
 

 

 
 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The artwork on the cover is a conceptual image of a molecular system being interrogated by multiple 
US Department of Energy Basic Energy Sciences scientific user facility probe modalities. The data are 
then fused and interpreted by new capabilities enabled by artificial intelligence/machine learning 
(AI/ML). The arrows represent the available probe modalities: light (red is photons, yellow is x-rays [both 
soft and hard]); neutrons (the purple arrow shows the particle representation of the up(u) down(d) 
down(d) quarks of a neutron); and imaging and nanoscale (i.e., local) modalities (blue triangle). The 
backdrop of binary numbers connotes the underpinning of high-performance computing and AI/ML-aided 
information inference and data analytics. 
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1. Introduction 
The US Department of Energy (DOE) operates some of the world’s largest scientific user facilities 
(SUFs), producing unprecedented quantities of data (see Figure 1). Reaching the full potential of these 
facilities will require innovations to solve a variety of technical challenges associated with data 
acquisition, simulations, control, analysis, and curation for artificial intelligence (AI) and machine 
learning (ML) applications. This document highlights challenges and AI/ML opportunities at the light 
sources, Nanoscale Science Research Centers (NSRCs), and neutron facilities that make up the DOE 
Office of Basic Energy Sciences (BES) SUFs.  

 
Figure 1. US Department of Energy scientific user facilities. Source: US Department of Energy. 

To give an example of the challenges facing BES SUFs, the Linac Coherent Light Source–II (LCLS-II) 
will be the largest-ever EPICS (Experimental Physics and Industrial Control System) project, with 
2 million process variables. Beamlines at the LCLS-II-HE (High Energy) are expected to generate 
megapixel images at megahertz repetition rates. Challenges span speeding up high-fidelity simulations for 
online models, fast tuning in high-dimensional space, anomaly/breakout detection to protect sensitive 
superconducting modules, virtual diagnostics that can operate at megahertz repetition rates, smart data 
acquisition schemes, and sophisticated compression/rejection data pipelines operating at the edge 
(i.e., next to the detector) to capture the highest-value data from user experiments. The newer synchrotron 
facilities—the National Synchrotron Light Source–II (NSLS-II), Advanced Light Source (ALS), and 
Advanced Photon Source (APS) upgrades—will face similar challenges. 

Another example is the Spallation Neutron Source (SNS), the world’s highest-flux pulsed neutron source, 
located at Oak Ridge National Laboratory (ORNL). The 19 instruments in its First Target Station (FTS) 
in time-of-flight (TOF) mode using a broad spectrum of neutrons, coupled with a large solid-angle 
coverage of position-sensitive detectors, produce large datasets in minutes. The ongoing SNS Proton 
Power Upgrade project will further increase the neutron flux at the FTS and will eventually serve the SNS 
Second Target Station (STS) with 22 additional instruments. TOF instruments such as the VENUS 
imaging instrument, under construction at SNS, will produce 2 TB and 20 TB datasets per instrument 



 

2 

configuration; the need to measure several such datasets for tomographic reconstruction poses challenges 
for data acquisition, storage, curation, and analysis. 

Maximizing the efficiency and scientific impact of the sources will require the integration of data 
collection, data reduction, and online real-time data analysis and curation. Large-scale computation 
applications such as molecular dynamics (MD) simulations for comparison with neutron scattering data, 
density functional theory (DFT) for comparison with neutron spectroscopy data, Monte Carlo ray tracing 
for simulating instrument and complex sample effects, diffuse scattering modeling for investigating the 
defects in solids, and large-scale tomographic reconstruction will require the development of automated 
scientific workflows, surrogate models, and novel data science approaches.  

Similarly, the five NSRCs—the Center for Functional Nanomaterials (CFN), Center for Nanoscale 
Materials, Center for Integrated Nanotechnologies, Center for Nanophase Materials Sciences, and the 
Molecular Foundry (TMF)—have a large and expanding scope of capabilities driven by in situ and in 
operando characterization that require integrated data management and deep data analysis. These include 
data acquisition modes in scanning probe and transmission electron microscopy (EM) and “on-the-fly” 
data analysis and feedback for control as data volumes approach 400 GB/s per instrument. In addition, 
workflows for diverse modalities of synthesis that allow informed decision-making for streamlining the 
overall process are needed, alongside approaches for materials characterization using multiple modalities 
(e.g., optical, electrical, scattering, gravimetric, microscopy), both in situ and ex situ. 

How Can Artificial Intelligence and Machine Learning Help? 
AI and ML hold promise to address the critical challenges described in this document. The following are 
some examples of how these technologies could meet scientific research needs going forward. 

• Edge-ML for triggering/data reduction. At present, there is no solution to enable large-array 
detector acquisition at full beam rate for future light sources. The most promising path is 
implementing convolutional neural networks (CNNs) on field programmable gate arrays (FPGAs), 
for example, for pulse timing and Bragg peak extraction. The situation is similar for EM at the 
NSRCs, especially considering the newly developed ultrafast detector at ALS and TMF. 

• Detectors. High-fidelity diagnostics that cannot run at full beam rate can be supplemented by “virtual 
diagnostics,” using ML to infer measurements from low-fidelity diagnostics. ML methods can be 
used to better characterize detectors and improve processing of raw data (e.g., photon counting from 
patterns). 

• Smart data acquisition. New acquisition methods can use ML for autonomous, real-time 
experimental control. Adaptive techniques can focus on high-value regions and identify rare events. 
Multiplexing and ML-enabled reconstruction (e.g., compressive sensing) can reduce acquisition time, 
increase the signal-to-noise ratio, lower radiation doses, and improve resolution. 

• Online optimization/prognostics. AI/ML optimization is now common at light sources, increasing 
beam delivery and freeing operators for more complex tasks. Anomaly/breakout detection can predict 
failures and diagnose faults to improve facility uptime or alert users when performance drifts.  

• Model optimization. ML will help determine the most appropriate models to describe the measured 
data at BES SUFs, enabling automated model refinement to greatly enhance the scientific impact and 
throughput.  

• Optimized operations. ML will have significant impact on accelerator operation, target design and 
operation, and design of future neutron scattering instruments. 

• Multimodal learning. ML can help enable online analysis during an experiment when more than one 
type of characterization probe is being used. 
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• Surrogate modeling/simulation. ML surrogate models of expensive simulations or calculations can 
give orders-of-magnitude speedup, for example, by upgrading physics-based models such as tight-
binding to the level of DFT or quantum Monte Carlo to gain efficiency and retain accuracy, or by 
developing inverse models. 

• On-the-fly analysis and feedback for control. ML can enable very efficient analysis of streaming 
data, reducing computational needs and allowing real-time control. For example, in EM, ML analysis 
is fast enough to provide feedback for scanning or manipulation of atoms by design. 

As the research community moves 
forward, carefully applying ML will 
help ensure success because ML 
techniques are not suited to all 
problems (see Figure 2). Optimal 
application of ML occurs at the 
intersection of situations that satisfy 
three computational limits: the 
Turing limit (computability), the 
Vapnik-Valiant-Devroye limit 
(learnability of finite sample sizes), 
and the Tarski’s limit 
(expressability). Finite and sparse 
data can often pose complications in 
reliably incorporating ML, and 
bounding of confidence in an ML-
based model (i.e., uncertainty 
quantification) will always be 
important, especially if the problem is outside the overlap of the three limits.  

Why Now? 
In January 2018, the DOE Office of Advanced Scientific Computing Research (ASCR) hosted a Basic 
Research Needs workshop focused on ML for science, resulting in priority research directions (PRDs) for 
interpretability, inference, robustness, and scientific computing tools (Workshop Report on Basic 
Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence, 
https://www.osti.gov/servlets/purl/1478744). Although the workshop highlighted significant investment 
in ML for the analysis of big data, there has been relatively little activity regarding the generation of such 
datasets, a critical need as the DOE SUFs begin commissioning LCLS-II and the APS Upgrade. PRD 6 
from that workshop—intelligent automation and decision support—is highly relevant to the SUFs, 
especially with new facilities pushing the limits of current technology. Timely advances in AI and ML are 
critical to enable the SUFs’ full scientific potential. To successfully use ML at the SUFs, critical 
challenges need to be addressed including handling new data types, archiving metadata and preserving 
provenance, creating workflows to manage data transfer to and integration with high-performance 
computing (HPC) facilities, developing new software stacks, and undertaking uncertainty quantification 
to identify regions of model validity. 

Because DOE facilities have mature control systems that can support large data production rates, they are 
ideal test beds for developing and demonstrating AI and ML tools. As a result, in addition to aiming to 
improve SUF operations, research on ML for scientific facilities can also lead to the development of new 
tools that will benefit complex facilities even beyond the DOE. There may be broad opportunities for 
collaboration with ASCR and industry, including fabrication, power grids, and design of high-reliability 
organizations. 

 
Figure 2. Venn diagram highlighting limits on machine learning. 

Source: Nagi Rao, Oak Ridge National Laboratory. 

https://www.osti.gov/servlets/purl/1478744
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2. Current Status, Challenges, and Opportunities at the Scientific 
User Facilities 

AI/ML Needs and Opportunities for Data-Intensive Detector Development   
Detectors at ALS are producing ever-increasing amounts of data as x-ray storage ring brightness 
increases. The same is true for EM at the NSRCs, which are transitioning from “snapshots” to “movies” 
(see section on AI/ML for Data Production and Analysis at the NSRCs). Detector data will also increase 
considerably at the future high-repetition-rate x-ray free electron lasers (XFELs). 

Two decades ago, the results of an experiment could generally be carried away from the laboratory on a 
portable archival storage device. One decade ago, in many cases, data volumes had increased so 
dramatically that this was no longer true. “Write all data to disk” was a plausible, if not always effective, 
strategy because large volumes of data might be difficult to transport or analyze. Over time, networking 
speed and density have increased, as have detector data volumes. The speed of archival storage media, 
however, has not. We are now at the point where writing all data to disk is no longer even possible. 
Something else must be done. 

Several recent studies chart the growth in light source detector data, but interpreting the data can be 
complicated given differences in factors such as source capabilities and diversities of beamlines. As a 
simpler illustration, Figure 3 shows the raw EM data rate at the National Center for Electron Microscopy 
at TMF. For both x-rays and electrons, detectors have gone from tools such as film and fiber-coupled 
phosphor charge-coupled device detectors to pixilated semiconductor detectors. 

AI/ML techniques are promising candidates to reduce raw data volumes (i.e., coming out of the detector) 
to those that can and should be stored. Schematically, a detector consists of the elements shown in 
Figure 4. Sensors, together with signal capture electronics, transform an incident probe particle into a 
measurable quantity. The measurement is performed by front-end processing electronics, and the 
corresponding (digital) data are aggregated and then transported.  

AI/ML techniques are already in use in computation (after the network) and could readily reduce data 
volumes for primitives at the aggregation stage. For example, Lawrence Berkeley National Laboratory 
staff are studying ML methods to take detector hits that span multiple pixels and reduce them to single 
(x,y) hit coordinates. Aggregation is generally performed by FPGAs, so effort is required to customize 
any AI/ML technique to be operable in an FPGA. Furthermore, this is the earliest possible stage for 
“image-level” analysis and feature extraction. 

Pushing AI/ML techniques into front-end processing would be quite challenging but may be along the 
lines of future research considered for next-generation microelectronics. While edge computing 
encompasses activities taking place before the network is engaged, the techniques to deploy 
computational methods are dramatically different depending on where they occur. 
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Figure 3. Electron microscopy data rate at the National Center for Electron Microscopy/ 

The Molecular Foundry. Source: Lawrence Berkeley National Laboratory. 

 

 
Figure 4. Elements of a detector. Source: Peter Denes, Lawrence Berkeley National Laboratory. 

An example use case at ALS is tomography: the detector limitations/challenges are as previously 
described. Adaptive acquisition methods are appealing for the following reasons: 

• For time-resolved experiments, samples are often bigger than the field of view at the desired 
resolution. Therefore, one would like to start at low resolution and, as events of interest begin to 
occur, predict/detect the area of interest, zoom in on that region, and keep the interesting area in the 
middle of the field of view.  

• Samples/experiments vary significantly so the general framework would need improved tunability. 

ML methods designed for adaptive acquisition on variable samples are in the early stages, but they 
already provide value, and users are excited.  
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Finally, even at reduced volumes, quasi-real-time data transfer to and analysis at HPC facilities are areas 
ripe for expansion. The ALS, working with TMF, recently deployed a hundred thousand–frame EM 
detector, with a direct 400 GB/s connection to the National Energy Research Scientific Computing Center 
(NERSC). Independent of actual analysis software, the mechanics of data transport and storage have been 
more challenging than initially foreseen. LCLS-II will present similar needs on a potentially larger scale. 
As high-volume, quasi-real-time data transfer to HPC facilities becomes more common, there will be 
opportunities to improve the interface. 

AI/ML for Data Production and Analysis at the NSRCs 
Numerous opportunities exist for AI methods and ML tools to address the production, mining, analysis, 
and control of large and diverse datasets generated at the NSRCs. Nanoscience already leverages the 
powerful work being done in AI and ML, but the NSRCs also bring new challenges stemming from a rich 
set of highly diverse data, including data from material and chemical syntheses. Work at the NSRCs to 
date has used the intrinsic scientific rigor of the BES SUFs to address the challenge of diverse data, and 
the centers are providing physics-aware ML models that are fast, accurate, and verifiably correct. Specific 
areas of NSRC work and identified challenges and opportunities are briefly outlined below. 

1. AI/ML methods for accelerating nanoscience data analysis 
• Unsupervised deep learning for microscopy data. As shown in Figure 3, the current data 

acquisition rates of EM (up to 400 GB/s) surpass the storage and processing capabilities needed to 
enable continuous operation. AI/ML is ideally suited to enable in-line feature extraction and 
classification of data. In particular, unsupervised learning is promising for a major speed-up of the 
analysis, as well as providing the potential for detecting features that can go unnoticed by an 
instrument user. 

• Incorporating user-generated data for on-the-fly surrogate model training. Users performing 
first-principles calculations could use high-quality, dynamical data generated on the NSRC 
computational infrastructure to train accurate, physics-based surrogate models for deployment to 
exascale facilities. Examples include automatically retraining a classical force field from the 
dynamical matrices computed along an ab initio MD trajectory, and training tight-binding models 
and orbital-free density functionals from each electronic iteration of DFT calculations. Another 
example is developing methods for replacing expensive function calls with fast AI/ML-generated 
surrogates. Building learned function accelerators (LFAs) on the fly can minimize computational 
cost by targeting data collection only to regions of interest and can improve accuracy by reverting 
to the original function if LFA reliability checks fail. The overall goal is to facilitate user access to 
exascale HPC facilities through the development of surrogate models compatible with scalable 
methods at leadership facilities (e.g., MD). This goal can be accomplished by (1) existing mid-
range computing facilities at NSRCs enhanced with on-the-fly learning (e.g., GPU-based cores) 
and (2) the competency of the user community and its focus on BES-relevant systems of interest.  

• Inverse design, decision trees, active learning, and reinforcement learning (RL) for 
optimization of materials. Bayesian, RL, and Monte Carlo tree searches could be used to 
optimize the design of molecules and materials in dynamic settings and to provide rapid feedback 
for decision-making. RL could be used to automate decision-making in high-throughput synthesis 
and multimodal in situ characterization techniques. This will be particularly relevant for fast x-ray 
and electron detectors with unique geometries that are under development. 

• Inverse problems in imaging. AI/ML is being used as a functional approximator to learn inverse 
operators where forward modeling exists (e.g., dynamical scattering). Predictions of the AI/ML 
approximator could be refined through automatic differentiation (AD) when the forward 
computation is inexpensive (e.g., coherent imaging). An AI/ML approximator could be used for 
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direct data interpretation or to assist iterative solutions when forward computation is expensive 
(e.g., core-level spectroscopy). 

2. Development of AI/ML for nanoscience physics and chemistry learning 
• Physics-based learning for AI/ML. The connection between AI/ML and the underlying 

statistical physics or imaging transform needs to be developed. In particular, causal inference must 
be allowed, perhaps by imposing symmetry and other physical constraints, including those based 
on in-line theory and modeling, during the learning process. 

• Multifidelity-scale bridging, model formulation, and surrogate modeling/simulation. ML is 
being used for surrogate models to gain efficiency, for fast approximants, and for upgrading 
physics-based models (e.g., tight-binding to the level of DFT or quantum Monte Carlo to gain 
efficiency and retain accuracy). Other high-priority areas include developing inverse models, force 
fields, and exchange correlation functionals and leap-frogging timescales in MD simulations. 
AI/ML can bridge the electronic, atomistic, and mesoscopic scales for materials modeling and 
design (e.g., to train coarse-grained or atomistic MD models against first principles–derived or 
experimental datasets). Additionally, clear potential exists to better explore active learning and 
evolutionary strategies for sampling training and test datasets.  

• Quantum ML. AI/ML offer the opportunity to use the large Hilbert space provided by quantum 
systems to go beyond classical ML for pattern recognition and data analysis.  

3. AI/ML for nanoscience experiments analysis, monitoring, control, and design 
• AI and ML in edge computing and integrated experimental instruments (e.g., AI/ML edge 

solutions). This would potentially allow on-the-fly analysis with feedback during an experiment 
for maximizing information gain. ML is already helping to interpret data from multimodal probes 
and analysis across platforms, including registration and scaling (e.g., pan-sharpening) for 
structure–property mapping. Clear potential exists to move this forward for future capabilities. 

• Current work pushing toward automating aspects of experiments (e.g., tuning environment, 
importance sampling, next-experiment recommendation). Autonomous smart instrumentation 
and synthesis are areas that future work could significantly impact (see item 4 below). Challenges 
include that automated experimentation quickly generates datasets for inclusion in databases (e.g., 
EM images). New workflows are also needed because experimenters will typically augment 
experimental data with data derived from simulations, including atomistic classical or quantum 
simulations, and forward modeling of experimental data (i.e., materials projects and/or 
NSRC/SUF user-generated datasets). More details on data challenges and workflows are 
highlighted in the Common Data Challenges sidebar. 
In situ multimodal analysis. AI/ML is being used to implement online analysis during an 
experiment in which more than one type of probe is being used. Efficient materials and device 
characterization are critical elements in the materials discovery workflow. Therefore, NSRCs’ 
characterization capabilities are constantly used to determine chemical composition, materials 
structure, physical properties, and overall functionality. In general, this determination involves 
(1) an analytical step to confirm that the target chemicals and/or materials are produced; 
(2) characterization of the physical properties, morphologies, defects, and interfaces of the 
functional materials by multiple probes/techniques; and (3) characterization of the functional 
properties (i.e., in situ and in operando) in devices. New analysis will be required across all these 
platforms, including registration of data from different instruments and scaling (e.g., pan-
sharpening) for structure–property mapping.  
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4. Enabling autonomous smart synthesis 

The NSRCs differ from light and neutron sources 
in that they provide materials synthesis 
capabilities. Modern synthesis incorporates a wide 
range of design rules and theories, alongside 
advanced characterization tools capable of 
observing synthesis processes on size and 
timescales at which they occur. However, these 
traditional modes of synthetic exploration often 
have difficulty in scaling to handle the complexity 
envisioned for next-generation materials, which is 
multicomponent and hierarchical—incorporating 
molecular, nanoscale, and mesoscale 
components—to exhibit collective, emergent, and 
responsive properties. Therefore, new modes of 
synthesis are needed. A promising direction is 
autonomous smart synthesis, which would 
integrate all aspects of the materials discovery 
loop, from material preparation through 
characterization to data interpretation and 
feedback to minimize the experimental trials 
needed to achieve the desired property. This 
preparation could allow vastly more challenging 
materials problems to be tackled. AI/ML is core to 
this vision to automate the model-building and 
decision-making aspects of the experimental loops 
to enable machine-guided synthesis, processing, 
and materials discovery. We envision being able 
to address synthesis and control of the following: 

• Design of pathways to metastable phases 
and materials that persist out of 
equilibrium. These materials enable access to 
a diversity of properties beyond the limits 
drawn by equilibrium thermodynamics. For 
example, photon-driven chemistry or optically 
driven materials processes could provide more 
control and lead to new materials, such as 
metastable phases or new low-dimensional 
materials with dynamics controlled by in-plane 
heterogeneity rather than layer stacking order. 
Another example is self-assembly, in which 
transient (nonequilibrium) intermediate states 
frequently appear, and control of assembly 
pathways can enable improved structural control. 

• Interfacial processes and properties. Controlling interfaces in materials often relies on precise 
control of atomic bonding at the joint between two dissimilar materials. The ideal strategy to avoid 
performance-limiting defects is to minimize perturbation of the atomic order at the interface by 
preserving a high degree of crystallographic order (e.g., epitaxy). 

Common Data Challenges 
The optimal data workflow architecture—
compute, storage, network, algorithms, 
middleware, and software—to properly 
handle diverse data and to properly 
leverage AI/ML requires improved data 
curation. 

• Data formats: standardized data and 
metadata formats 

• Data governance: experiment links, 
processing stages, as well as 
storage, ownership, and access 
policy 

• Data interfaces: between 
experiments and 
supercomputing/exascale computing 

• Data integration: across 
instruments, modalities, experiments 
(including for large-volume streaming 
data), and simulations 

• Data coordination: tools to easily 
capture and manage metadata, track 
data provenance, record data 
processing history, and establish links 
between databases 

• Data reduction: rapid extraction of 
physically meaningful parameters 
from new, fast detectors 

• Better data analytics tools: both 
real-time and post-acquisition, 
including real-time feedback loops 
based on analytics and modeling 

• Data quality: indicators, 
prescreening, edge computing 

• Improved data and analytics 
access: through cloud technologies 

• Data systems: allow for volume, 
searchability, and discoverability, and 
backdrops to HPC resources 
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• Design of materials for quantum information sciences. Such materials include potential solid-
state qubits, photon sources, and quantum sensing systems. One example is the Quantum 
Materials Press for robotic generation of layered heterostructures of 2D materials. This system will 
generate rich structural, heterointerface, and functional property datasets that will require AI/ML 
analysis.  

• Heterogeneity in complex systems. This can be done using high-throughput nanomaterial 
synthesis and automated atomic-scale, multimodal characterization. The aim is to broadly 
understand how population diversity influences growth and behavior, with the ultimate goal of 
creating a closed-loop materials property prediction, synthesis, and characterization. 
Understanding and controlling heterogeneity may enable the design of multifunctional and self-
regenerating catalytic systems. 

NSRC Strategy 
The ongoing work and proposed activities, opportunities, and challenges will require new pilot projects in 
some cases and scale-up of successful pilot projects in other cases. They will critically depend on 
continued development of AI/ML methods for science and will need dedicated staff members. Future 
work in AI/ML will require access to increasingly large computing resources. Each facility will need to 
continue investing in advanced local hardware for development and to serve the needs of the user 
community, especially in conjunction with experiments. Simultaneously, access to powerful computing in 
burst (i.e., on-demand) modes will become necessary. Therefore, we anticipate the need for a new 
paradigm for elastic/on-demand access to DOE supercomputing and exascale computing resources.  

AI/ML Developments at the Advanced Light Source 
Pattern recognition for images and volumes 
There are three main challenges for light source data: variety, veracity, and volume. The impact of these 
challenges results in users taking years to extract scientific insight through a manual process. Therefore, 
enabling ALS users to extract quantitative information from acquired data plays a critical role in 
determining the value of the data acquired. For beamlines acquiring image and volumetric data, ML-
based feature extraction, detection, segmentation, and classification techniques fulfill the need to extract 
quantitative information by providing near-real-time solutions using computer vision. At the ALS, ML 
already plays an instrumental role in aiding users to transition to more autonomous modes of operations, 
leveraging both expert-developed heuristics and pretrained data. ALS scientists, together with the Center 
for Advanced Mathematics for Energy Research Applications (CAMERA), have developed and deployed 
software infrastructure at beamlines to ensure users can leverage trained ML models with minimal effort. 
Figure 5 illustrates a user-guided ML-driven process by highlighting the pipeline experienced by users 
analyzing ceramic matrix composites (CMCs). Starting with the acquisition of the tomography data at the 
microtomography (micro-CT) beamline at the ALS, the software stack exercises a CNN using 
TensorFlow to extract frequency distribution of microstructures and visualization of the material 
composition. Additionally, the current data analysis using the ALS framework retains knowledge 
(e.g., metadata, data-driven models) that will benefit future users at the beamline by improving the 
interpretability of the ML models. Finally, adding the ability to scan large datasets to find inconsistencies 
among real structures known a priori, and results derived from automated detection algorithms, provides 
immediate scientific feedback to users and software developers. The framework can be generalized to a 
wide variety of science domains, covering everything from materials discovery (e.g., exploration of 
morphologies in extreme environments) to manufacturing. 
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Figure 5. Multiscale image analysis (a–g) from global analysis of ceramic matrix composites to local detection 
of fiber profiles with convolutional neural networks leveraging knowledge from previous experiments at the 

ALS. Source: Image courtesy of Daniela Ushizima, Lawrence Berkeley National Laboratory. 

Extension to pattern recognition for scattering patterns 
As the rate of data acquisition increases, analyzing large amounts of data in a timely manner becomes 
challenging. A collaborative effort between the ALS and CAMERA scientists uses AI/ML-based 
algorithms and approaches to assist in data analysis in a high-throughput and automated fashion for 
scattering data. Similar to pattern recognition for real-space images, CNNs are being applied to aid data 
analysis for x-ray scattering.  

Nanostructured thin films have a variety of applications in modern materials science; for example, they 
may be used in waveguides, gaseous sensors, organic photovoltaics, and piezoelectric devices. Thin-film 
structure characterization is commonly done by grazing incidence small-angle x-ray scattering 
(GISAXS). Analysis of scattering patterns (not limited to GISAXS experiments) has proven to be a 
challenging and time-consuming task because of the nature of reciprocal space data. To highlight the 
potential of neural networks (NNs) in this domain, CNNs were trained to quickly analyze scattering 
patterns and identify underlying crystal structures, crystal orientation, and film thickness. CNNs based on 
the AlexNet architecture were trained using over 7 million simulated x-ray scattering patterns. The 
resulting models recognized GISAXS scattering pattern with a success rate of 98% from simulated data. 
Figure 6 shows how the CNN classified the various thin-film motifs. Principal component analysis (PCA) 
was done on the final connected layer of the CNN and highlights the separations the CNN identified 
among the various scattering patterns. Various noise sources (e.g., shot noise, Gaussian blur) were also 
introduced, and the success rate dropped dramatically. 

The use of these trained models on such datasets will greatly impact the x-ray and neutron science 
communities by speeding up GISAXS data analysis of new materials. However, the current predictive 
models for real data still require improvements to enable use in real-world environments. The presented 
developments will provide guidance for GISAXS users to increase curated public datasets and push 
toward real-time data analysis at high-brightness facilities. The efforts undertaken by ALS scientists 
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highlight the opportunities that AI/ML provides in impacting these real-world use cases and addressing 
the greater big-data challenges for user facilities. 

 
Figure 6. Principal component analysis of the final fully connected layer of the convolutional neural network. 
PCA shows a clear distinction in the classified FCC 111 structure and orientation compared with the other crystal 

structures and orientations. Source: Image reproduced with permission from Liu et al. MRS 
Communications, 9(2), 586–592. doi:10.1557/mrc.2019.26. 

Machine learning for beam size correction inside the ALS storage ring 
The success of storage ring light sources lies in their stability, resulting in constant position, angle, and 
intensity of radiation delivered at tunable wavelengths and narrow bandwidths. Transverse beam stability 
currently sits at 10% of the root mean square (RMS) emittance. This deviation is starting to be detected in 
experiments being conducted at ALS. Stability requirements will be even more stringent with the planned 
upgrade of the ALS to a diffraction-limited light source.  

Traditionally, the ALS relies on a forward loop to correct for changes in the transverse beam size that 
result from the undulator gap change using the dispersion wave parameter (DWP). The effect of the DWP 
is periodically measured and stored in a look-up table to be used over a period of weeks or months. The 
ALS measures the 2D beam size at a high refresh rate at a dedicated target endstation. The availability of 
high-quality data for the beam size, together with a complete set of metadata from the storage ring, allows 
the construction of an ML model to correct for beam size fluctuations. To aid in the transverse beam 
stabilization, a correction loop has been implemented based on NNs. The vertical beam size has extreme 
nonlinear relationships among all the insertion device (ID) gap and phase settings. The NN for the 
accelerator was trained by varying the gaps of all undulators inside the ALS storage ring and recording 
the resulting beam size changes while also sweeping through all possible DWP values. The results of a 
trained NN are shown in Figure 7. The area with a white background represents the NN being disengaged 
and results in high fluctuations in the vertical beam size due to undulator and ID gap changes. When the 
NN was activated, the DWP value was chosen to counteract all the undulator motions and stabilize the 
vertical beam size. The RMS of the vertical beam was decreased by an order of magnitude, as shown in 
the  portion between the arrows in Figure 7.  
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Figure 7. Vertical beam size (red) is shown to stabilize under application of a feed-forward neural network. 

The area between the arrows highlights the influence of the neural network on the beam size and the dispersion 
wave parameter. Source: Permission to use image granted by Alexander Hexemer. Licensed under Creative 

Commons Attribution 4.0 International License. 

APS Needs and Progress on AI/ML Applications 
The APS is one of the largest data producers among the DOE BES facilities. Every beamline is optimized 
for a different type or set of measurement(s), and at present, nearly every beamline has a different stack of 
control, workflow, and analysis protocols. Even so, the instruments can be grouped into a much smaller 
set of categories (around a dozen) that can share future development thrusts because they share 
measurement types and scientific goals. Most of these areas are shared with other BES light and neutron 
facilities. The APS is currently embarking on an upgrade (called APS-U) that will greatly enhance the 
performance of most beamlines and result in data rates increasing in many cases by two or more orders of 
magnitude. In particular, techniques that use coherent x-rays will make full use of the upgrade’s vast 
improvement in source properties. These coherent scattering techniques are expected to generate far 
larger volumes of data than what can be processed through conventional methods on today’s computing 
resources. For example, in the APS-U era, the PtychoProbe feature beamline alone is expected to generate 
~130 PB of raw ptychographic data per year. Over 30 petaflops of continuous computing power will be 
needed to keep up with this anticipated data generation rate using current ptychographic reconstruction 
algorithms. (In comparison, it is anticipated that the APS will produce ~1 PB of raw ptychographic data 
per year by 2022, requiring <1 petaflop of continuous computing power.) Likewise, the upgraded 
instrumentation of the accelerator and storage ring will result in the recording of over two orders of 
magnitude more accelerator control, diagnostics, and orbit information.  

This section discusses APS needs, surveys areas in which APS projects employ ML, and outlines some 
barriers to more widespread use of AI/ML. AI/ML approaches can greatly enhance APS operations. In 
fact, it will be impossible for the APS-U to manage beamline operations and process the raw data 
generated at the ~70 beamlines without adopting machine-enhanced beamline control and supervision—
and advanced supervised and unsupervised ML techniques—to accelerate data analysis. Likewise, 
operation of the APS will benefit tremendously from a fast-feedback control system functioning at a level 
beyond the current state of the art to more reliably meet photon delivery specifications.  
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Data production rates are not the only motivation for AI/ML. Imaging techniques need to employ an 
advanced computational methodology to reduce the number of required sample doses by combining 
domain-dependent knowledge with experimental measurements, because the required number of photons 
is determined by resolution. Even under the most favorable conditions, the absorbed radiation for 
resolving a 10 nm feature is estimated to be ~1010 rad, which is at the borderline of inducing irreversible 
damage to biological specimens. Preservation methods such as chemical fixation, dehydration, and 
cryogenic cooling are often applied to improve the tolerance of the sample to radiation damage; however, 
they also can alter the underlying morphology and chemical composition of the sample. AI/ML-aided 
reconstruction provides an effective path to overcome this dose limit on spatial resolution, a crucial 
milestone for reaching the promised diffraction-limited resolution. Denoising and deblurring while 
preserving spatial resolution has been an active AI/ML research area in the image processing community, 
and these techniques need to be adopted for x-ray imaging applications. Many of these techniques need to 
be extended from two dimensions to three dimensions and higher (i.e., time plus external stimuli).  

Machine operations 
The APS accelerator complex is a complicated, integrated system that includes vacuum, magnets, radio 
frequency cavities, mechanical systems, water cooling, power supplies, and other subsystems. During 
operation, values for tens of thousands of settings and measurements are logged each second. Applying 
AI/ML to these data can allow optimization and increased reliability of the APS accelerator complex. 
Diagnosis of the occasional electron beam loss and beam dumps that occur require extended analysis 
efforts from experts to correlate failure events to abnormal conditions of one or more technical 
subsystems. Application of AI/ML can offer advance warning of failure and perhaps mitigation of these 
accelerator operation problems. 

The APS-U accelerator is a challenging next-generation machine on which the beam size is greatly 
reduced via stronger focusing and more damped excitations. To optimize the performance of the APS-U 
accelerator, an ongoing effort is applying AI/ML techniques to the data generated by accelerator physics 
simulations. It is worth mentioning that AI/ML optimization methods (e.g., genetic algorithms and 
particle swarm optimization) have already been successfully applied for several years to improve beam 
lifetime, transverse coupling, and injection efficiency in APS operations.  

Data review/preprocessing 
Many APS operations require human intervention to review the quality of datasets. As an example, when 
the high-resolution/high-throughput powder diffractometer  instrument was commissioned for its very 
popular mail-in access process approximately a decade ago, a small fraction of datasets were found to 
exhibit problems that would not be obvious to users once the data were preprocessed. These include 
issues such as ice crystals building up on the sample and materials degrading or transforming in the beam. 
The issues could not be detected easily in software at the time but could easily be spotted by an operator 
through a quick visual inspection, and a manual review of all data was implemented. This sort of 
operation is an obvious target for ML, but there are many more. 

Another logical target is the human intervention needed to visually separate signals. ML models such as 
CNNs, which have demonstrated superhuman performance on image classification and processing tasks, 
are being developed to parse the raw data to identify and quantify features of interest and retain only 
relevant portions of the raw data. Current work in this area includes detection of spurious scattering 
signals in powder diffraction or pair distribution function experiments employing area detectors. The 
unwanted signals can be single-crystal diffraction spots from the sample container (e.g., diamond anvil 
cell) or from polycrystalline components in the sample or container. The intended and unintended parts of 
images can be very similar in appearance, but contextual information obvious to a trained observer allows 
for their separation. The need for automation of this process is illustrated by a common type of 
experiment, in situ battery cycling. In these experiments, unwanted lithium or sodium crystal spots 
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commonly appear, but their positions on the images constantly change over the thousands of images 
collected with time. Manually masking each image is almost impossible. An ML-based automasking 
process is being developed. Another task for which human effort is currently needed to separate signals is 
masking diffraction from crystals other than the intended subject in Bragg coherent diffraction imaging 
(BCDI). Post APS-U, data volumes will make this impossible. 

Data reconstruction/analysis 
Traditionally, synchrotron sources have been more concerned with progressing beyond state-of-the-art 
instrumentation than with improving computational data analysis techniques. Given order-of-magnitude 
improvements in source brightness and coherent flux, this approach is no longer sustainable; data analysis 
methods must be revolutionized. Additionally, light and neutron facilities are hosting an ever-increasing 
number of users from an extremely diverse range of scientific specializations who are not expert users. 
Thus, mechanisms for data analysis that are accessible to nonspecialists must be an increasing focus. 
Beamline staff bring domain-specific knowledge for data analysis but must depend on finding expertise in 
modern methods in computation and applied mathematics; that is why multimission labs such as Argonne 
National Laboratory are ideal environments for improving data analysis methodologies. This situation is 
illustrated by several of the example cases below in which initial collaborative efforts in data 
reconstruction demonstrate the potential value of ML in APS data analysis.  

Neural networks for low-dose x-ray tomography 
Low-dose imaging is a crucial computational development goal for soft matter imaging. CNN is one of 
the most impactful deep learning techniques because it mimics the feature analysis of the NNs within 
animal brains. It has been applied to simulated and actual transmission x-ray microscopy scans of 
complex biological samples such as mouse brains. For this work, tomographic images were derived from 
raw low-dose projections using two conventional methods and CNN (see Figure 8). CNN demonstrated a 
tenfold improvement in x-ray signal quality compared with conventional image processing methods and 
was used to reconstruct myelinated mouse brain axons as shown in Figure 9. 

 
Figure 8. Low-dose transmission x-ray microscopy images from a section of a mouse brain at 30 nm 

resolution comparing (a) unenhanced reconstruction, (b) CNN, and (c, d) conventional enhancement. Source: 
Figures adapted from X. Yang et al., Sci. Rep. 8, 2575 (2018). Licensed under Creative Commons Attribution 4.0 

International License. 
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Typical image recovery algorithms on which BCDI 
relies are iterative in nature and hence are time-
consuming and computationally expensive, making 
real-time imaging a challenge. Furthermore, these 
algorithms struggle to converge to the correct 
solution, especially when there is a strong gradient in 
the phase of scattered radiation from the material, 
typically due to strain or material defects such as line 
dislocations. To address these algorithmic 
shortcomings that limit the scope and speed of 
BCDI, APS staff have built and trained coherent 
diffraction imaging NNs (CDI NN), deep 
convolutional encoder–decoder networks that have 
learned the mapping between raw diffraction data 
and corresponding object structure and strain (Figure 
10). CDI NN is ~500× faster than traditional 
algorithms used to recover objects and is more robust 
against the presence of large strains in the material 
being imaged.  

AI/ML for 4D image reconstruction 
At the APS, x-ray imaging and scattering on 100 ps 
temporal scales is a revolutionary tool for the study 
of irreversible processes, such as turbulent flows, 
shock-induced structural transformations, and laser-assisted advanced manufacturing, in which materials 
are placed in states far from equilibrium. It is now possible to record time-resolved 2D images of highly 
transient systems, such as the dispersal of supersonic liquid flows as occurs in vehicle fuel injectors. An 
example is shown in Figure 11. For improved design of combustion engines, determining the actual 3D 
spray morphology from such images is crucial. 

A reconstruction process based on full-
wave scattering physics is under 
development in which convergence is 
made possible by a rigorous AI/ML 
algorithm, and computational fluid 
dynamics is incorporated to train deep 
learning models. This approach is 
much needed for contemporary 
experiments, but after the APS-U 
comes on-line, ultrafast imaging 
experiments are expected to yield much 
more spatial information as a result of a 
hundred-to-thousandfold increase in 
beam coherence at the upgraded 
source.  

Harnessing ML frameworks 
The software behind NN training (e.g., 
Google’s Tensorflow or Facebook’s 
Pytorch), along with parallelized and 
highly optimized reverse-mode AD  

 
Figure 9. Individual myelin sheaths surrounding 
mouse brain axons are contrasted with different 
colors. Source: Derived from CNN-analyzed data in 
Figure 8. Source: X. Yang et al., Sci. Rep. 8, 2575 

(2018). Distributed under Creative Commons 
Attribution 4.0 International License. 

 
Figure 10. Structure of CDI NN, a deep convolutional encoder–
decoder network trained to predict structure and strain from 
raw x-ray diffraction imaging data. Source: Cherukara, M. J., 
Nashed, Y. S., and Harder, R. J. (2018). Sci. Rep. 8(1), 16520. 
Distributed under terms of Creative Commons CC BY License. 
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tools, provides an excellent toolkit for implementing 
iterative image reconstruction algorithms at scale. 
Furthermore, the use of ML to provide an estimate for the 
solution, followed by refinement with AD, maximizes 
speed while retaining the accuracy of conventional data 
inversion approaches.  
AI/ML-guided experiments 
Gaining transformative insight into dynamic materials 
processes requires identifying, tracking, and quantifying 
the most relevant volumes within a sample under various 
conditions of applied stimuli. In addition to choosing the 
most important volumes to sample, an imaging modality 
must also be chosen. This situation presents a vast 
measurement parameter space that is very difficult to 
navigate when concrete connections are sought between 
sparse local phenomena, such as dislocation motion and 
grain boundary stress concentration, and bulk irreversible 
processes. To this end, the APS is developing AI/ML 
approaches, shown schematically in Figure 12, aimed at 
real-time in-experiment decision-making to capture 
relevant microscale and nanoscale structural changes that 
govern macroscale response.  

 
For example, AI and ML promise to 
identify rare events, such as failures 
in materials under stress that occur 
on timescales too short for humans 
to observe. Adaptive control of 
experiments, implemented as real-
time in-experiment decision-
making, not only can identify 
regions of interest but also can save 
historical data from a circular buffer 
before they are overwritten once an 
event of interest has been noted. 
The introduction of AI/ML into 
instrument control systems also has 
the potential to allow instruments to 
detect when their alignment has 
drifted and then perform automated 

alignment and recalibration. The increased brightness afforded by new and upgraded sources such as the 
APS-U, coupled with advances in detector technologies, enables the study of interesting dynamic 
phenomena at timescales that were once inaccessible. 

These advances in sources and detectors will result in the generation of orders of magnitude more data 
over exceedingly shorter timescales. Humans are not capable of processing such vast amounts of data on 
such short timescales, and as experiments progress to speeds at which humans are too slow to make 
control decisions, AI/ML-informed adaptive control becomes imperative.  

 
Figure 11. A 100 ps x-ray phase contrast 
image showing a fast-turbulent flow of 
liquid from a fuel injector. Combined 

simulation and reconstructive techniques that 
incorporate AI and deep learning are being 

developed to reveal 3D liquid complex 
morphology and fast dynamics. Source: 

Image courtesy of J. Wang, Argonne National 
Laboratory. 

  
Figure 12. AI-guided workflow to automate experimental decision-

making during beamtime experiments. A trained agent will make 
decisions regarding optimal resource allocation. Source: Brian Toby, 

Argonne National Laboratory. 
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Wider data challenges 
With huge and expanding data streams, the APS is an obvious target for AI/ML, which has the potential 
to revolutionize nearly every aspect of APS operation and use. However, it should be recognized that 
obtaining labeled training data to build these ML models remains a challenge. Each of the dozen or so 
classes of APS experiments uses separate data reduction and analysis techniques, and at present nearly 
every instrument has its own local formats for data storage. Furthermore, data maintained within the APS 
are not uniformly archived and typically contain only the experimental observations and varying levels of 
data collection metadata. Datasets typically do not contain sample provenance information or user results, 
the former of which is crucial for data analysis and the latter for data mining. Nor do most beamlines 
typically retain data processing histories. For example, if the Beamline 11-BM: High Resolution Powder 
Diffraction  processing pipeline had been written to record the observations from data quality review, 
these data would be an excellent AI/ML training set, but the value of doing so was not foreseen when the 
workflow was developed.  

The process of recording provenance information and connecting user results to beamline data is best 
directed by BES, as all BES user facilities face similar problems and the problem is large in scope. The 
mechanisms for data archiving are being investigated, but each class of beamlines needs to develop an 
ontology for how data and results can be universally classified. Only a few fields, such as crystallography, 
have done so. Compelling software packages that implement these ontologies as data standards are 
needed so that users have uniformly coded electronic results. BES can help by incentivizing users to 
provide their results in electronic formats and to connect these results to archived datasets.    

AI/ML at SLAC Accelerator Facilities 
SLAC operates a number of accelerator user facilities, including LCLS, SPEAR3 (Stanford Positron 
Electron Asymmetric Ring), FACET (Facility for Advanced Accelerator Experimental Test), and the 
UED (Ultrafast Electron Diffraction) instrument. In the near future, LCLS-II and FACET-II will be 
commissioned and enter user operation. Ensuring stable, high-performance operation of these facilities is 
a primary goal of the SLAC accelerator teams. In response to the challenges in realizing and maintaining 
high machine performance and supporting user science, ML has been applied to a variety of accelerator 
applications by SLAC physicists. With successful demonstration of this approach, ML studies on 
accelerators have been gaining momentum. The accelerator ML work at SLAC falls into several 
categories: (1) online optimization of accelerator performance, (2) surrogate modeling of the accelerators, 
(3) data analysis and diagnostics, and (4) application in accelerator design optimization. This section 
briefly summarizes the current state of ML studies on the SLAC accelerators.  

Online optimization 
Online optimization is an effective method to discover the optimal operation setting when discrepancies 
exist between the actual machine and the design model, a common challenge in both storage rings and 
free electron lasers (FELs). SLAC accelerator physicists pioneered the development and implementation 
of online optimization algorithms. The robust conjugate direction search method was designed for the 
optimization of noisy functions with a complex terrain in the parameter space [1]. It has been applied in 
~30 laboratories worldwide, including work that resulted in substantial improvement in the storage ring 
nonlinear beam dynamics at SPEAR3, the European Synchrotron Radiation Facility, MAX-IV, and 
NSLS-II, and improvement in FEL power at LCLS [2]. 

Application of Bayesian optimization to online tuning has been extensively studied on the LCLS [3]. The 
Gaussian process optimizer was developed in collaboration with Stanford University’s Computer Science 
Department. Its application to the tuning of optics-matching quadrupoles in LCLS has led to a significant 
reduction in FEL tuning time.  
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Surrogate modeling 
Modeling of accelerators is essential to accelerator design and control. High-fidelity modeling of complex 
systems such as FELs typically employs computationally expensive simulations. Evaluation of the 
computer model could take hours or days on large-scale computer clusters, making it impractical for 
many applications, such as real-time controls or diagnostics. NN-based models can provide a fast, 
accurate surrogate for the physics model in such circumstances. These models can also be trained using 
measured data. The surrogate modeling approach has been demonstrated for the LCLS and FACET 
machines with problems ranging from individual accelerator modules, such as injectors and bunch 
compressors, to start-to-end simulations (Figure 13) [4]. Surrogate models may be used in experiment 
planning, design optimization, virtual diagnostics, and machine tuning. 

 

 
Figure 13. The NN-based surrogate model prediction (right) reproduces the electron beam distribution 
obtained through measurement (left) for the LCLS beamline (schematic at top). Source: C. Emma, et al., 
Phys. Rev. Accel. Beams (2018), American Physical Society under terms of Creative Commons Attribution 4.0 

License. 

Data analysis and diagnostics 
An accelerator has many diagnostics that monitor and archive its state and performance. It is a challenge 
to extract useful information to benefit machine operation and user experiments. ML methods have been 
applied to data analysis in several scenarios. In an application on LCLS, a method using a CNN to 
analyze the images of electron beam (𝑧𝑧, Δ𝐸𝐸) distribution obtained with a deflecting cavity was shown to 
be faster and more accurate than the standard algorithm [5]. ML is being applied in the reconstruction of 
sample structure in ghost imaging, an experimental technique that employs the shot-to-shot jitter to 
extract information from the sample [6]. NNs have also been applied to analyze the operation history data 
for the discovery of hidden connections between environment variables and the machine performance on 
SPEAR3 [7].  

Accelerator design optimization 
Present-day accelerator design practice often requires a global search of the optimal solutions of a 
multidimensional parameter space. High efficiency of the optimization algorithm is critical, as the 
simulation involved in evaluating a solution is typically time-consuming. Surrogate models have been 
found to enable a significant speedup of the multiobjective optimization of an accelerator [8]. Recently, a 
multigeneration Gaussian process optimizer was proposed and shown to converge substantially faster than 
traditional algorithms (e.g., genetic, particle swarm [9]).  
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Although ML studies in these areas at SLAC have led to many exciting results, they are still in the early 
stages. Many opportunities exist to make breakthroughs in these areas. In the near term, the studies will 
result in improvements in accelerator performance and user support. These include improving both beam 
quality and tuning efficiency. Continuing ML research in accelerators may change philosophies regarding 
accelerator design, commissioning, and operation and open a new era in which ML and AI play a central 
role.  

Growth of ML research requires sustained investment. In most cases, the ML activities in the SLAC 
accelerator community started spontaneously as the physicists saw opportunities to improve their work 
with ML techniques. Initial ML work has attracted internal and external funding under several projects. 
The Gaussian process optimizer study is supported by a 2-year Laboratory Directed Research and 
Development project. Two ML projects are funded jointly by BES and ASCR: surrogate modeling, and 
beam-based optimization and ML for synchrotrons. Continued funding support in these areas and new 
areas such as accelerator fault detection and prediction is essential. 

AI/ML for LCLS X-ray Science 
DOE hosts and collaborates on some of the most data-intensive scientific facilities in the world. From 
XFELs (e.g., the LCLS [10]) to international efforts to understand fundamental particles (e.g., the Deep 
Underground Neutrino Experiment [11] and the ATLAS experiment at CERN’s Large Hadron Collider 
[12]), humanity’s appetite for scientific insight is driving a change in how we must view information. The 
SLAC National Accelerator Laboratory (SLAC) operates the world-leading XFEL, the LCLS; a near-term 
upgrade, LCLS-II, will enable a ten-thousandfold increase in the LCLS data rate. 

Examples of ML at LCLS include (1) high-throughput, low-latency experimental autonomous decision-
making; (2) Bayesian signal separation; and (3) multiplex statistical analysis. These methods have wide 
application across experiments in photon science, including materials science; soft and hard x-ray 
spectroscopy; atomic, molecular, and optical (AMO) physics; and biological sciences. 

Machine learning at the edge 
A typical AMO experiment at LCLS is 
represented by Figure 14. This experiment used 
10 fs x-ray pulses (shown as a magenta pulse) to 
eject the innermost electrons from specific atoms 
in optically aligned molecules. Exaggerated 
triatomic N2O in the center of the ring of 
detectors, kicked into alignment by the sequence 
of eight optical laser pulses [13], is shown as red 
in the image. The Auger electron emission 
pattern then reveals not only the energy of the 
involved electronic levels but also the molecular 
frame electronic symmetries [14,15]. This 
paradigm serves as a motivation for one of the 
major efforts driving high-repetition-rate, angle-resolved soft x-ray spectroscopy at LCLS-II [16,17]. 

A new superconducting accelerator structure for LCLS-II (-HE) will enable repetition of measurements 
every microsecond, in a continuous stream of 1 MHz operation. This boost in frame rate portends a 
potential for a ten-thousandfold increase in the rate of data acquisition, moving the facility from the 
current ~100 MB/s to the scale of TB/s. This LCLS-II upgrade will give an incredible boost in source 
repetition rate and thus enable a transformative increase in the rate of “result acquisition”—a phrase used 
to distinguish the desire for results from the misconception that an increase in acquired data is desired. 
Beyond simply accelerating the acquisition of aggregate data, the biggest gains will be delivered by an 

 
Figure 14. Typical LCLS soft x-ray experiment with 
high-resolution angle resolved electron spectroscopy. 

Source:  Image courtesy of Hegazy Kareen, Stanford 
University, and Ryan Coffee, SLAC National 

Accelerator Laboratory. 



 

20 

ability to analyze data on the fly, intercepting data as they stream through sensor-local analysis and 
inference hardware such as EdgeTPUs and FPGAs.  

Implementing analysis immediately at the detector is dubbed EdgeML, foreseeing the advantages of ultra-
low latency and high-throughput machine-learned inference engines over conventional deterministic 
computation. EdgeML will provide autonomous data routing decisions that are performed as early in the 
process as the firmware on the sensor FPGAs. Decisions should be made locally, as near to the sensor as 
possible; as rapidly as possible; and with an awareness of the local data environment. Data that are 
destined for disposal should not be transferred. 

Multiplex analysis and ghost imaging 
Light sources traditionally measure quantities in space, time, or spectrum by raster scanning a probe 
across the parameter of interest, for example, sequentially probing each pixel of a spatial sample or 
scanning the x-ray energy for a spectral measurement. However, it is also possible to measure multiple 
points simultaneously. These “multiplex” schemes provide several benefits: Felgett’s advantage improves 
the signal-to-noise ratio and compressive sensing reduces the time required to scan sparse samples. 
Finally, creating the sharp features required for a raster scan can be expensive, time-consuming, or 
impossible at light sources; multiplex schemes instead take advantage of the natural randomness of the 
standard source. For instance, an x-ray beamline could install a cheap spectrometer in lieu of an expensive 
monochromator to obtain the same scientific results. Modern implementations of multiplex schemes such 
as ghost imaging and adaptive illumination rely heavily on ML methods, including sparse fitting with 
priors, RL, and Bayesian optimization. 

Examples of multiplex measurements are found widely across SLAC’s light sources. A ghost imaging 
application uses the jitter of the cathode drive laser to passively measure the cathode quantum efficiency 
without interfering with operations. On the x-ray side, ghost imaging can exploit the randomness of the 
self-amplified spontaneous emission (SASE) process to replace pump–probe scans in the time domain 
[18]; spectral measurements sharpen resolution in the frequency domain for resonant inelastic x-ray 
scattering, self-seeding, and attosecond spectroscopy (e.g., see sections on Bayesian Signal Separation 
and Unmixing and Multimodal Attosecond Spectroscopy). At the Stanford Synchrotron Radiation 
Lightsource (SSRL), adaptive schemes dynamically change the illumination pattern to maximize the 
information contained in each measurement.  

Bayesian signal separation and unmixing 
LCLS is pursuing signal unmixing tasks with applications for linear and nonlinear x-ray spectroscopy, for 
example, isolating high-resolution monochromatic absorption from samples excited by a polychromatic 
XFEL beam or isolating the two photon signals in double core-hole photoemission. Unmixing, or signal 
separation, is an inverse problem that needs strong regularization and constraint to recover physically 
realistic results. Researchers at Stanford University use approximate Bayesian inference, specifically 
variational inference, to both regularize and quantify the uncertainty of the unmixed signals. These 
methods scale in a computationally similar way to NNs and enjoy similar hardware acceleration (e.g., on 
a GPU, which enables unmixing for large-scale datasets containing billions of measurements). 

Multimodal attosecond spectroscopy 
The new attosecond capabilities of LCLS open up the possibility of measurements of electronic motion 
on a natural timescale. A useful and well-developed method for making such measurements is attosecond 
transient absorption spectroscopy. In conventional transient absorption spectroscopy, a well-controlled 
central x-ray photon energy of narrow bandwidth is scanned while the absorption is recorded at 
consecutive points along the energy scan. The Fourier bandwidth theorem, however, precludes the 
application of this conventional technique in the attosecond regime at the LCLS; owing to the large 
bandwidth attosecond pulses, it is not possible to isolate a narrow bandwidth central photon energy. To 
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overcome this limit, we rely rather on the inherent instabilities of SASE operation, measured for every 
individual shot, to make a statistical analysis rather than simply recording averages. Similar to ghost 
imaging and ptychography methods, this technique recovers sub-bandwidth spectral resolution in 
absorption spectra. A correlation between inherent fluctuations in the enhanced SASE spectrum and a 
single measured value such as total x-ray absorption forms a convex solution space that optimization 
methods such as alternating direction method of multipliers are efficient in solving. Thus, the spectral 
response of a sample is reconstructed at a higher resolution than the bandwidth of the incident pulse.  

Machine learning in materials science 
The LCLS-II is also targeting a demonstration of general tools for ML in fundamental materials science. 
This effort will bind together a partnership that includes the Stanford Institute for Materials and Energy 
Sciences, SSRL, LCLS, and the Stanford School of Earth, Energy and Environmental Sciences. It will 
also engage with the SETI Institute to extend its unique perspective on AI/ML for astrobiology into the 
energy science domain. The collaboration aims to extend established and emerging AI/ML tools 
developed by industry into new areas of materials research. Benchmarked with fundamental problems 
within SLAC’s mission, the group will disseminate tools to the materials community as an open-source 
library. 

AI/ML for SSRL X-ray Science 
Major investments have been made at SSRL over the past decade to build brighter, undulator-based 
beamlines and acquire faster and larger detectors with higher dynamic range. The rate and complexity of 
data collected following these upgrades has risen dramatically; however, the emergence of new scientific 
breakthroughs and insights has lagged. For example, the rate of peer-reviewed publications from 
scientists at SSRL and other light sources has nearly 
doubled in the past decade, but the volume of data generated 
has increased by over an order of magnitude in the same 
time frame.  

The rate of discoveries is slower than hoped because the 
rapid rise of data has not been accompanied by new tools 
for analysis and management; the volume of data produced 
by experiments has consequently made all three steps of the 
discovery cycle—hypothesis building (predicting), data 
collection (performing), and knowledge extraction 
(finding)—suboptimal. Discoveries are still extracted 
mostly by human curators using techniques from the days 
when data were scarce and researchers had time to decide 
which experiments to perform. That approach is 
increasingly challenged by the rate of data generation 
exceeding our human ability to analyze (or even visualize) 
data as they are generated and by the complexity 
(i.e., increasing dimensionality) of data, exceeding human 
perception to find interesting trends hidden in it.  

We have, therefore, undertaken a pilot program that 
leverages emerging advances in ML and AI to build new 
data analytics tools to improve the productivity of the three 
stages of the discovery cycle (shown in the schematic in 
Figure 15). 

 
Figure 15. Schematic visualization of an 
AI/ML-driven discovery cycle that SSRL 

is beginning to develop and deploy at 
beamlines. Source: Image courtesy of 

Apurva Mehta, SLAC National Accelerator 
Laboratory. 
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Machine learning predictions 
Increasingly large data-generating experiments at SSRL are either searches for new materials in complex 
composition-processing combinatorial spaces, such as high-entropy alloys with superior high-temperature 
structural properties, or reaction, transformation, and aging of materials in complex environments such as 
charging and discharging of lithium-ion batteries. These complex experimental spaces are too vast to 
search blindly. For example, there are easily over a billion compositions for possible high-entropy alloys 
that contain at least 5 elements from a pool of 25 cheap and earth-friendly elements. Over the past decade, 
large computational efforts such as the Materials Project and the Open Quantum Materials Database have 
begun to calculate the stability of a few of these complex alloys, but even the largest such database has 
fewer than a million calculations. Moreover, the computations for material stability are usually for 0K 
structures without defects, whereas real materials frequently deviate from these ideals. The inclusion of 
experimental observations complements computations. Even when the databases are incomplete, trends 
are present that can be exploited to predict the missing alloys, but finding these trends is beyond human 
perception. ML, on the other hand, is designed to find subtle trends in complex data. An ongoing 
collaboration among SSRL, Argonne National Laboratory, and Citrine Informatics is developing ML 
predictions based on computational and experimental databases to predict new compositionally complex 
alloys with a range of properties suitable for applications, from wear-resistant coatings to high-
performance thermoelectrics. Figure 16 shows a comparison of ML predictions with experimental 
validation from that project for complex glass-forming alloys [19].  

 
Figure 16. Machine–learned prediction of amorphous compositionally complex alloys and 

experimental verification. Source: F. Ren et al., Sci. Adv. 4(4) (2018), eaaq1566. Distributed under 
terms of Creative Commons Attribution License. 

AI/ML-driven smart data collection 
An unbiased experimental campaign must explore regions of the parameter space larger than those 
predicted by a model because, often, negative predictions and the boundaries between negative and 
positive predictions contain invaluable information. The traditional approach is a brute-force scan of the 
parameter space; however, as the parameter space becomes larger, even with increased throughput, such 
an approach becomes increasingly unsustainable. The brute-force approach also produces large amounts 
of data, only a small fraction of which is useful. A smarter search strategy is to continuously leverage the 
emerging new information as measurements are performed to construct a model of the experimental space 
and subsequently use that model to decide on the next measurement of maximum utility. Iterating such a 
Bayesian real-time decision-making process may locate the information-rich regions of the experimental 
space with far fewer measurements. The Bayesian approach is particularly powerful for searching a 
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parameter space that is very poorly predicted. This is often the case at SSRL for experiments in which 
process/operating conditions play a significant role. 

Recently, such an approach was developed to discover synthesis conditions for a specific target size, 
phase, and polydispersity for a class of nanocrystal catalyst materials for which very few reliable prior 
predictions existed. To accomplish this task, a suite of ML classification and regression algorithms, which 
collectively automates the interpretation of small-angle x-ray scattering data, was developed. These 
algorithms enabled machine interpretation of the results of a nanocrystal synthesis measured in situ using 
x-ray scattering methods. The output of the ML classification was incorporated in a Bayesian algorithm, 
which automated the experimental design to efficiently search the enormous parameter space associated 
with colloidal synthesis. The design algorithm attempts to predict a synthesis for a specified target or 
class of targets. Based upon its acquisition function value, it either attempts that synthesis or prioritizes 
gathering more training data. After each subsequent experiment, the algorithm is retrained and queried 
again for new results. This collection of algorithms is contained within a software package designed to 
control the autonomous synthesis, which includes clients to interface with the beamline data acquisition, 
flow reactor, data-handling workflows, and third-party analytics clients. The autonomous synthesis 
workflow is shown in Figure 17. 

An alternative approach uses RL to optimize 
data acquisition. To train an RL “agent,” a 
simulation environment provides the agent 
with sequential opportunities to change 
acquisition parameters. 

After each measurement, the environment 
rewards the agent based on the measurement 
error, teaching the agent to focus on the 
highest-value measurements. In a first test on 
x-ray fluorescence images, the adaptive RL 
agent significantly outperformed a standard 
raster scan [20]. 

Rapid information extraction 
Extracting information rapidly and with 
minimal human intervention—but with 
performance equal to and in many cases 
surpassing that of a human—is essential for a 
more productive AI/ML-driven discovery 
cycle. Without on-the-fly information 
extraction, the kind of autonomous 
experimentation described above cannot 

happen. Moreover, many other experiments at SSRL produce large amounts of highly multidimensional 
data very quickly. Often, a human researcher does not have the throughput or even perception to find 
discoveries buried in such databases. Therefore, multiple efforts at SSRL use unsupervised factorizations 
and supervised ML to rapidly extract information from large databases. There is a concerted push to 

 
Figure 17. Data collection and computation workflow for 
an autonomous experiment designed to discover process 
conditions for a nanocrystal catalyst material of specific 

size and polydispersity. Source: Apurva Mehta, SLAC 
National Accelerator Laboratory, Stanford University. 
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push to increase such efforts 
because they have the 
potential not only to increase 
the rate of discoveries but 
also to produce the types of 
discoveries that often are 
missed with the current 
analysis approach.  

Figure 18 illustrates an 
example of such an effort 
applied to understanding 
modification of battery 
cathode particles under 
operating conditions (i.e., 
charging/discharging of 
lithium-ion batteries). The 
datasets contained x-ray absorption spectra produced by nanoresolution full-field x-ray absorption near 
edge structure (XANES) microscopy. A full-field XANES microscope produces over 4 million spectra in 
10 minutes. A hybrid supervised and unsupervised classification approach was developed to search for 
unanticipated and undesired chemical phases in the particles that have gone through more harsh 
conditions. The researchers found that, in addition to the anticipated chemical phases, two different types 
of chemical outliers coexist in the  
aggressively cycled particle (labeled “more reduced” 
and “more oxidized” in Figure 18.) These two 
different types of chemical outliers have different 
chemical fingerprints and different spatial distribution. 
They were, therefore, attributed to different side 
reactions that need to be mitigated for improvement in 
the overall device (i.e., battery) performance [21]. 
Denoising 
Deep learning methods for removing noise from 
images may be useful for measurements for which 
diffraction intensity is limited, such as radiation-
sensitive samples or diffuse scattering measurements. 
A CNN can find correlations in the intensity 
distributions between a pair of images and thus predict 
an image representing the shared structure with any 
uncorrelated noise removed. Using this technique, we 
analyzed diffraction images from a time-resolved 
pump–probe measurement at SSRL and found an 
improvement in the signal-to-noise in diffraction 
images in Figure 19. 

AI/ML at NSLS-II  
ML and AI are becoming increasingly critical tools at NSLS-II. Increased photon intensity makes many 
experiments, even complex ones, high-throughput. This in turn demands intelligent execution of 
experiments and frequently requires near-instantaneous analysis and decision-making. It is becoming less 
and less possible for humans to play a real-time role in this loop. At the same time, as the newest light 
source in the United States, NSLS-II has developed a modern data acquisition architecture that has 

 
Figure 18. 3D distribution of four cobalt phases discovered from a hybrid 
supervised and unsupervised analysis of a collection of x-ray absorption 

spectra collected on a multiply cycled and partially charged battery 
cathode particle. The red and green phases were anticipated, but the blue and 

the yellow phases were unexpected. Source: Y. Mao, et al. Adv. Func. 
Mater. 29, 1900247 (2019) Permission granted by Wiley. 

 
Figure 19. (Left) Diffraction from a 

polycrystalline gold sample. (Right) Output of a 
neural network. Source: Clara Nyby, Stanford 

University. 
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recently been adopted as the DOE–complex-wide standard. By design, this architecture is the perfect 
foundation to build the AI and ML solutions that will transform synchrotron science.  

The NSLS-II is investing in the development and adaptation of AI and ML algorithms and packages in 
the following areas:  

1. Analysis of synchrotron data of various types, both to produce physically meaningful information and 
to identify and remove experimental artifacts; 

2. Experiment automation including the coupling of such algorithms to the beamline data acquisition 
system; 

3. The combination of the first two areas to facilitate scientific investigations that are only possible 
through the application of such techniques; and 

4. Accelerator operations, to enable fault prevention and fast fault diagnosis for accelerator issues.  

Within these areas, we think it is essential that any proposed solutions using AI and ML techniques 
develop an integrated architecture for the nonexpert to enable the use of the solution at the beamline or 
within the accelerator control room. 

Current AI/ML projects at NSLS-II  
Autonomous experiments 
The NSLS-II, in collaboration with Brookhaven National Laboratory’s Computational Science Initiative 
and CAMERA, has been pioneering autonomous x-ray scattering experiments at Beamline 11-BM (CMS) 
Complex Materials Scattering beamline, based on a workflow consisting of automated data acquisition, 
real-time data processing, and CAMERA algorithms for autonomous decision-making. This is being 
applied to the field of additive manufacturing to autonomously make or modify materials. For example, 
this work will investigate the particle dynamics, dispersion, and alignment of anisotropic “nanofillers” 
(e.g., metallic nanorods, clay nanosheets) in a printable polymer–nanofiller composite ink as it is extruded 
from a nozzle, is deposited, and solidifies. The AI/ML-guided exploration of the vast material and process 
parameter space will be used to unravel the correlations among control parameters, material dynamics, 
and final structure to understand the underlying physical mechanisms for material evolution and 
formation during the out-of-equilibrium additive manufacturing process.  

Spectroscopic data analysis 
The NSLS-II and the CFN are currently applying the use of AI and ML techniques to x-ray absorption 
spectroscopy (XAS) data. XAS is a powerful tool to probe electronic and structural features in a wide 
variety of energy materials. Currently, synchrotron sources can collect XAS data in a high-throughput 
mode faster than data can be analyzed with physics-based models, which are key to determining the 
underlying structures of materials. Recent research at NSLS-II has prototyped AI/ML engines to extract 
structural descriptors from XAS spectra using a first-principles simulation-guided ML approach, thereby 
allowing the researcher rapid on-line data interpretation. This approach is being developed as a future 
robust, general tool for XAS data analysis, enabling efficient data analysis to match the high-throughput 
beamline capability and the implementation of real-time feedback for self-guided experimentation.  

Proposed future AI/ML projects at NSLS-II  
Accelerator operations 
Machine reliability is vitally important for the productivity of a synchrotron facility and is a key metric of 
the accelerator. Since FY 2017, NSLS-II has kept its annual reliability above 96%. As the accelerator and 
its components age, common points of failure can change. If not anticipated and adapted to, faults and 
downtime can increase, and reliability will suffer. Because of the modern controls environment at 
NSLS-II, all machine parameters are actively archived (>106,000 individual variables). The first 5 years 
of operation have resulted in an unparalleled dataset that can be used for training ML algorithms. 
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Currently, alarm thresholds are established on parameters to alert the operator to a fault. While this 
arrangement prevents some beam dumps, it does not account for trends and patterns that do not approach 
a threshold. ML and AI techniques can be engaged to learn from the archived data to characterize patterns 
that can predict accelerator faults and therefore alert the operator, or the algorithm, to a fault before it 
occurs so corrective action can be taken. Such a system would increase the reliability and therefore the 
productivity of the NSLS-II.  

Materials synthesis 
To dramatically speed up the feedback loop between experiment and theory, leading to accelerated 
materials discovery, NNs can be used to encode simulations of the shape distribution of nanocrystals by 
physics-based simulation. These simulations are sufficiently complex and time-consuming that they 
cannot be performed in real time. If NNs are trained on many simulation runs, they can then be used in 
real time to determine the shape distribution from the experimentally measured total scattering pattern, 
allowing the possibility of real-time materials discovery.  

Artifact detection 
One important possible application for AI and ML techniques is the detection and quantification of 
systematic errors in data collection. For example, coherent x-ray diffraction patterns collected for photon 
correlation spectroscopy are taken successively over many hours to measure dynamics. Currently, any 
systematic errors (e.g., beam or sample drifts) in such datasets are not found until the whole dataset is 
analyzed; the delay can result in highly inefficient use of beamtime. Furthermore, the sources of such 
errors are often difficult to identify and hence difficult to remove. We will train ML algorithms to identify 
and classify such artifacts, training on both simulated coherent diffraction patterns and actual collected 
data. This approach will provide the experimenter with a real-time measure of data quality and, if 
systematic errors are present, indicators of their origins.  

Complex beamline optimization 
Diffraction-limited synchrotrons such as NSLS-II have enabled such techniques as ultra-high-resolution 
inelastic x-ray scattering. The SIX (2-ID) beamline at NSLS-II currently leads the world in experimental 
resolution, and a key component of that resolution is the spectrometer. To obtain such resolution, 
however, requires careful alignment of the spectrometer’s many optical elements by an expert scientist. 
AI/ML techniques can be used to develop an autonomous system for aligning such spectrometers, 
leveraging NSLS-II expertise in beamline optical simulations using coherent wave-front propagation. 
Such forward simulations can be performed to explore the whole parameter space of the optical 
component alignment to generate a dataset on which NNs can be trained. Initially, the resulting network 
will be used to more quickly guide a scientist to the perfect alignment. Ultimately, it will serve as a basis 
for an autonomous alignment system that will not only align the beamline but also maintain it at an 
optimum alignment throughout the course of the experiment. Once developed, this approach should be 
easily generalizable to other beamlines across the DOE complex.  

Additional points 
For AI/ML techniques to be successful, there needs to be a sociological change in how experimenters 
approach experiments. Scientists developing AI/ML techniques will need to educate the synchrotron 
community to build confidence that these techniques offer accurate and robust results. Doing so will 
require careful determination of the true uncertainties present in such analysis and the applicability of 
these techniques to particular experimental problems. To build confidence in their use, AI/ML algorithms 
will have to be benchmarked against trusted datasets. 

Finally, the use of AI/ML techniques, with their inherent need for large training datasets, should and will 
drive a need for uniformity of software environments across the DOE user facility complex, for both data-
sharing standards and policies and metadata standards. Initial steps are being taken in this regard with the 
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adoption of the open-source, python-based BlueSky data acquisition software stack. This effort ties into 
existing large, highly sophisticated python-based ML packages. Development of AI/ML for synchrotron 
science should be carried out with agreed-upon programming standards and environments and ideally 
with a coherent strategy across the light sources so that the development work can be leveraged to the 
greatest extent possible. 

AI/ML at the Neutron Facilities  
Along with SNS, the High Flux Isotope Reactor (HFIR) at ORNL are world-class neutron scattering user 
facilities supported by DOE BES. There are many benefits to the application of AI and ML techniques to 
neutron scattering experiments at these facilities, many of which are only beginning to be understood. 
This section briefly describes several areas in which the application of AI/ML is expected to be most 
beneficial to neutron scattering facility users. 

Although neutron scattering experiments produce fewer data than experiments at light sources, the 
volume of data is still significantly larger than what can be digested and understood easily by humans. 
The data are also rich in physics information that may not be easily analyzed in coupled analyses in a 
straightforward way. Thus, AI and ML applied to neutron scattering experiments can significantly 
improve the rate at which user data can be analyzed while simultaneously revealing new physics. For 
example, unsupervised ML techniques (e.g., DBSCAN and other clustering algorithms) can be used to 
extract common features in the data without having to define what these features are a priori. One 
common approach is to apply these unsupervised ML techniques to extract features such as phase 
transitions or data outliers. Such algorithms have recently been shown to reveal the presence of different 
phases of materials and can also be used to alert the experiment team or facility staff of unexpected, 
changing conditions during an experiment.  

Supervised ML techniques can also be used. In this case, labeled training and test data are needed to train 
a network for a given task. This approach has been used in a DOE Data Demo to categorize single-crystal 
diffuse scattering trained on simulated diffraction patterns. The same approach was used to categorize 
images on an x-ray detector as isotropic or background. This opens up the possibility of automatically 
detecting “bad” background data and using the tags as metadata. Using these approaches, it would in 
principle be possible to create a live diagnostics engine that assesses data quality and lets users know 
when there are problems with the instrument. By training the ML process with standard-looking data 
projections, it would be possible to determine whether the acquisition is proceeding appropriately.  

ML can also be used to speed up computationally expensive first-principles calculations by training and 
using NNs to evaluate larger models more rapidly. This will give users access to the needed model sizes, 
for example, to explain diffuse neutron scattering data and eventually use these techniques in near real 
time. Neutron reflectivity and quasielastic neutron scattering are two areas in which AI/ML tools have 
been used by ORNL staff and where they show significant promise. The ICEMAN (Integrated 
Computational Environment for Modeling and Analysis) project provides high-order, nonlinear, 
regression-based ML tools for quasielastic neutron scattering model fitting in its QClimax package, which 
allows users to consider the deeper physical meaning hiding in their data more quickly and in highly 
natural ways. Figure 20 shows a similar application of regression-based ML techniques for neutron 
reflectivity, in which the k-nearest neighbors (k-NN) algorithm was able to successfully model the input 
data with one-, two-, and three-layer thin-film models. A similar approach for classifying small-angle 
neutron scattering (SANS) data for the most appropriate model to use for data analysis has also been 
developed.  

The application of super-resolution methods to spectroscopy and SANS is also promising and currently 
under way for multiple instruments at the SNS FTS. Super-resolution methods form a class of techniques 
that can improve signal quality by better exploiting the information in the signal through various 
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statistical means. Super-resolution techniques have advanced scientific fields such as fluorescence 
microscopy and biology; the 2014 Nobel Prize in Chemistry was awarded for super-resolution imaging. 
Rare attempts at “deconvolution” for neutron spectroscopy earlier in the 1990s have not yet found wide 
application. Pilot studies for direct-geometry spectrometers at the FTS have shown that traditional fusion–
deblurring–denoising techniques from super-resolution imagery are applicable to obtain sharper 
dispersions and phonon densities of states with a resolution improvement of 5× greater than normal. It 
was also demonstrated that super-resolution imaging techniques can be used to refine theoretical material 
models such as spin-coupling coefficients in spin-wave models. In SANS, super-resolution deep CNNs 
have been shown to reproduce intensity curves as well as a bicubic method, but super-resolution 
performed better than the bicubic methods when the intensity reflected physical features such as a beam 
stop. Thus, it is clear that additional research and application of such techniques across multiple 
instrument types will provide significant resolution improvements, especially for those instruments with 
expensive or otherwise impractical hardware upgrades.  

The utility of super-resolution methods to neutron spin-echo measurements has not been established but 
may be especially beneficial because of the flux constraints encountered by those instruments. Super-
resolution methods are also promising for instruments planned for the STS. For engineering and powder 
diffractometers, super-resolution methods will make it possible to better utilize the information from 
higher- and lower-angle detector banks to improve diffraction patterns. Similarly, in single-crystal 
diffractometers, super-resolution will help improve the accuracy of modeling of peak profiles, making it 
easier to obtain accurate integrated intensities of diffraction peaks. Similar and related improvements are 
expected for other STS instruments. 

 
Figure 20. An application of regression-based ML for neutron reflectivity. The k-
NN algorithm successfully modeled input data with thin-film models. Source: Mathieu 

Doucet, Oak Ridge National Laboratory. 

Understanding neutron measurements of complex emergent materials such as quantum magnets requires 
the integration of multimodal datasets and application of computation and modeling that go well beyond 
traditional fitting approaches. As a result, current experiments at SNS and HFIR take from weeks to 
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months to analyze. Advances in ML combined with high-performance simulations of models could 
provide a new way to meet this need. By training on wide ranges of realistic simulations, ML resources 
capable of interpreting data, quantifying the uncertainty of model parameters, and guiding experimental 
strategies can be prepared before experiments are started. They can be integrated into the data acquisition 
process to provide real-time feedback and steering, as well as removal of experimental artifacts and noise. 
ML combined with modeling simplifies the complexity of materials experiments and high experimental 
data volumes by providing the researcher the essential science with a direct visualization of how the 
material behaves. It can do so by integrating and distilling the information content of dissimilar datasets 
(e.g., different temperatures, applied fields, heat capacity, and magnetic susceptibility) and working 
directly on the difficult-to-visualize high-dimensional data collected in scattering experiments (e.g., 3D 
diffuse scattering and 4D single-crystal inelastic datasets).  

The first demonstrations of potential applications for diffuse and inelastic scattering datasets have been 
completed. Figure 21 shows a 3D diffuse scattering dataset collected on a spin-liquid material at the 
CORELLI diffractometer at SNS. ML was used to train an NN to interpret the data, as well as to identify 
the experimental features and phases over five independent dimensions of model interactions/parameters. 
This approach enables the identification and automatic removal of experimental artifacts and noise. 
Validation of the model was undertaken by comparing its results with data taken in applied fields and at 
temperatures different from that used to extract the model. Dissimilar datasets, here involving heat 
capacity and susceptibility, were used to provide a unique solution. Figure 21(d) shows a visualization of 
the formation of a complex glass phase in the material determined from the combined data modeling. This 
demonstrates how new science that goes beyond current theory and analysis can be realized by the 
uniquely close combination of modeling and data possible with such new approaches. It provides the 
means to solve long-standing problems previously considered too complex. 

 
Figure 21. Machine learning is used to train autoencoders resulting in visualization of glass formation in a 

cooled spin liquid. (a) A rendering of a 3D diffuse scattering measurement of the spin correlations in the gauge spin 
liquid Dy2Ti2O7 measured as 1 of 40 datasets on CORELLI. (b) The result of denoising and removal of experimental 

artifacts by the autoencoder, which provides optimized model parameters from the 3D dataset. (c) A slice through 
the model space of interaction parameters where ML has identified distinct physical behaviors (i.e., phases) and 

learned features. (d) Visualization of the model in real space showing monopole localization. Source: Alan Tennant 
and Mathieu Doucet, Oak Ridge National Laboratory. 

Next-generation neutron imaging instruments, such as VENUS at the SNS, will produce large datasets 
that may be impossible to analyze and understand without advanced AI/ML tools. Traditional attenuation-
based imaging systems that use neutrons from reactors, such as the imaging instrument at HFIR, produce 
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manageable amounts of scalar data. However, VENUS, which will provide TOF 3D Bragg-edge imaging, 
will produce data with six unknowns per voxel. Important imaging information is therefore expected to be 
sparse or nearly nonexistent in such huge datasets. In addition to data reduction and analysis, it is 
expected that AI/ML will help in planning imaging experiments. For example, during computed 
tomography scans, AI/ML can determine which angles are more important than others to image a 
material’s microstructures. Real-time feedback to AI/ML “observers” could also be used to guide 
experiments in progress, which would significantly boost both experiment and data quality. One major 
challenge that AI/ML will be critical for addressing is the mapping of applied and residual stress in 3D at 
micron-scale resolution with 3D Bragg-edge imaging. Presently, both limited boundary conditions and 
partial information lead to multiple answers and a complex (and incomplete) inverse problem. Using 
advanced AI/ML techniques that are currently applied in the broader imaging community, along with 
both modeled and synthetic data, could have significant impacts on materials research because Bragg-
edge imaging is nondestructive, fast, and inexpensive compared with more traditional methods. 

Efforts to integrate more closely with HPC capabilities and computer science research at ORNL are under 
way, including the successful Ugly Data Days and AI Expo events, hosted annually to connect staff 
experiencing problems with AI/ML with AI/ML experts on staff.  

The opportunity for AI/ML to impact user productivity and scientific discovery in neutron experiments is 
substantial; perhaps the greatest gains will be in the integration of AI/ML technology into the full user 
workflow, from experiment to analysis. Such tight integration with workflow systems would make it 
possible to scan data archives for missed or previously unrevealed science, to suggest or automatically 
conduct new data reduction and analysis based on the suggestions of AI/ML engines, and to highlight the 
most important parts of a user’s data by referencing large physics-based models. 

3. Cross-Facilities Integration 
There are ongoing efforts to integrate capabilities across the SUFs via AI/ML, networking, and advanced 
math. Coordination and execution are highly collaboration-based and mostly fall under guidance from the 
Energy Sciences Network (ESnet) and the CAMERA project.  

AI/ML at ESnet and NERSC  
ESnet and NERSC provide high-speed networking and HPC capabilities, respectively, to BES facility 
users and their complex workflows. Both facilities are constantly engaged in improving workflow 
performance engineering, for example, through efforts of science engagement teams working with BES 
scientists to provide support from design to execution phases for seamless experiment-to-result. Current 
efforts also include the superfacility project, in which facilities are collaborating to enable near-real-time, 
end-to-end computing workflows for beamlines, supported by predictable bandwidth across high-speed 
networks. Going forward, as BES experiments generate increasing data quantities with upgraded 
instruments, real-time feedback for experimental control and advanced computing and network 
capabilities will need to support the exponential data growth. AI/ML efforts can play key roles to 
seamlessly support BES workflows, potentially accelerating the game-changing BES science results. The 
following sections address questions and answers related to use of AI/ML at ESnet and NERSC. 

How can AI/ML change facility operations? 
Upgrading to advanced detectors can lead to a data explosion needing quick analysis to discover patterns. 
For computing and network resources, supporting these high-speed/high-volume workflows will require 
optimized resource allocation based on workflow demands. AI/ML efforts can help find and optimize 
these distributed resources and provide on-demand availability, storage, and bandwidth. In addition to 
monitoring workflow health, the AI/ML controllers can help recommend changes to promote energy-
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efficient, low-power computing and reduce traffic hot spots across the network. Facilities are also 
investigating the use of AI/ML to ward off potential threats and predict anomalies and component failures 
that may impact science experiments, proactively mitigating and minimizing downtime. Various ML 
algorithms designed for real-time and streaming analysis can be developed for these support structures. 

Are there any limitations regarding where AI/ML can help? 
ESnet and NERSC provide operational support to BES science. At the operation layers, we see more data 
being generated at high speeds, faster data transfers, and the need for end-to-end performance 
improvements. Oftentimes, these advances require a few trial-and-error cycles to learn optimal parameters 
and experimental settings. ESnet is investigating the provision of high-speed telemetry services—packet-
level transport characteristics such as packet sizes and timing patterns—that can be used to infer 
workflow health. Researchers will be able to deduce application and system characteristics and determine 
if certain parts of the workflow need fine-tuning. Eventually, this analysis will be crucial to support the 
sciences.  

Can AI/ML change the way users approach data acquisition, analysis, and adaptive 
control?  
AI/ML techniques can augment current manual, heuristic-driven data acquisition and adaptive control 
techniques employed by BES facilities. ESnet and NERSC can exploit AI/ML techniques to improve 
workflow performance and spot problem areas before they jeopardize workflows. Using learning and 
control, facilities can learn optimal configurations and “adjust” workflows accordingly to support high-
impact science.  

Are there limitations to successful progress in AI/ML for data production and analysis at 
ESnet and NERSC? 
Current AI/ML methods are most effective in the regime of supervised learning, for which access to 
training datasets is a critical requirement. BES, ESnet, and NERSC facilities currently lack standardized 
tools to capture, label, and share such datasets broadly within their respective user communities or the 
wider research community.  

Are there opportunities to better integrate with ASCR HPC and high-speed networking 
capabilities for data-intensive experimental and theoretical problems?  
NERSC has deployed a relatively new set of AI/ML capabilities on HPC hardware, and BES facilities can 
engage with NERSC staff to integrate these modern capabilities in their workflows. Besides system-level 
capabilities, NERSC staff have expertise in AI/ML methods and can assist with pointing BES users to 
appropriate techniques. ESnet data transfer and workflow scheduling services can currently be leveraged 
by BES facilities; we expect that the superfacility project will provide a more standardized, integrated 
interface for end-to-end services. In addition to the points discussed above, ESnet and NERSC are already 
exploiting AI/ML capabilities to understand their users better as part of their own research agendas.  

What aspects of AI/ML are exciting?  
AI/ML offers exciting capabilities to provide time-sensitive experiments and reliability among results, 
along with the potential for resource optimization and cost savings. These will lead to breakthrough 
research in applying novel AI/ML approaches for time series, improving data processing in streaming ML 
applications, and controlling infrastructure in real time. From the ESnet perspective, it will be exciting to 
see how the high-speed telemetry service will provide knowledge inferences regarding what scientists and 
the corresponding data are doing on the network and whether potential problems can be isolated before 
they affect the science mission. From the NERSC perspective, AI/ML is being used to solve a number of 
data analytics problems. A new breed of applications in surrogate modeling and inverse modeling are now 
emerging at the intersection of classical applied math and modern data science. AI/ML controls 
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applications are very exciting, with applications in both BES device control and improved efficiency of 
data center operations. 

4. CAMERA: Machine Learning and Mathematics across Facilities 
Fundamental computational methods across light sources and the NSRCs are needed to extract 
information from datasets of all sizes, interpret experimental results, and provide near-real-time analysis 
as data are generated. Advanced algorithms combined with ML can screen candidate materials that are 
expensive and time-consuming to manufacture, rapidly find optimal solutions to energy-related 
challenges, and suggest new experiments for scientific discovery. To meet these scientific challenges, 
BES and ASCR have jointly established CAMERA to build cross-facility cooperation to meet these 
critical challenges. CAMERA’s mission is to develop and couple the required applied mathematics, 
statistical, and ML techniques to build shared algorithms and software tools to analyze and interpret the 
data coming out of complex experiments, optimize experiments, and accelerate scientific understanding. 
The CAMERA project has had a significant impact on the development and adoption of new 
mathematical technologies combined with ML approaches for DOE light sources, including the ALS, 
APS, LCLS, NSLS-II, and SSRL, with additional expanding connections with the NSRCs. Within 
CAMERA, cross-disciplinary teams of applied mathematicians, ML experts, software engineers, and 
facility scientists formulate models, derive appropriate equations, develop algorithms, build and test 
prototype codes and ML applications, and deliver usable software. CAMERA has undertaken several 
AI/ML projects related to light sources, including scattering, imaging, tomography, and autonomous 
experimental design, even under low–signal-to-noise scenarios. The following sections discuss a few 
selected examples. 

Autonomous Optimization of Experiments 
X-ray scattering experiments are often lengthy procedures in which the light source user attempts to find 
the structure–property relationships of materials, subject to parameters including pressure and 
temperature. As the number of these parameters grows, the scientist faces the challenge of visualizing and 
processing the parameter space and related data with the hope of making informed decisions for the next 
experiment. A common solution is to perform experiments randomly or at discrete predetermined points, 
an approach that does not take advantage of the information collected in previous experiments. 
Additionally, frequent monitoring of the experiment allows scientists to react to changes when necessary. 
An exciting new approach is to steer the experiment through ML optimization, exploiting mathematical 
optimization to make autonomous decisions based on past experiments and without human interaction. 
This new approach is encapsulated in the “SMART algorithm” (Figure 22) built by scientists at 
CAMERA, NSLS-II, and CFN for full autonomous control of the CMS beamline at the synchrotron. The 
introduction of the SMART algorithm at the NSLS-II CMS beamline has increased the beamline 
utilization during the autonomous runtime from 20% to 80%. This new capability to choose an optimal 
path through parameter space using near-real-time analysis and ML will have a significant impact on the 
scientific output of DOE facilities.  
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Machine Learning for 3D 
Reconstruction and Inverse Problems 
The light sources allow for ever-more-complex 
sample environments, and users require ever-faster 
detection and measurements. The development of 
high-frame-rate time-resolved tomography 
measurements allows deeper insights into dynamic 
processes such as fracture in extreme environments 
or manufacturing of complex materials. High-
frame-rate detectors, together with high-flux 
beamlines, have profoundly increased the possible 
frame rates and hence the time resolution of 
traditional tomography. To extract the most 
information possible from these new capabilities, 
CAMERA has recently developed ML mixed-scale 
dense (MS-D) NN schemes that significantly 
increase the time resolution of traditional 
tomography beamlines by using existing beamline 
technology combined with deep learning networks. 
The goal is to minimize damage to samples and 

enable advanced dynamic experiments by acquiring tomographic scans at very low x-ray doses. While 
these scans can be taken quickly, resulting images are typically noisy; hence, a method is needed to take 
noisy input data and reconstruct higher-resolution images. Rather than follow the traditional scheme of 
downscaling and upscaling to capture features at different scales, CAMERA’s MS-D architecture uses 
dilated convolutions to capture and preserve additional features. The training requires a low-resolution 
reconstruction as the input to the MS-D and high-resolution reconstruction as the output to train. The NN 
training is required only for the first time step; sequential time steps need only the low-resolution input 
and therefore fewer projections. Figure 23 shows the CAMERA MS-D, which is now being used by 
scientists across fields such as biology, pattern recognition, EM, tomography for metallic composites, 
MRI scans, segmentation of satellite images, and sonar imagery.  

 
Figure 23. Tomographic images of a fiber-reinforced minicomposite, reconstructed using (a) 1,024 projections 

and (b) 128 projections and the result from the (c) MS-D training. Source: Jamie Sethian, University of  
California–Berkeley. 

Machine Learning for Scientific Pattern Recognition 
Images in real space or reciprocal space are a common occurrence in scientific data collection. ML 
provides exceptionally powerful tools for extracting and categorizing natural image data. However, for 
scientific data, some common approaches must be reexamined and developed further. Given images 

 
Figure 22. CAMERA schematic of an autonomous 
x-ray scattering experiment. When the measurement 

is performed, the data acquisition and processing 
occur automatically. From the processed data, the 
SMART algorithm selects the next measurement 
parameters. Source: Kevin Yager, Brookhaven 

National Laboratory. 
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produced from experiments using x-rays, neutrons, or electrons, a major task is to detect and extract 
characteristics of imaged structures. This is typically done through painstaking manual segmentation by a 
domain expert; it is a costly and time-consuming procedure that cannot scale to high-throughput 
experiments or high frame rates. 

In collaboration with the ALS, the National Center for Electron Microscopy at TMF, and the Berkeley 
Institute for Data Sciences, CAMERA has built automatic algorithms to quickly extract and measure 
patterns from scientific image data. These algorithmic tools, which include classical image processing, 
geometric priors, partial differential equations, deep learning, and generalized physics-specific ML, are in 
use across a wide field of applications. They include the following: 

Analyzing micro-CT images 
A major task in processing micro-CT data is to detect and quantify properties of imaged solids, as a step 
toward assessing the quality of materials and measuring microstructures. Challenges include dealing with 
corrupted scans, reconstructing artifacts, and multiphase volumes. Much of this metrology requires tools 
that offer flexibility, a variety of algorithms, and efficient implementation to allow for fast iterations and 
scalability to data streams. 

To address materials metrology through micro-CT experiments, CAMERA has built tools to 
automatically extract structure. In the context of analyzing CMCs for microstructural damage, these tools 
can process large numbers of images to assess: 

• number of components, including their absence as part of detected defects; 
• deformation and failure under tension and high temperature; and 
• damage due to preparation and/or loads of samples. 

Image quality has been enhanced with the design of scalable 3D filtering algorithms based on anisotropic 
diffusion and mathematical morphology to emphasize contrast and edge maps. These algorithms handle 
data streaming and can load from out-of-core sources, and the resulting software tool enables parallel 
processing of large datasets, removing random access memory–based constraints. 

Separation of the dense material from the background involves volume partitioning into solid-phase and 
interstitial regions, using graph-based models based on adaptive statistical merging predicated on 
intensity levels and voxel vicinity that runs in linear time. These methods are combined with 
unsupervised algorithms (e.g., fast clustering approaches including SLIC [simple linear iterative 
clustering] and Felzenszwalb efficient graph-based image segmentation) and supervised algorithms (e.g., 
random forest, support vector machine, multilayer perceptron, CNN, and recurrent NN). 

Extraction of target microstructures has been conducted using priors and geometric constraints to reduce 
the size of the search space with regard to the pattern to be detected. For example, to identify fibers from 
high-resolution CMC images, it is possible to model fiber cross sections as an ellipse and define the fiber 
detection as a search problem. Because the fiber cross section is consistent, a variant of template matching 
can be used to search for fibers in some cases. It depends on two main steps: first, to define similarity 
metrics between prototypes and local regions, and second, to determine the best matches. When the fiber 
contrast (coating) is low and/or the voxel resolution is poor, more advanced approaches using CNNs are 
necessary. They often drastically reduce processing time for a material to a few minutes. Recent 
investigations and accomplishments also include characterization of carbon textiles in collaboration with 
ALS and the National Aeronautics and Space Administration. 
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PyCBIR: Content-based image retrieval 

CAMERA has built a new recommendation system for content-based image retrieval (CBIR), pyCBIR, 
which allows for scientific image retrieval based on pictorial similarity. This open-source tool is capable 
of retrieving relevant images using datasets across science domains. CAMERA’s package has been used 
to find the closest matches of scattering data to curated libraries of stored images, from GISAXS and 
micro-CT to optical microscopy and photography (Figure 24). PyCBIR provides real-time image retrieval 
using a compact data representation that leverages historical data tagged by domain experts and presents 
an associated confidence metric (e.g., “class membership”) for each image. The latest version of pyCBIR 
is available at http://bit.ly/aimagesearch. 

 
Figure 24. Developing algorithms to categorize millions of GISAXS patterns. | Distributed under the MDPI 

Open Access Information and Policy 

5. Summary and Conclusions 
The ability of SUFs to reach their full potential in terms of user experience, resilience, and optimized 
operation and performance will require innovations to solve a variety of technical challenges in critical 
areas including data acquisition, simulations, control, analysis, and curation for AI/ML applications. The 
activities/opportunities and current gaps identified in this Facilities’ Current Status and Projections 
document will require implementation of pilot projects in some cases and scale-up of successful pilot 
projects in other cases. It will also depend on continued development of AI/ML methods for science and 
will require dedicated staff. Future work in AI/ML and facility needs will require access to increasingly 
large computing resources. For example, simultaneous access to powerful computing at the edge and in 
burst (i.e., on-demand) modes will become necessary; federation of computing and data analysis will be 
important to minimize layers of different strategies (see Figure 25). Opportunities clearly exist for strong 

http://bit.ly/aimagesearch
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collaboration with ASCR to help develop new AI/ML algorithms and software stacks, given the large 
datasets generated and the robust control systems used by the SUFs. 

 
Figure 25. Schematic diagram illustrating different levels of “self-optimizing” computing and 

the concept of a federated software infrastructure for science. Source: Nagi Rao, Oak Ridge 
National Laboratory. 
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