employ high temperatures, 
laser exposure, and sometimes also high pressures, which introduce gradients in stimuli, produce far-from 
equilibrium microstructures, and induce phase transitions via a complex, nonlinear process. To accurately 
predict part performance and quality, modeling must capture the multiphysics nature of these advanced 
manufacturing methods across multiple scales. The relationships among spatio-temporal structure and 
composition variations and process parameters are not well understood.  

Existing state-of-the art digital manufacturing methods are extremely computationally demanding; 
practical use of optimization models and uncertainty quantification is currently not possible. Similarly, 
on-line monitoring and data processing for nondestructive testing in real time are unattainable today. 
While advanced manufacturing has opened up the design space to unprecedented dimensions, its 
exploration and optimization will be possible only through fast and efficient multiscale, multiphysics 
digital models. This represents a serious challenge because even the highest-fidelity, physics-based 
models available today are prohibitively expensive. Without a guided search, the amount of collected data 
is too expansive to explore. Additionally, given the limited understanding of advanced manufacturing 
processes, it is unclear what data should be stored and how they should be made available and utilized 
effectively (e.g., infrastructure for sharing and security of data). Exacerbated by the inevitable presence of 
defects and uncertainties within performance parameters, the lack of knowledge of how to plan and to 
optimize digital manufacturing methods compromises the quality of the part. 
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Topic 1. Multiscale and multifunctional co-design frameworks that leverage digital 
manufacturing 
The first basic research direction that was discussed for digital manufacturing was the creation of a 
framework that can discover multiscale and multifunctional material systems. Recent developments in 
advanced manufacturing techniques have enabled the fabrication of a broad range of multifunctional 
composites and have spanned an unprecedented range of critical feature length scales within complicated 
3D geometries that could not be made before. These capabilities enabled the demonstration of material 
properties and performance that previously were deemed impossible.4–6 Looking ahead, they promise 
potential breakthroughs in engineered material systems that may substantially outperform current 
materials and manufactured products.  

Two major barriers prevent the achievement of this paradigm shift in digital design: (1) The design 
parameter space is complex and requires multiscale and multiphysics computation methods to effectively 
explore, capture, and achieve the desired performance, which is not possible with current state-of-the-art 
digital design methods. (2) The complex interactions between material composition, microstructure, 
defects, topology, and physics of the manufacturing process render the intuition-based designs inaccurate 
and impractical. Moreover, emergent digital manufacturing models are too computationally demanding. 
Nascent data-driven machine learning techniques offer a potential route for property characterization and 
prediction via effective data-driven models; however, large data sets are needed for training. These 
fundamental challenges currently limit the discovery and manufacturing of new materials designs and 
architectures that may give rise to superlative performance. 

Current status and recent advances 
Advanced material design and fabrication at the meso-, micro- and nanoscales can lead to dramatic 
improvements in materials properties and performance that could not have been imagined previously 2,7–9 
over a wide range of disciplinary applications, as shown in Figure 45–Figure 477. For example, the 
superlative performance of architected materials fabricated at the laboratory scale primarily stems from 
controlling their composition and structure across multiple scales, as demonstrated by ultralightweight, 
mechanically resilient hierarchical ceramic nanolattices shown in Figure 461 and the heat exchanger 
shown in Figure 477.10 By further expanding these materials sets and scalable digital manufacturing 
methods, one should ultimately be able to create architected materials or systems with optimum 
functional performance over the entire property space of interest. However, the design criteria needed to 
achieve their optimal performance are currently unknown.  

A recent series of multiscale optimization studies revealed that ideal system performance usually does not 
require maximizing or minimizing a particular material property; rather, it is a function of the system 
configuration, which is typically unknown a priori.11–14 Rigorous coupled optimization of material and 
system configurations can lead to orders of magnitude improvements in the overall system 
performance.11–13 In contrast, exclusive optimization of system design may produce a combination of 
material properties that either are challenging to find through computations or do not even exist.14 A 
particular challenge remains to effectively proliferate systems-level design requirements down to the 
material level. 
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Figure 45. Design for multiphysics and multiple scales can deliver dramatic performance gains that have 
previously been thought impossible. Source: Adapted from M. Osanov and J.K. Guest, Rev. Mater. Res. 
46(1), 211–233, 2016. 

Figure 46. Advanced manufacturing has 
enabled a realization of an ultra-
lightweight, mechanically resilient novel 
material at nanoscale. Source: L. R. Meza et 
al. Proc. Nat. Acad. Sci. 112(37), 11502–
11507, 2015. 

Figure 47. Complex heat exchanger design at material 
scale. Source: Image courtesy of James K. Guest, Johns 
Hopkins University. 

To construct a co-design framework that can manage the trade-off of conflicting multifunctional 
requirements, we need basic science advances that enable the modeling, design, and fabrication of 
optimized systems across multiple length scales. Physics-based models are beginning to emerge that 
couple across scales and multiple physical phenomena and/or chemistry, and the predictions can be 
sufficiently reliable to tune the manufacturing protocol and minimize defects.15 However, the 
computational resources required for such high-fidelity physics simulations, an example of which is 

https://www.annualreviews.org/doi/abs/10.1146/annurev-matsci-070115-031826
https://www.annualreviews.org/doi/abs/10.1146/annurev-matsci-070115-031826
https://authors.library.caltech.edu/60121/
https://authors.library.caltech.edu/60121/
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shown in Figure 48, are extremely costly and do not allow for an iterative approach. Data-driven 
modeling and machine learning offer a pathway to potentially overcome these limitations; however, 
insufficient data from new manufacturing technologies coupled with the growing palette of new materials 
currently limits the successful integration of data-driven techniques.  

Scientific challenges and opportunities 
A major challenge is the lack of a rigorous pathway to 
communicate the system-level multifunctional performance 
requirements down to the relevant material length scale. Materials 
design is predominantly driven by the required properties, which 
can serve as surrogates to communicate the material behavior to 
the system level. However, the optimum material properties are 
not always intuitively known and are influenced by the system 
configuration. Digital manufacturing offers a means to encode 
complex functional relationships that cannot be captured via 
numerical computations. To achieve maximal performance at the 
system level, basic science advances are needed that integrate 
predictive design with digital manufacturing to create new 
material and/or composite architectures with spatially controlled 
composition and structure across scales. 

A converse challenge is the development of a rigorous 
methodology to quantify the effects of material design on overall 
system performance. The current state of the art of material 
design for a specific set of properties does not adequately inform 
system performance. The complex and emergent material 
behavior of multi-material architectures or composites at the 
system level is lost, along with the potential to tailor material 
designs. A physics-based multiscale model is needed that rapidly 
simulates and provides material responses that are propagated to 
system-level benefits. While existing physics-based models are 
promising, they are computationally demanding. A potential solution may be to develop new physics-
based, data-driven modeling approaches, or novel formulations within existing numerical techniques, that 
enable low-order and/or multi-fidelity models. To enable data-driven approaches, it is imperative to first 
establish and define the data to be collected and analyzed. Developing computationally accessible and 
reliable predictive models is a critical need for digital manufacturing. 

One important consideration of accurately predicting and understanding material performance and 
behavior is the type, morphology, and distribution of defects generated by a given digital manufacturing 
method. A major barrier is the inability to predict and control defects and understand their impact on 
system performance. Due to the lack of proper description and quantification of how defects affect final 
material systems, most current efforts focus on simply trying to eliminate defects and achieve the 
intended “ideal” behavior. However, digital manufacturing offers the potential to exploit and control 
defect populations, which may prove, in some cases, to be beneficial design features. Rapid defect 
modeling can guide the optimization of manufacturing parameters (e.g., tool paths, laser flux) to achieve 
the desired defect engineering. Defects and associated uncertainties can be managed with this co-design 
framework to ensure overall reliability and safety of the system. This is a critical step toward component 
validation and qualification. 

 
Figure 48. Metal additive 
manufacturing process simulation is 
highly complex with many physical 
interactions and requires an 
extremely high-fidelity model. Its 
iterative application for optimization 
is not computationally attainable. 
Source: M.J. Matthews et al. Acta 
Mater. 114, 33–42, 2016. 

https://www.sciencedirect.com/science/article/pii/S135964541630355X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S135964541630355X?via%3Dihub
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The final challenge in realizing the full potential of digital manufacturing is the rigorous formulation and 
development of computational methods that integrate complex multiscale and multiphysics effects with 
uncertainties to uncover new material and system configurations. Intuitive design based solely on human 
creativity is unlikely to fully realize the disruptive potential of digital manufacturing. A co-design 
framework that integrates materials and systems will offer an economical and systematic search of this 
broad parameter space with confidence supported by uncertainties and defect quantification.  

Given the inherent design complexity associated with multiscale, multifunctional material systems, basic 
research is needed to identify the optimum combination of mathematical and physical insights that 
augment human intuition.  

Conclusion 
Several major scientific challenges have been outlined that, if addressed, will enable the revolutionary 
future of digital manufacturing to be realized through multiscale codesign. First, there is a need for a 
rigorous computational framework to systematically search the complex multiscale and multifunctional 
design space and discover new optimal material architectures. This co-design framework should enable 
the quantified understanding needed to translated system-level multifunctional performance requirements 
to the materials scale, including the quantification and management of materials parameters, defects, and 
uncertainty. If implemented, this framework would enable augmented intelligence, which, coupled with 
human expertise, would lead to disruptive designs and manufacturing methods. 

While digital manufacturing is ushering in a new era, the expertise and computational resources required 
to ensure future commercial adoption at scale remain extremely high. Solving these scientific challenges 
will enable digital manufacturing of materials and systems with unprecedented performance. 

Topic 2. Discover approaches to real-time adaptation and property qualification of 
digital processes  
In parallel with addressing the multiscale modeling and design challenges associated with creating 
optimized, multifunctional components, this second topic seeks to understand and adapt the dynamic and 
stochastic processes inherent to many digital manufacturing methods. New approaches are needed to 
better understand how both instantaneous conditions and processing pedigree impact component quality. 
The development of in situ assessment of machine and component state relative to a design objective, as 
well as the exploration of autonomous decision-making during component processing, are paramount. 

Current status and recent advances 
Although digital manufacturing offers unprecedented control of material chemistry and metrology voxel-
by-voxel, the quality of the final component is influenced by many complex multiscale, interdependent 
factors. The relationships among material, process parameters, and spatio-temporal variations that arise in 
advanced manufacturing are not well understood. Currently, material performance cannot be predicted 
well or controlled because of the inability to accurately account for defects. 

High-fidelity physics-based models are beginning to emerge that enable the understanding and modeling 
of materials processes and manufacturing. The existing models are typically complex and take days or 
weeks to simulate a few seconds of a given process, rendering the current state of the art not suitable to 
provide rapid insight and feedback to a manufacturing process during fabrication. The computational 
demands of these models are extremely high and are far from being able to iteratively apply or compute 
sensitivities to improve the quality of parts. The process design space consisting of control parameters is 
quite large, and there is a lack of efficient numerical tools to search and determine the most optimal 
combination of parameters. 
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One promising approach to highly complex multidimensional problems is machine learning, which 
requires large data sets that are not always readily available. There is a flurry of research activities in this 
area across a wide range of advanced manufacturing processes and materials; but the data formats are not 
easily sharable and there is no common platform that makes the data easily accessible while ensuring 
security. Given this lack of understanding, it is unclear what data should even be stored. This presents a 
major obstacle in developing a machine learning approach to understanding digital manufacturing 
methods. 

To collect these data and enable real-time adaptation and qualification, sensors, monitoring, and 
nondestructive evaluation techniques must be integrated within digital manufacturing platforms. For 
example, additive manufacturing techniques involve highly dynamic and multiphase processes; and the 
patterned materials often experience locally extreme environments. Most sensors used today are not 
suitable for these conditions, driving the need for new sensor technologies capable of real-time, in-line 
monitoring. In addition to hardware, in situ assessment requires fast and reliable data processing. 

Scientific challenges and opportunities 
Given the complexity of challenges associated with predicting and pre-defining the design and processing 
parameters, the quality of digitally manufactured materials, components, and systems involves a high 
level of uncertainty and is considered unreliable. It is therefore pertinent to develop this capability for 
real-time adaptive control and qualification to ensure that manufactured parts can be born-qualified. 

The emergence of high-fidelity, multiscale, multiphysics models is providing insights into the complexity 
of advanced manufacturing and processing. In addition, machine learning opens new avenues to fast 
simulation. Combining data-driven and physics-based approaches, new opportunities exist in developing 
algorithms that drastically reduce the requirement for large amounts of data. Building on machine 
learning trained by in-line data, it is expected design and processing parameters can be varied in real-time 
during manufacturing to ensure reliable part production. 

While high-fidelity multiscale models are beginning to show potential, many challenges remain. Physical 
interactions at the atomistic level give rise to complex behavior at the microstructural and continuum 
scales which is not intuitive and cannot easily be predicted. Many uncertainties exist at each length scale, 
with different underlying physics at each one. Recent advances in model fusion and uncertainty 
propagation can be used to quantify the uncertainties at every scale and their sensitivities to the design 
features and processing parameters. As simulation speeds and predictive capabilities accelerate, it is 
anticipated that real-time adaptive control needed to ensure quality will be realized. 

Another opportunity area involves the coupling of materials, component, and system level design. Today, 
material development, topology design, and manufacturing are decoupled. However, a co-design 
methodology that seamlessly integrates material properties and processing parameters would prove highly 
valuable. Early work in this area has revealed that topology design is highly sensitive to the material 
properties and processing and vice versa. Real-time data of materials properties and processing 
parameters can be used to predictively guide digital manufacturing methods, so that their final products 
are reliable and satisfy functional requirements. 

Conclusion 
Developing a closed-loop system that monitors manufacturing processes and part quality in-line and 
autonomously controls design and process parameters in real time would ensure that digitally 
manufactured parts are born qualified. This revolutionary breakthrough is now within sight given the 
emergence of new multiscale multiphysics modeling, machine learning, exascale computing, 



126 

optimization, multifunctional materials, scalable digital manufacturing methods, and nondestructive 
evaluation systems. 

Final Remarks 
Materials synthesis, manufacturing, and qualification are tightly coupled. By exploiting this coupling 
through a fully digital framework that integrates fast process models, data from in situ diagnostics, and 
machine learning algorithms that work in concert, an adaptive, autonomous manufacturing environment 
can be achieved. To realize this vision, many challenges must be overcome, including the development of 
fast, multiscale multiphysics models, digital surrogates, collection of in situ process data, and predictive, 
actionable outcomes. Overcoming these barriers requires transformational scientific advances that allow 
digital manufacturing to provide a scalable pathway from design to production of qualified parts. The 
critically needed areas of research and the key ideas identified by this panel led to PRD 2: Integrate 
Multiscale Models and Tools to Enable Adaptive Control of Manufacturing Processes and also influenced 
the development of PRD 5: Co-Design Materials, Processes, and Products to Revolutionize 
Manufacturing. 
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Panel 6: Crosscutting Themes 

In parallel with progress in the fundamental synthesis science, critical scientific advances are needed to 
enable the translation of new laboratory-scale discoveries to manufacturing scales suitable for meeting 
consumer demand. Up to the present time, many new material discoveries have failed to advance beyond 
successful early-stage technology readiness levels; this workshop was intended to identify the basic 
science research needs to enable progress beyond this point, i.e., transformational manufacturing.  

Panel 6 was tasked to identify cross-cutting themes, and to that end the panel participants initially were 
dispersed across the other topical panels and later reconvened to discuss and capture research needs 
spanning multiple research areas. This panel report captures these crosscutting issues from each of the 
original theme panels, many of which were explicitly incorporated into the subsequent PRD panels. Each 
of the theme-based discussions is presented, followed by an enumeration of key cross-cutting areas. 

Theme 1. Precision Synthesis Science 
The critical role of defects in synthesis was a major discussion point. To fully achieve future advances, it 
will be important to develop a detailed scientific understanding of defects with the aim to achieve 
enhanced detection, control, and/or elimination of defects across multiple length scales at all stages of 
manufacturing. 

Often defects can arise from the raw materials themselves, and as a result, high-purity materials may be 
used for initial fundamental studies. However, raw material availability and affordability can be an 
obstacle when the synthesis needs to be transferred to larger volumes. At large scales, it may be difficult 
to achieve raw material purity comparable with materials used at the lab scale; it is therefore critical to 
understand the product sensitivity to impurities and how the manufacturing process impacts materials 
selection and vice versa. Often these issues are not considered during basic research phases and thus 
could provide an additional barrier to moving novel approaches to higher levels of technology readiness. 

Advanced predictive tools can offer support to direct synthetic strategies. Artificial intelligence (AI) and 
machine learning (ML) approaches to autonomous exploration in materials fabrication were identified as 
significant future capabilities, but they will require high-quality data sets to enable predictive physics-
based models and ML approaches, with AI-enabled redirection on the fly. The data required to achieve 
this goal may not yet exist, and the computational tools are still very much in their infancy. The solution 
is the combined development of physics-based theory feeding computational ML advances, using data 
collected from advanced characterization techniques. 

New synthesis, processing, and characterization tools will be needed for this effort to be successful, 
including digital synthesis, high-throughput precise characterization tools, rapid in situ methodologies, 
and expanded methods to identify structure and function signatures—accessed and used for real-time 
feedback control. There is a need for real-time synthesis and characterization tools for monitoring the 
progression of assembly for feedback into the synthesis process, and a need to adapt the novel methods 
developed at user facility beamlines to achieve production floor on-line and in-line characterization. 

Theme 2. Processing and Scale-Up Science 
The Processing and Scale-Up Science discussions also addressed defects (similar in scope to the Precision 
Synthesis Science discussions), but with the additional consideration of self-healing mechanisms. In fact, 
it was noted that defects can be beneficial and can be deliberately induced in some cases, although more 
fundamental knowledge of the defects themselves is needed to fully utilize these approaches. There was 
much discussion that “out of equilibrium” processes, along with associated characterization and modeling 
are particularly challenging, but are essential to enable advances in transformational manufacturing.  
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Physics-based multiscale modeling is used to connect measurements to properties for translation to scale-
up. While AI is promising, present AI is insufficient and should be used to complement, not replace, more 
conventional physics-based models. These methods identify key properties to be measured. 

It was recognized that scale-up and process design require large volumes of data. Because processing and 
rapid interpretation are needed for process control and future use, strategies for reducing large data 
streams and reduced models are needed to allow more rapid response. For example, models and processes 
that work at the lab scale for catalyst systems may not translate to the commercial scale. Therefore, 
understanding how to measure and use operando techniques so that the collected data are useful inputs to 
models of large-scale behavior will be key criteria for future implementation of these approaches. 
Moreover, there are needs for developing advanced sampling methods so that operando probes can be 
made to work for scaled-up processes. For instance, the high depth of penetration afforded by neutron 
beams in most engineering materials, combined with the time structure inherent in pulsed neutron 
sources, enables time-resolved and spatially resolved mapping of structural changes under manufacturing 
or operating conditions (Figure 49). However, in situ and operando studies present many challenges and 
require the identification of solutions for practical applications. The reason is that real parts have complex 
geometries that may not be well matched to the available sources; the grain size, morphology, and texture 
may be complex; large samples and complex sample environments may yield beam pathways that 
significantly attenuate the beam; and some materials are prone to activation during exposure to a neutron 
beam.  

Figure 49. (a) An internal combustion engine manufactured from a novel high-temperature aluminum alloy 
mounted on the VULCAN instrument at the Spallation Neutron Source for operando characterization using 
neutron diffraction. (b) The scattering volume is precisely located at defined mapping points within the 
engine, and the data acquisition was synchronized with the spark timing to nondestructively resolve 
changes in temperature and lattice strain. Source: Reprinted with permission from M.L. Wissink et al., 
Operando measurement of lattice strain in internal combustion engine components by neutron diffraction, 
Proc. Nat. Acad. Sci. 117 (52), 33061–33071, 2020. Used by permission under Creative Commons 
International License 4.0 (CC-BY-NC-ND 4.0).   

Theme 3. System Integration 
As with other theme panels, within the System Integration area, there was considerable discussion of 
metrology and measurement capabilities as they relate to manufacturing sciences. The development and 
utilization of AI, ML, and data science approaches were identified as critical enabling approaches for 
better design of experiments. However to enable seamless integration of these components so that they 
will be successful in an increasingly competitive economic environment, it was emphasized that 
understanding technoeconomic thinking and tensions between various performance and economic 
tradeoffs could provide an opportunity for driving basic science aimed at transforming manufacturing—

https://www.pnas.org/content/117/52/33061
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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i.e., that “use-based” science needs to be aware of product needs as one inspiration driving materials and
process science advances. This concept aligns with some of the discussion from the Precision Synthesis
Science topic, in which the role of raw material purity was identified as an area that often plays a
significant role in the final manufacturability. Building in those insights right from the discovery may
open up entirely new approaches not currently considered.

Historically, basic materials design often looks at optimizing one criterion in isolation. Exposing multiple 
criteria, throughout the scientific-to-processing stack, may develop new knowledge and opportunities 
(e.g., energy consumption, life cycle) and lead to more robust outcomes. Such an approach requires and is 
informed by multimodal data and multiscale simulations and is important for both scientific discovery 
and diverse downstream uses. Exposing the underlying criteria is necessary for complex design of 
experiments, multi-objective optimization, and robust design under uncertainty. 

Another challenge identified was integrating characterization into the workflows. To that end, advanced 
chracterization techniques are needed to better serve manufacturing science needs: e.g., enabling studies 
at temperatures and under conditions that are matched to processing and end-use conditions. It also was 
noted that what is of value is “images vs. digits,” that is, information rather than simple data. Data are 
relatively easy to acquire; instead, the challenge is to better extract all the information from the data. 
Capture of (anti-) correlated failure modes can be of great value in process design. 

Once again, the storage of large curated data sets, enabled to be readily accessible for use, was identified 
as an important issue in System Integration. Organizing such data into usable form poses an immense 
challenge, but the payoff could be very significant and thus could justify the investment. 

Theme 4. Sustainable Manufacturing 
Strategies for controlling transformation in matter, from individual bond levels to designing materials 
with their full life cycle in mind, were a focus during the Sustainable Manufacturing discussions. A 
circular approach is needed such that all energy input requirements for transformations are defined for 
optimizing and reducing the energy footprint. To be successful, consideration needs to extend beyond the 
raw materials and initial product manufacture to include end-of-life and disassembly/recycling processes. 

As part of the movement toward improved circularity, there is an opportunity to focus ML on integrating 
multimodal/multiple criteria initially for optimization, rather than focusing it solely on discovery 
activities. Additional benefits will result from following materials throughout their life cycles and using 
information technology approaches. As these areas develop, it is also important to recognize that 
limitations for recycling of materials are often human oriented—e.g., with regard to cost, inconvenience, 
and acceptability—and not technical in origin. Factoring these considerations into the development of 
recycling methodologies is critical to ensure their commercial adoption. Likewise, there is a need for 
advanced/rapid analytical characterization methodologies coupled with algorithms to reformulate and 
predict performance in real time to build in flexibility for managing heterogeneous and inconsistent feed 
materials as a result of circularity and human error in sorting. Going forward, identifying the optimum in 
designing for performance, while simultaneously designing for end-use recycling/reuse, will be needed to 
enable more sustainable manufacturing approaches. Advanced knowledge around both materials 
synthesis/manufacturing and materials performance over time will need to be developed. 

Theme 5. Digital Manufacturing 
Digital manufacturing is essentially the application of computational systems to manufacturing processes. 
The key elements involved are multiscale process modeling with topology design, computer-controlled 
synthesis and processing, real-time process monitoring with advanced sensors, data-supported uncertainty 
management, and quality assurance. Material-process-product co-design and process control with high 
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precision are desired features of transformative digital manufacturing. These rely on our understanding of 
the fundamental physics underlying energy-matter interactions, as well as the driving forces controlling 
the assembly of basic building blocks across different length scales. There are many opportunities for 
morphological and topological optimization in this area. This knowledge can be created via a concerted 
effort exploiting multidimensional, multimodel materials characterization, process monitoring and 
sensing, and multiscale simulations.  

Multidimensional characterization expands the concept of 3D spatial characterization of materials by 
adding the fourth dimension of time, plus additional processing conditions or service environments such 
as temperature, pressure, and stress. In the context of transformative manufacturing, multidimensional 
characterization examines the dynamic evolution of materials structures during the synthesis or 
manufacturing process. The DOE-BES user facilities provide great resources for in situ/operando 
characterization of advanced manufacturing (see the sidebar). Electrons have strong interactions with 
most elements and can be focused into very small probes to afford extremely high spatial resolution in 
microscopy techniques. Neutron beams have great penetrating power and isotopic sensitivity. Photon-
based techniques are highly versatile and often strike a good balance between the sample dimension and 
the temporal resolution key to dynamic processes. Integrating these capabilities and sophisticated 
operando systems will enable researchers to interrogate critical materials problems across multiple 
spatiotemporal scales—particularly those associated with synthesis and processing under far-from-
equilibrium conditions, as well as prediction and management of defects and rare events. In addition, 
many lab-based characterization and metrology tools are essential for measuring different process 
parameters and materials structures relevant to advanced manufacturing. 

Sidebar: The DOE-BES National User Facilities—Enablers for Transformative 
Manufacturing 

There are 12 BES scientific user facilities across the United States. They comprise five light 
sources, of which one is a free electron laser, two neutron sources (one spallation and one 
reactor based), and five nanoscale science research centers, which include electron 
microscopy centers. These facilities are located at the DOE national laboratories and are 
national treasures that, taken as a whole, have no equal anywhere else in the world. 
These facilities constitute a unique resource for the characterization of materials and 
chemical processes at the highest level of spatial, spectral, and temporal resolution, in 
addition to the synthesis and exploration of matter at the nanoscale. More than 15,000 
researchers annually from academia, national laboratories, and industry access these 
facilities free of charge, primarily through a merit-based peer-review system, provided that 
the research is nonproprietary. (Proprietary research can also be conducted for a nominal 
fee). The light sources, neutron sources, electron microscopy centers, and nanoscience 
centers each have a specific role to play in furthering transformative manufacturing. 

The light sources produce x-rays that are many millions of times brighter than those 
available in laboratory settings. Scientists use these highly focused, intense beams of x-rays 
to reveal the atomic structure in a wide range of materials, including metals, 
semiconductors, ceramics, polymers, catalysts, plastics, and biological molecules. 
Wavelengths can be selected over a broad range to match the experimental need. 

The neutron sources provide a versatile probe of the atomic and molecular arrangement, 
motion, and magnetism in materials. Neutrons penetrate through many centimeters of a 
solid and so can determine the material structure in situ or provide radiographs of 
technological devices such as engines and batteries under operating conditions, i.e., 
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operando characterization. They have unmatched sensitivity to hydrogen and other light 
elements and can distinguish different isotopes of the same element. 

The nanoscale science research centers provide facilities, equipment, and expertise for 
the synthesis and study of materials at the nanometer scale—probing single atoms, 
clusters of atoms, and molecular structures. The scientific theme of these centers is to 
observe, understand, and predict how these nanosystems function. Together with the 
electron beam micro-characterization centers, they provide access to cutting-edge 
instrumentation for direct imaging and micro-analysis of materials at the atomic and 
molecular levels. In many cases, these instruments now incorporate in situ environmental 
capabilities, such as gas reaction, tensile, or ion bombardment chambers. Advances in 
specimen preparation have enabled the atom-level analysis to take place at specific 
sites in technological materials. These instruments provide structural and chemical 
information over critical length scales complementary to those probed with neutrons and 
x-rays. 

Taken together, these user facilities present an opportunity for developing an 
understanding of complexity in situ on the relevant length scales across relevant time 
scales, which will provide an in-depth understanding of how manufacturing processes 
affect materials’ properties and, in turn, the functional performance of a device. This 
understanding will allow a researcher to build materials “from the bottom up,” atom-by-
atom and molecule-by-molecule, so that each atom/molecule plays a prescribed role in 
producing the macroscopic materials behavior. 

 
Source: Image is from a presentation at the workshop and was provided by Yan Gao of GE Research. 

 

Digital twinning is a fundamental part of digital manufacturing. The digital twin associated with a 
manufacturing technology synergistically integrates physical science and data science and provides 
numerical tools for designing, predicting, and controlling the process. The computational models involved 
need to be developed or further improved with the experiment data created via multidimensional, 
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multimodal characterization. Moreover, in-process, closed-loop control systems for manufacturing 
necessitate the development and deployment of advanced sensors and innovative monitoring frameworks 
to bridge the factory product line and the virtual space.  

Identified Crosscutting Themes 
Potential crosscut PRD/themes were identified, such as multi-material architectures, structural 
process/materials, complex geometric structure control, and uncertainty within models and how it is 
propagated. On-line monitoring tools also were recognized as a broad need (e.g., data science/cyber 
security) for digital manufacturing. Underlying all these themes is the dedicated focus on data 
management required to support and enable the advancement of manufacturing sciences. These concepts 
are described in more detail in the following pages. 

Detection, Prediction, and Management/Control of Small Defects and Rare Events 
Current status and recent advances 
A major challenge in scaling up of laboratory processes is the increased role of critical flaws, rare events, 
and trace impurities—perturbations on the meso- to nanoscale that impact properties on the macroscale. 
For energy materials such as photovoltaic thin films, it is now known that defects introduced during 
manufacturing may create traps that inhibit carrier mobility and can dramatically reduce device 
performance. Similarly, in structural materials, small microstructural defects (vacancies, impurities, 
dislocations) alter the local free energy compared with the macroscale and may result in unexpected 
properties or trigger local phase transformations.  

Scientific challenges and opportunities 
There is a critical research need to develop sophisticated computational tools to model this behavior. 
Once the impact is understood, the next challenge is to control the materials synthesis and processes to the 
needed fidelity for the final product. Robust science-based modeling tools are required to evaluate 
between the development of defect-tolerant processes versus defect remediation, elimination, or self-
repair. In the latter cases, improved metrology is required. There are also opportunities to implement rapid 
analysis tools that can be used at a beamline during an experiment with the expectation of steering its 
progress: see, e.g., the Cinema toolkit, https://github.com/cinemascience.  

Precision Synthesis with Integrated Closed Loop Platforms 
Scientific challenges and opportunities 
To realize precision synthesis, on-the-fly processing platforms must be built, which require integrated 
suites of detectors, computation/AI/ML approaches, and stimuli/processing techniques. Development of 
these platforms requires interdisciplinary approaches that include detectors, software/ML, predictive 
modeling, and materials synthesis/optimization tools. With spatio-temporal and defect-level control, 
deterministic synthesis can be achieved across all length scales. Notably, applications in quantum devices, 
patterned assemblies, and tailored defect-level additive manufacturing (AM) are enabled. Novel 
“composite” materials with multiple, coordinated functions, can be created. Gaps in length scales will be 
closed, and high-throughput synthesis can be realized. 

Co-design of Nonequilibrium Materials and Processes 
Current status and recent advances 
Processes inherently occur under the conditions that are far from equilibrium. Nonequilibrium materials 
and the processes to produce them have traditionally been developed by trial-and-error and through 
accidental discoveries. Whether it is a chemical transformation, solidification, polymerization, shear 
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processing, or quenching, such processes rely on changes over time and length scales that are often larger 
than the characteristic scales over which a material can relax or readjust. When used deliberately, such 
processes can trap materials in metastable, nonequilibrium states whose properties do not exist at 
equilibrium. Examples include strong polymer fibers and composites or efficient organic photovoltaic 
thin film materials, in which molecular orientation is anisotropic and is achieved by processing operations 
such as extrusion or blade coating, respectively.  

Scientific challenges and opportunities 
Access to vast amounts of data, predictive physics-based models, and fast computational algorithms 
provide an opportunity to understand and monitor materials transformations at an unprecedented level of 
detail, at molecular length and time scales. This information could be used to identify molecular pathways 
leading to promising nonequilibrium states; that information would then inform process development, 
product durability, and sustainability over the full lifetime of the product, including disassembly or 
recycling. The opportunity exists now to manipulate matter down to molecular length scales in large-scale 
processes. As an example of lithography at the atomic scale (Figure 50), Alemansour et al.1 have recently 
demonstrated the use of a single layer of hydrogen atoms as a mask on silicon, which points the way to 
device patterning with atomic resolution. 

Figure 50. Scanning tunnel microscopy image of a Si(100)-2 × 1:H passivated surface (a) before and (b) 
after depassivation using voltage-modulated feedback-controlled lithography. Each desorption event is 
numbered in (b) and its corresponding displacement in the Z direction is shown by the same number in (c). 
Also, the tunneling current (d) after and (e) before the notch filters are measured. The removal of a 
hydrogen atom is detected as a jump in the current or the height. Source: H. Alemansour et al. Controlled 
removal of hydrogen atoms from H-terminated silicon surfaces, J. Vac. Sci. Technol. B 38, 040601, 2020. 

https://doi.org/10.1116/6.0000241
https://doi.org/10.1116/6.0000241
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Supply Chain Transparency for Sustainable Manufacturing  
Current status and recent advances 
To ensure supply chain integrity around both safety and sustainability issues, there is a need to be able to 
monitor sourcing and identify suspect or counterfeit materials. Development and tracing of material 
supply chains also will enable improved understanding of how issues like raw material purity affect final 
manufacturability. An array of research could help support efforts to address this fundamental 
challenge—sensors, embedded design principles (holograms, active materials), and security measures like 
blockchain-type approaches to enable monitoring of the entire length of the supply chain. Such efforts 
would enable advancement across several different fundamental research areas which could be applied 
much more broadly than simply to protect supply chains. A major impact would be to preserve the value 
proposition for recycled materials and/or bio-sourced materials. Having a mechanism to protect and trace 
supply chains would prevent substitution of these new sources by less expensive/traditional materials and 
protect nascent industries that ultimately will be more sustainable. The DOE Critical Materials Institute is 
an example of investment in energy-critical materials processing that pays attention to reuse and 
recycling. Recently, ab initio calculations have been performed by Sutton et al.2 to explore the space of 
compounds that might bind cerium, as an example of a valuable rare earth, and extract it efficiently from 
minerals such as Ce-bastnas̈ite and Ce-calcite. Figure 51(a–d) shows examples of various configurations 
of ligands on mineral surfaces that lead to the computation of binding energies. Figure 51(e) shows how 
the binding energies vary for various types of configurations for a large set of potential ligands, narrowing 
the range of experiments that need to be performed to identify, in this case, optimum processing for 
cerium extraction. Such calculations can greatly speed up the search for suitable processes for efficient 
processing of critical materials. The accumulation of simulation results also is significant in the space of 
data curation and building libraries of results and techniques for general use. 

Figure 51. Images (side and top views) of (a, c)monodentate and (b,d) bidentate DMP bound to the most 
stable facets of (a, b) Ce-bastnas̈ite and (c, d) calcite.  Large spheres are Ce (gray) and Ca (green). 
Medium spheres are C (gray), O (red), F (light green), and P (orange). Small, off-white spheres are H. Each 
panel shows approximately a single 1×1 unit cell, and images are approximately to scale. The 
monodentate DMP on Ce-bastnas̈ite is dissociated into an ion pair with the proton on a neighboring 
surface O (partially occluded by a C atom), whereas the monodentate DMP on calcite is a neutral 
molecule binding through its OH group. (e) Box plots showing the distribution of binding energies as a 
function of the binding configuration: (B)bidentate, (N)neighboring, (R)repeated, and (S)staggered. Boxes 
denote the 25, 50, and 75% values for the binding energies; whiskers mark the upper and lower bounds of 
the data, excluding outliers. Outliers are points outside the interval centered on the median and bounded 
by median ± 1.5 IQR, where IQR is the distance between the 25 and 75% lines. If the IQR range extends past 
the actual minimum or maximum, then the actual minimum or maximum is instead used as the lower or 
upper bound, respectively. Source: J.E. Sutton et al., Molecular recognition at mineral interfaces: 
implications for the beneficiation of rare earth ores, ACS Appl. Mater. Interfaces 12, 16327, 2020. 

https://pubs.acs.org/doi/abs/10.1021/acsami.9b22902
https://pubs.acs.org/doi/abs/10.1021/acsami.9b22902
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Basic Research Needs for Additive and Other Transformational Manufacturing 
Current status and recent advances 
It is critical to understand a material’s behaviors in a dynamic, nonequilibrium system, and the complex 
microstructure and property relationship both during processing and under use conditions. An integrated 
approach is needed to develop new materials and to break the traditional boundaries between basic and 
applied research—asking system-level questions during the basic research stage and recognizing the 
boundaries are blurred in many areas, such as energy storage and AM. 

New advances in characterization using scattering methods are needed to meet the required temperature, 
pressure, and other environmental conditions for samples with the appropriate geometry to generate high-
quality data that are suitable to resolve issues related to materials manufacture and use that are generally 
applicable across a range of experimental needs. As an example, Zhao et al.3 recently identified a 
behavior at the tips of the “keyholes” that occur during laser melting of metals in AM that may explain 
how pores are pushed away from the moving keyhole and trapped by solidification (Figure 52). This 
analysis relied on the use of high-speed operando x-ray visualization of the melting and vaporization that 
occurs under a high-intensity laser light. The impact on AM is that the generation of porosity via keyhole 
instability has a well-defined boundary in power-velocity space that users of laser powder bed fusion will 
be able to avoid. 

Scientific challenges and opportunities 
There are important gaps in the basic research tools that are needed, both at the laboratory scale and at the 
national user facilities, to enable high-fidelity characterization under dynamic, nonequilibrium conditions. 
New strategies are needed for integration of processing and characterization (operando), integrated testing 
and characterization (in situ) methods, and synchronization and integration of multiple simultaneous 
characterization methods. There is now a significant opportunity to use advanced computation methods, 
including AI and ML, to rapidly process raw data and convert data to information that can be immediately 
input into computational models to modify experiments in real time so that the information generated is 
relevant to realize advances in manufacturing. It is expected that an enhanced ability to characterize far-
from-equilibrium processes will drive the development of computational models in this regime, where 
essential modeling tools critically needed to inform manufacturing process development are lacking. 

Predictive Understanding of Manufacturing Processes 
Current status and recent advances 
An important element of the transformation in manufacturing to be achieved through scientific research is 
accelerating the development of predictive understanding for the complex thermo-chemo-mechanical 
conditions that occur during the wide variety of manufacturing processes. This understanding will come 
from experimental hypothesis testing, physics-based computational models, and ML methods. The value 
of establishing such an information infrastructure has been recognized and is one of the central strategies 
of the AI and ML platforms.  
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Figure 52. Acoustic wave–driven keyhole pore formation. (A) Megahertz x-ray images of a keyhole pore 
formation process. (B) X-ray images showing the non-uniform collapse of pore P0, driven by a microjet. (C 
and D) Contours of the pore P0 and microjet morphologies. (E) Keyhole depths, d1 and d2. Three time 
nodes are defined: at t1 (magenta circle), with the keyhole closure, pore P0 forms; at t2 (green circle), the 
primary pore starts to rebound; at t3 (blue circle), the keyhole depth reaches a local minimum, and the 
pores start to migrate away from the keyhole. (F) Equivalent pore diameter, Dp, estimated from (C). (G) 
Distances of pores from the nearest keyhole wall. (H) Formation of a needle-like keyhole bottom, attributed 
to the coupling between the existence of a protrusion and the rebound of pore P1. (I) Initial pore motions 
caused by the acoustic wave emitted from the needle-like keyhole bottom. (J and K) X-ray images of 
keyhole pore collapse, rebound, and motion, corresponding to the two abrupt decreases in depth 
highlighted by the magenta and blue dashed rectangles in (E), respectively. All images were background 
corrected followed by contrast reversal. Source: Critical instability at moving keyhole tip generates porosity 
in laser melting, Z. Cang et al., Science 370 1080–1086 (2020). 

https://science.sciencemag.org/content/370/6520/1080
https://science.sciencemag.org/content/370/6520/1080
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Scientific challenges and opportunities 
A comprehensive solution requires information in the form of high-quality experimental data and/or 
simulations derived from real or simulated manufacturing conditions. This may be realized through rapid, 
efficient, multiscale manufacturing simulation integrated with advanced 3D–4D+ imaging of 
microstructures and defects. Making such information widely available to the broader technical 
community will accelerate transformation in manufacturing by facilitating the reuse of this valuable 
information by others. There is an opportunity to establish programs to enhance the utilization of data 
such as outreach initiatives, establishing incentives for sharing results of publicly funded, fundamental 
research. It will take a combination of education, outreach, and incentivization to realize a 
transformational culture change in manufacturing. Recent examples of simulation challenges that made 
high-quality experimental data available for predictive modeling by the community include the NIST 
Additive Manufacturing Benchmark Test Series, https://www.nist.gov/ambench, and the Air Force 
Research Laboratory Additive Manufacturing Modeling Challenge series, https://materials-data-
facility.github.io/MID3AS-AM-Challenge. 

Manufactured Materials Data Repositories, Schema, Curation, and Sharing 
Current status and recent advances 
Data are the foundation of scientific progress, and the importance of data is only increasing in the era of 
high-throughput experiments, big data, and deep learning. New laboratory techniques and industrial 
processes, including AM, produce multimodal data in unprecedented quantities. Expanded computational 
resources offer the potential for these data to be stored, accessed, aggregated, and manipulated at scale. 
Advances in data science, including AI and ML, enable the extraction of useful knowledge from large, 
complex, and multi-dimensional data sets. Data repositories have been successfully established and 
populated for homogeneous fundamental data, such as thermodynamic phase equilibria determined by 
density functional theory (examples include the Materials Project, the Open Quantum Materials Database, 
and Nomad) and molecular dynamics simulation data (e.g., AFLOW, or Automatic Flow for Materials 
Discovery). However, these forms of information represent a very small slice of the information required 
for robust scientific understanding of manufacturing process effects on materials. This understanding will 
primarily require the ability to understand and predict multiscale microstructure evolution and defect 
formation, which ultimately control the response of manufactured materials. 

Providing the required multi-modal, heterogeneous materials information, coupled with manufacturing 
process history information, to the broader scientific community is a significant infrastructural challenge. 
To do so, information repositories will be required to handle highly complex and interconnected data and 
metadata. There are relatively few examples of repositories for handling such heterogeneous materials 
information while also making this information available to the scientific community (e.g., the Materials 
Commons, Materials Data Facility, NIST Materials Data Repository).  

Scientific Challenges and Opportunities 
Materials science data are notably more diverse in type, size, and complexity than foundational data in 
some other disciplines, such as computational biology. This is particularly true for the type of 
heterogeneous, multi-modal, and multiscale data that are needed to understand manufacturing processes 
and their influences on material response. This diversity presents infrastructure challenges with respect to 
designing and supporting general-purpose data repository facilities and devising the associated schema 
that permit the data to be discovered and used. Similarly, assessing the quality of large, diverse data sets 
is a curation challenge that calls out for automated tools. Inducing the scientific community to make these 
data available to the broader scientific community remains a persistent challenge. That effort is limited by 
the lack of incentives/mandates for researchers to take on the tedious and unrewarding task of uploading 
data and sufficient metadata to make the information useful to the scientific community. Compared with 
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other fields, government investments in materials information repositories have been modest, 
compounding concerns about the long-term sustainability of these repositories. Finally, in some instances, 
data have been and remain intellectual property (IP), in some cases with clear monetization potential. 
Creating information technology structures, such as anonymization and partitioning, that permit data 
publication and sharing while safeguarding IP is a logistical challenge. 

Despite these challenges, the ability to archive, find, assess, and use data is essential to maximizing the 
potential of data science, AI, and deep learning. Each of these challenge areas offers an opportunity to 
advance science in support of transformative manufacturing. Focused and sustained support for 
information repositories and incentives/mandates for data sharing are necessarily key components of any 
manufacturing science initiative. The development of methods to extract property and processing 
information from published work, which can translated into properly curated data that can be operated on 
by ML, remains a substantial challenge. In all this, it is essential to combine domain expertise for 
materials and manufacturing with advanced information science and algorithm development. 

Conclusion  
Future manufacturing will likely require advanced materials synthesis and design underpinned by incisive 
characterization methodologies, data analytics, and AI, as well as digital design and simulation 
techniques. Although there are unique critical challenges in these areas, it is clear there are also 
crosscutting research themes which, when fully addressed, will advance many fundamental discoveries to 
higher levels of maturity. Development of embedded feedback between in situ and operando 
characterization and advanced computational tools will enable improved translation of early-stage 
discoveries to larger-scale developments (Figure 53). When such tools are combined with active/adaptive 
learning and other AI tools, rapid advancement of manufacturing science knowledge is possible. 

As part of this approach, a new scientific paradigm that fundamentally and deliberately couples discovery 
of materials with processes to manufacture them at scale is needed to develop the needed predictive 
capabilities for processing. Such co-design of processing, materials, and product will require a range of 
new methodologies to understand and control defects, as well as a better overall understanding of the 
translation of fundamental synthesis parameters into larger-scale techniques. Promoting a more 
sustainable manufacturing footprint will create additional research needs via the co-optimization of 
product function with end-of-life considerations for deconstruction and recycling. 

Underpinning these efforts is the need for the development and support of the enabling information 
infrastructure. The advancement of the supporting science will spawn the rapid generation of data that 
need to be managed for knowledge retention and technology advancement. It is critical to define who 
owns, curates, and supports the collection and maintenance of these data, and to determine how they will 
be accessible. An assessment of the data required for manufacturing processes and modeling, followed by 
repository standardization, curation, and management, will form the basis for translating data into the 
information needed for transformational manufacturing advancement. 
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Figure 53. Schematic of the materials-by-design approach to accelerate materials transfer from computer 
simulations to lab bench and consumer products. Source: K. Alberi, M. B. Nardelli, A. Zakutayev, L. Mitas, S. 
Curtarolo, A. Jain, M. Fornari, N. Marzari, I. Takeuchi, M. L. Green, The 2019 materials by design roadmap, 
J. Phys. D: Appl. Phys. 2019, 52, 013001. Used by permission under the Creative Commons Attribution by 3.0 
license (CC by 3.0). 
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