
Materials Research Directions and Opportunities in the DOE Office of Basic Energy Sciences

Materials Research Society Spring Meeting April 18, 2017

Andy Schwartz Senior Technical Advisor DOE Office of Basic Energy Sciences

The DOE Portfolio (~\$30B Total)

National Nuclear Security Administration (NNSA)		Nuclear Cleanup		Science		[
Weapons Activities (WA) \$8,847 M		Environmental Management (EM) \$6,218 M		Other \$421 M		
				Fusion Energy Sciences \$438 M		
				Biological and Environmental Research \$609 M		
				Nuclear Physics \$617 M		
				Advanced Scientific Computing Research \$621 M		BES
				High Energy Physics \$795 M		
				Scientific User Facilities \$1,167 M		
				Chem, Geo, & Bio Sciences \$312M		
				Materials Sciences & Engr \$370M		J
Nuclear Nonproliferation (NN) \$1,940 M	Naval Reactors (NR) \$1,375 M	Energy Applied Energy			Mission Support	
		Energy Efficiency & Renewable Energy (EERE) \$2,069 M	Office of Nuclear	chergy a g	Management \$61 M Security Health, Safety & \$230 M Security (HSS) \$181 M Security	
	Office of Admin \$364 M	52,003 M		Electricity Delivery and Energy Reliability \$206 M	Petroleum Power Besorves Marketing	

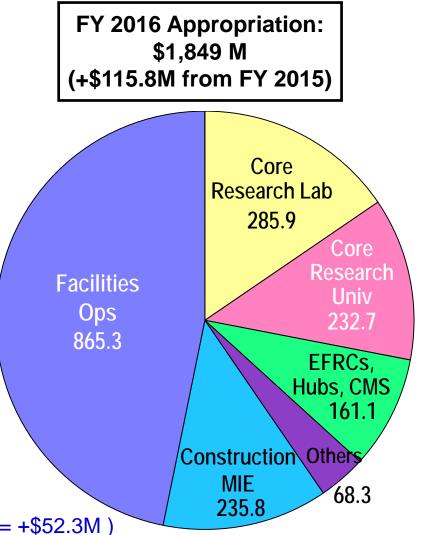
Department of Energy - FY 2016 Enacted - \$29,603 M

http://science.energy.gov/

FY 2016 BES Budget Appropriation

Research programs

- Energy Frontier Research Centers (\$110M; Δ = +\$10M)
- Computational Materials Sciences (\$12M; Δ = +\$4M)
- Core Research & Hubs at ~FY 2015 level (\$558.5M)


Scientific user facilities

- All full operating facilities at near optimal operations (\$865.3M)
- NSLS-II 1st year of full operations (\$110M)

Construction and instrumentation

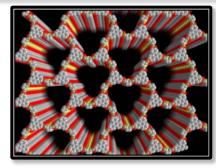
- NSLS-II instrumentation (NEXT) (\$15.5M)
- Advanced Photon Source Upgrade (\$20M)
- Linac Coherent Light Source-II (\$200.3M; Δ = +\$52.3M)

Basic Energy Sciences

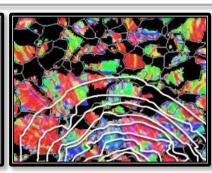
Materials sciences & engineering exploring macroscopic and microscopic material behaviors and their connections to various energy technologies

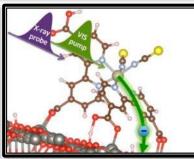
Chemical sciences, geosciences, and energy

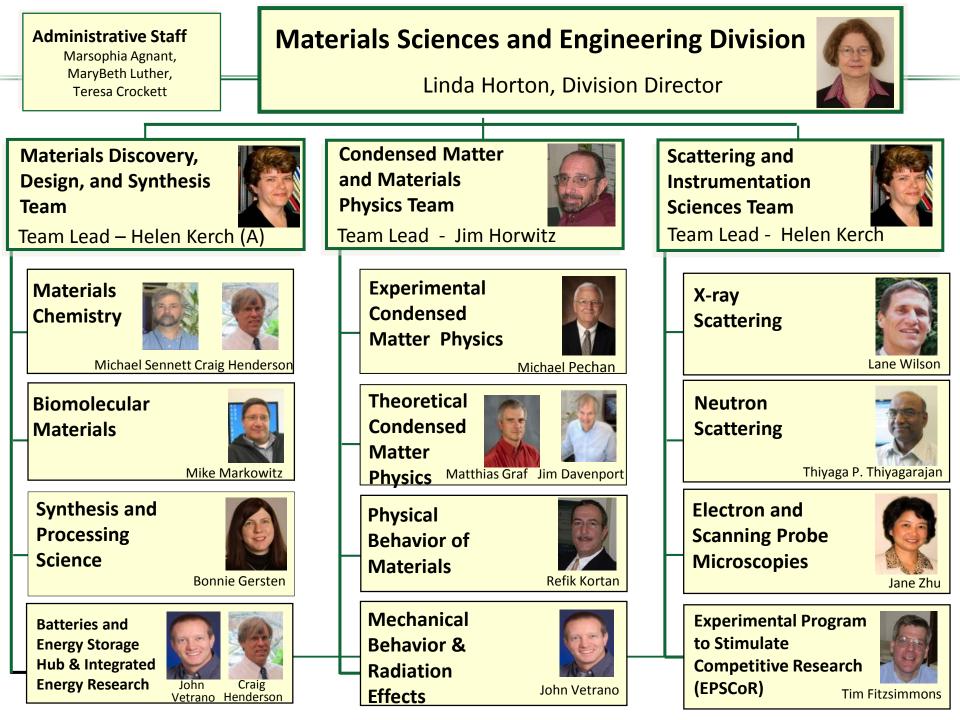
biosciences—exploring the fundamental aspects of chemical reactivity and energy transduction over wide ranges of scale and complexity and their applications to energy technologies


Scientific User Facilities—the largest collection of facilities for electron, x-ray, and neutron scattering in the world

In FY 2016, BES supported:


- ~5,460 Ph.D. scientists and ~1,670 students
- Research at over 150 academic institutions in 46 states and at 17 DOE laboratories.
- Over **1,000** research projects in **25** core research areas
- 36 Energy Frontier Research Centers
- Fuels from Sunlight & Batteries and Energy Storage Hubs
- More than **15,000 users** at 12 BES facilities
- New grant success rates ~15%


In FY 2016, BES invested **~\$680 M** in research and **~\$870 M** in operations for world-class, openaccess scientific user facilities.


Understanding, predicting, and ultimately controlling matter and energy flow at the electronic, atomic, and molecular levels

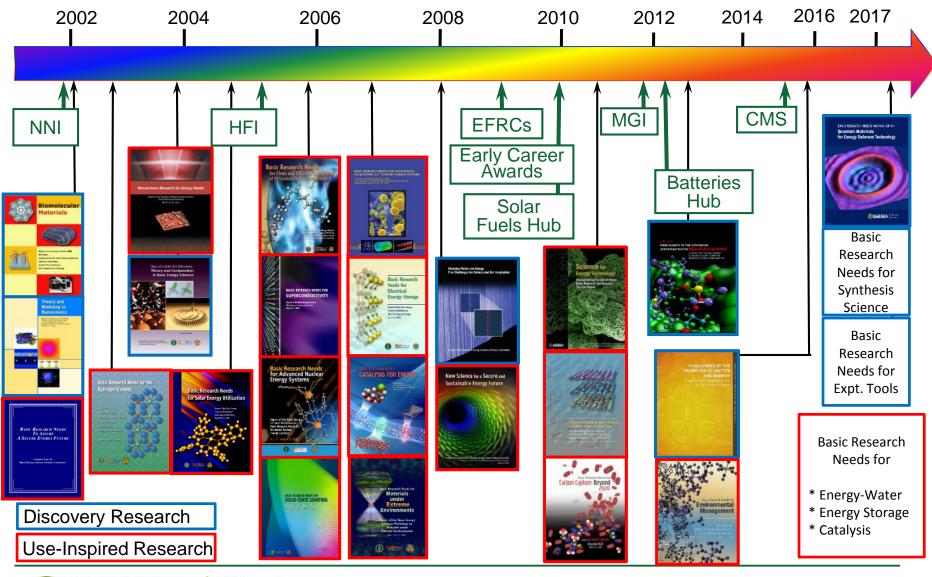
BES Research Activities

Energy Innovation Hubs (2) ~\$40M/year Research centers (\$15-25 million/year), engaged in basic and applied research, including technology development, on a high-priority topic in energy that is specified in detail in an FOA. Project goals, milestones, and management structure are a significant part of the proposed Hub plan. Joint Center for Artificial Photosynthesis (JCAP), 2010 – present Joint Center for Energy Storage Research (JCESR), 2012 – present Energy Frontier Research Centers (36), 2009 – present Computational Materials Sciences Projects (5), 2015 – present EFRC: \$2-4 million/year for 4 year award terms; multi-disciplinary teams focused on "grand challenge" science and fundamental research described in the Basic Research Needs Workshop reports.

• CMS: \$2-4 million/year for four year award terms; multi-disciplinary teams focused on delivering open source, experimentally validated software and the associated data for predictive materials sciences in preparation for exascale computing.

Core Foundational Research (>1,300 projects)

 Single investigators (~\$150K/year) and small groups (~\$500K-\$2M/year) engaged in fundamental research related to all of the BES core research areas. Investigators propose topics of their choosing in response to annual FOA.

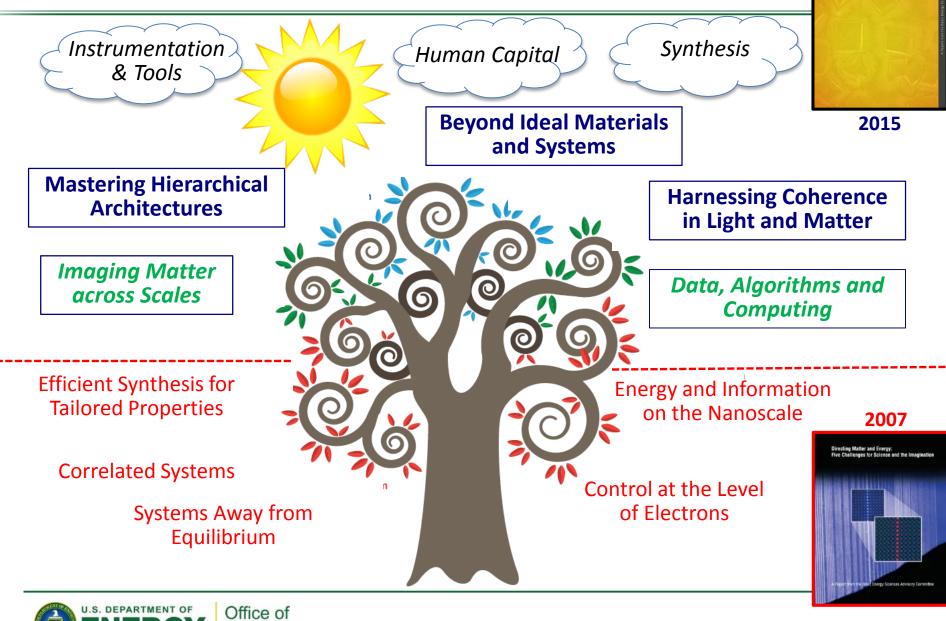


~\$520M/year

& scope

Increasing size

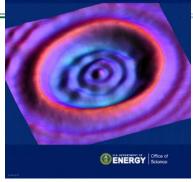
BES Strategic Planning and Program Development



http://science.energy.gov/bes/news-and-resources/reports/

Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science

CHALLENGES AT THE FRONTIERS OF MATTER AND ENERGY: Transformative Opportunities for Discovery Science



Science

Basic Research Needs for Quantum Materials for Energy Relevant Technology

CHARGE: Identify basic research needs and priority research directions for quantum materials with a focus on new, emerging areas with potential for transformative scientific advances and for impact on energy technologies. The phenomena of quantum materials are examined in the broad categories of: (1) superconductivity and charge-related order, (2) magnetism and spin, (3) transport and non-equilibrium dynamics, (4) electronic topology, (5) nano-structure or heterogeneity.

BASIC RESEARCH NEEDS WORKSHOP ON Quantum Materials for Energy Relevant Technology

Priority Research Directions:

- Control and exploit fluctuations in quantum matter for the design of bulk materials with novel functionality
- Harness topological states for groundbreaking surface properties
- Drive and manipulate quantum effects (coherence, entanglement) in nanostructures for transformative technologies
- Design revolutionary tools to accelerate discovery and technological deployment of quantum materials
- Workshop Chair: Collin Broholm (JHU); Co-Chairs: Ian Fisher (SLAC/Stanford); Joel Moore (UC-Berkeley/LBNL); Margaret Murnane (UC-Boulder)

<u>Breakout Sessions and Chairs</u>: Superconductivity and charge order: Adriana Moreo (U Tennessee) and John Tranquada (BNL); Magnetism and spin: Meigan Aronson (Texas A&M) and Allan MacDonald (U Texas Austin); Transport and non-equilibrium dynamics: Dimitri Basov (UCSD) and Jim Freericks (Georgetown); Topological quantum materials: Eduardo Fradkin (U of Illinois) and Amir Yacoby (Harvard); Heterogeneous and nanostructured quantum materials: Nitin Samarth (PSU) and Susanne Stemmer (UCSB)

Emerging Priority Research Directions

Synthesis Science Workshop Report (to be released soon)

- Achieve mechanistic control of synthesis to access new states of matter
- Accelerate materials discovery by exploiting extreme conditions, complex chemistries and molecules, and interfacial systems
- Harness the complex functionality of hierarchical materials
- Integrate emerging theoretical, computational and in situ characterization tools to achieve directed synthesis with real time, adaptive control

Experimental Tools Workshop Report (to be released soon)

- Establish new frontiers in time, space, and energy resolution for characterization and control
- Create innovative experimental methods for investigating real-world systems
- Simultaneously interrogate form and function, bridging time, length, and energy scales
- Drive a new paradigm for instrumentation design through integration of experiment, theory, and computation

Recent and Upcoming Workshops

- Energy-Water Nexus (January 2017)
- Next-Generation Electrical Energy Storage (March 2017)
- Catalysis Science to Transform Energy Technologies (May 2017)
- Future Nuclear Energy (TBD)

Core Program Funding Opportunities: FAQs

• How do I get DOE/BES support?

- Respond to "FY2017 Continuation of Solicitation for the Office of Science Financial Assistance Program" Read all FOAs carefully!!
- Hypothesis driven, fundamental science with energy relevance; discovery science and use-inspired basic research
- All eligible/responsive proposals are peer reviewed
- Can I contact/visit a program manager?
 - Initial contact by email and phone is encouraged contact information is on the website for every program manager
 - White papers/pre-proposals are encouraged Can be sent to program manager or submitted through the PAMS system; see FOA for details
 - BES offices located in Germantown, MD secure facility, requires planning and additional information from foreign nationals.
- How much support can I get?
 - Peer review will assess requested budget versus research needs
 - Typical is 1 month of summer support plus graduate student/postdoc
 - Multi-PI grants are also supported talk with the program manager

Office of Science Early Career Research Program (2010 – present)

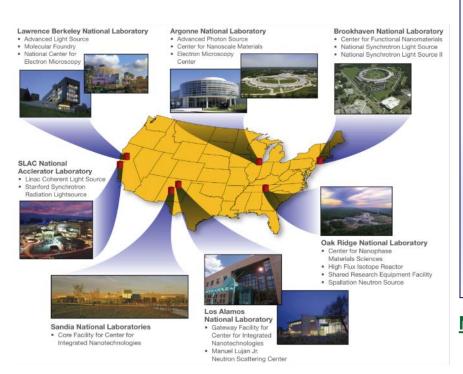
- <u>Purpose</u>: To support individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the Office of Science
- <u>Eligibility</u>: Within 10 years of receiving a Ph.D., either untenured academic assistant or associate professors on the tenure track or full-time DOE national lab employees
- <u>5-Yr Awards</u>: University grants \$150,000/yr, National lab awards \$500,000/yr min

FY 2016 Program

 720 Office of Science proposals received, 22 Basic Energy Sciences (16 universities, 6 Labs) awards out of a total of 52 awards for the Office of Science (11 in BES-Materials Sciences and Engineering)

FY 2017 Program

• Proposals currently under review


Office of

Science

FY 2018 Program

- Expect Funding Opportunity Announcement around July 2017
- FOA will cover different topics than the annual FOA for BES important to read the details!

DOE Office of Basic Energy Sciences: Scientific User Facilities More than 14,000 users in FY 2015

Light Sources

- -Advanced Light Source (LBNL)
- -Advanced Photon Source (ANL)

S. DEPARTMENT OF

- -Linac Coherent Light Source (SLAC)
- -National Synchrotron Light Source-II (BNL)
- -Stanford Synchrotron Radiation Laboratory (SLAC)

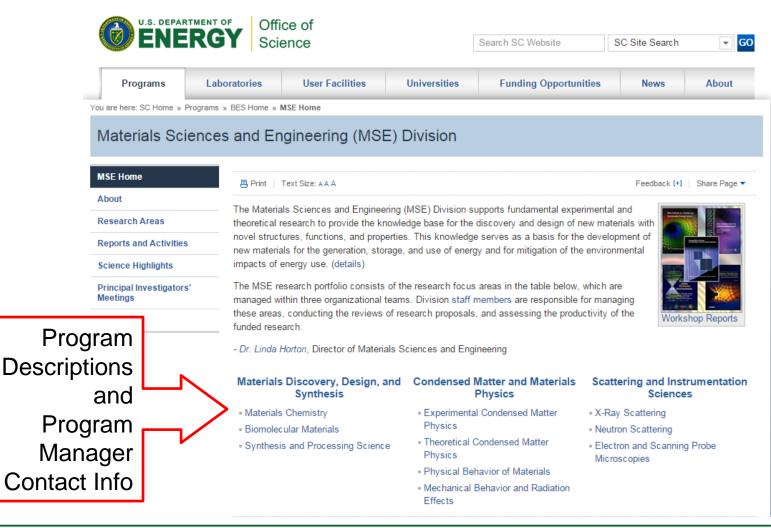
Office of

Science

- * Available to all researchers <u>at no cost</u> for non-proprietary research, regardless of affiliation, nationality, or source of research support
- * Access based on external peer merit review of brief proposals
- Coordinated access to co-located facilities to accelerate research cycles
- Collaboration with facility scientists an optional potential benefit
- * Instrument and technique workshops offered periodically
- * A variety of on-line, on-site, and hands-on training available
- * Proprietary research may be performed at full-cost recovery

Neutron Sources

- High Flux Isotope Reactor (ORNL)
- Spallation Neutron Source (ORNL)


Nanoscale Science Research Centers

- Center for Functional Nanomaterials (BNL)
- Center for Integrated Nanotechnologies (SNL & LANL)
- Center for Nanophase Materials Sciences (ORNL)
- Center for Nanoscale Materials (ANL)
- Molecular Foundry (LBNL)

Thank you

http://science.energy.gov/bes/mse/

