DOE Announces \$140 Million for Research on Chemical and Materials Sciences to Advance Clean Energy Technologies and Low-Carbon Manufacturing

Annoucement Number: 8/25/2022 Principal Investigator Title Institution City State 9-digit zip code Amanchukwu, Chibueze University of Chicago Chicago IL 60637-5418 Enabling energy-dense grid scale batteries with earth abundant materials Amarasekara, Ananda Prairie View A&M тх Prairie View 77446-7446 University Li-Ion Battery Critical Metal Recycling Using Sugars Autrey, Thomas Pacific Northwest Richland WA Enabling Reversible Hydrogen Storage and Transfer with National Laboratory 99352-0999 Graphene-based Carbon–Boron–Nitrogen Materials (PNNL) Bauers, Sage National Renewable Golden со 80401-3111 Design, discovery, and chemical synthesis of earth abundant Energy Laboratory (NREL) ferromagnetic nitrides Bertoni, Mariana Arizona State University Tempe ΑZ 85287-6011 Acoustic Modification of Crystallization and Dislocation Dynamics in Energy Materials to Reduce Carbon-Intensity Bren, Kara Living Bio-Nano Systems for Solar Hydrogen Production University of Rochester NY 14627-0140 Rochester Brock, Stephanie Tunable Platforms for Solar Fuels Generation via Wayne State University Detroit MI 48202-4050 Programmable Integration of Colloidal Components Chen, Chun-Long Pacific Northwest WA Bio-inspired Durable Storage of CO2 National Laboratory Richland 99352-0999 (PNNL) Chen, Donna Design of New Catalysts for the Generation of Clean H2 from University of South 29208-0001 Columbia sc Liquid Organic Hydrogen Carriers: Dehydrogenation of Carolina Methylcyclohexane on Bimetallic Catalysts Chen, Jingguang Nitrides of Earth-abundant Metals as Cost-effective Catalysts Brookhaven National NY Upton 11973-5000 Laboratory (BNL) for Water Electrolysis Cheng, Yingwen Northern Illinois DeKalb 60115-2864 IL Modulating Complex Chemical Conversion with Multi-site University Electrocatalyst for Energy Dense Liquids Conley, Matthew University of California, Riverside CA 92521-0217 Heterogeneous Catalysts for the Direct Conversion of Ethylene Riverside to Propylene Delaire, Olivier NC 27705-4010 Dynamic atomistic processes of sodium-ion conduction in solid-Duke University Durham state electrolytes Donahue, James Molecular Mo Sulfide Clusters for H2-Evolution: Surface New Orleans 70118-5665 Immobilization and Water Solubility, Composition-Function Tulane University LA Relationships, and Probes of Mechanism Finkeldei, Sarah Advancing clean energy through fundamental insights into University of California, Irvine CA 92697-7600 defect generation and transport phenomena at grain Irvine boundaries in nuclear energy materials Flint, Rebecca Ames National A 50011-1015 Ames Exploiting the interplay of mixed valence and magnetic Laboratory inisotropy in rare earths Forbes, Tori Direct air carbon dioxide separation using a uranyl superoxide University of Iowa 52242-1320 Iowa City IA catalyst Garrett-Roe, Sean University of Pittsburgh Pittsburgh PA 15213-2303 Mechanism of CO2 capture in ionic liquid composite materials Geiger, Franz Interfacial Spectromicroscopy of Water Oxidation at Earth Northwestern University Chicago IL 60611-4579 Abundant Solar Photoanodes Hatzell. Kelsev Princeton University Princeton NJ 08544-2020 Liquid-metal electrodes for low-cost and low temperature solid state batteries for long duration energy storage Hautier, Geoffroy Understanding and designing phosphide solar absorbers with Dartmouth College Hanover NH 03755-1421 high carrier lifetime Hermans, lve University of Wisconsin-Madison wı 53715-1218 Autoxidation Mechanisms and Methods for Plastics Upcycling Madison

Holewinski, Adam	Electrochemically-assisted dehydrogenation reactions for dual- electrode hydrogen evolution	University of Colorado	Boulder	со	80303-1058
Horne, Gregory	Understand and Predict Radiation-Induced Iodine Speciation, Chamictar, and Transport in High Tomporature Molton Saltr	Idaho National	Idaho Falls	ID	83415-0000
Hu, Liangbing	Programmable Non-Equilibrium Flectrified Ammonia Synthesis	University of Maryland	College Park	MD	20742-5141
Jaramillo, Thomas	Understanding interfacial phenomena for solar H2 production and N2 reduction	SLAC National Accelerator Laboratory	Menlo Park	CA	94025-7015
Ji, Xiulei	Understanding the Interfaces for High-Energy Batteries Using Anions as Charge Carriers	Oregon State University	Corvallis	OR	97331-2140
Jun, Young-Shin	Geochemical Processes Controlling the Fate of Critical	Washington University	St. Louis	мо	63130-4862
Kempler, Paul	Direct Reduction of Metal Oxides to Metals for Electrowinning and Energy Storage	University of Oregon	Eugene	OR	97403-5219
Knope, Karah	Transforming Critical Materials Separations through Metal- Oxo Cluster Chemistry	Georgetown University	Washington	DC	20057-1168
Kumar, Manish	Transport and Molecular Discrimination in Biomimetic Artificial Water Channels for Lanthanide Separations	University of Texas at Austin	Austin	тх	78759-5316
Liu Chong	Electric field driven presision material synthesis	University of Chicago	Chicago	u .	60627 5419
	Transformative Richybrid Diiron Catalysta for C H Bond	Brookbayon National	Chicago		00037-3418
	Functionalization	Laboratory (BNL)	Upton	NY	11973-5000
Marschilok, Amy	Harnessing the catalytic promise of molybdenum chalcogenides to enable aqueous zinc sulfur batteries	Brookhaven National Laboratory (BNL)	Upton	NY	11973-5000
McKone, James	From Molecules to Materials: Understanding Hydrogen Activation and Transfer in Metal Oxides	University of Pittsburgh	Pittsburgh	РА	15213-2303
Mulfort, Karen	Molecularly Defined Multi-Metal Clusters for Solar Energy Conversion	Argonne National Laboratory (ANL)	Lemont	IL	60439-4842
Naskar, Amit	Targeted, Scalable Synthesis of Multidimensional Macromolecules to Transform Additive Manufacturing	Oak Ridge National Laboratory (ORNL)	Oak Ridge	TN	37831-6110
Personick, Michelle	An Integrated Electrochemical Approach to the Precision Synthesis of Sustainable Catalyst Materials	Wesleyan University	Middletown	СТ	06459-6459
Saouma, Caroline	Electric Fields to Modulate Catalyst Thermochemical				
	Properties for Multi-Electron/Multi-Proton Redox Reactions	University of Utah	Salt Lake City	UT	84102-9023
Schwartz, Craig	Probing Interfacial Electron Dynamics (PIED) - A Multimodal Study to Advance Solar Photochemistry	University of Nevada, Las Vegas	Las Vegas	NV	89154-1055
Stefik, Morgan	Understanding the Role of Defects to Accelerate Wadsley- Roth Niobates for Long-Duration Energy Storage	University of South Carolina	Columbia	sc	29208-0001
Tackett, Brian	Low-Temperature Electrocatalytic Manufacturing of Essential Chemical Building Blocks	Purdue University	West Lafayette	IN	47906-1332
Teets, Thomas	Long-Lived Charge Separation in Panchromatic Copper Photosensitizers	University of Houston	Houston	тх	77204-2015
Tsapatsis, Michael	Membrane-Catalyst Co-Design for Transformative Manufacturing	Johns Hopkins University	Baltimore	MD	21218-2686
Wade, Jennifer	Molecular mechanisms of moisture-driven DAC within charged polymers (MissionDAC))	Northern Arizona University	Flagstaff	AZ	86011-4130
Wang, Bin	Computational Design of Heterogeneous Catalysts for Coupling CO2 and Ethylene to Manufacture Acrylic Acid Derivatives	University of Oklahoma	Norman	ОК	73019-9705
Ward, Patrick	Molecular Insights for Fine-Tuned Hydrogen Interaction Control: MXenes as a Model System	Savannah River National Laboratory (SRNL),	Aiken	SC	29808-0001
Weber, Juliane	Fundamental Mechanisms Driving Efficiency of CO2 Capture Using Mineral Looping	Oak Ridge National Laboratory (ORNL)	Oak Ridge	TN	37831-6110
White, Claire	Electric field-controlled solid sorbent for direct air capture	Princeton University	Princeton	NJ	08544-2020
Whittaker, Michael	MINES: The Science of Direct MINeral to Energy Storage Synthesis	Lawrence Berkeley National Laboratory (LBNL)	Berkeley	CA	94720-0000
Yang, Ping	Autonomous Discovery of Selective Separation of f-Elements for Clean Energy	Los Alamos National Laboratory (LANL)	Los Alamos	NM	87545-0001
Yano, Junko	Light-controlled multi-electron catalysis coordinated across time and space	Lawrence Berkeley National Laboratory (LBNL)	Berkeley	CA	94720-0000
Zhang, Sen	Fundamental Studies of Catalytic Sites and Catalyst/Membrane Integrations for Advanced Hydroxide Exchange Membrane Electrolyzers	University of Virginia	Charlottesville	VA	22904-4195