Advanced Energy Projects
FY 1992 Research Summaries
September 1992

U.S. Department of Energy
Office of Energy Research
Office of Basic Energy Sciences
Division of Advanced Energy Projects
A non-toxic catalyst converts common plant oils into plastic when exposed to ultra violet light. The technique holds promise for an energy-efficient, economical, and environmentally sound process to produce plastic coatings for wood, metal, paper, and other materials.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM OVERVIEW</td>
<td>3</td>
</tr>
<tr>
<td>SUMMARIES OF PROJECTS ACTIVE IN FY 1992</td>
<td>7</td>
</tr>
<tr>
<td>SAMPLE STATEMENT OF WORK</td>
<td>47</td>
</tr>
<tr>
<td>FY 1992 PROGRAM DATA</td>
<td>49</td>
</tr>
<tr>
<td>SMALL BUSINESS INNOVATION RESEARCH PROJECTS</td>
<td>51</td>
</tr>
<tr>
<td>INVESTIGATOR INDEX</td>
<td>59</td>
</tr>
<tr>
<td>INSTITUTIONAL INDEX</td>
<td>60</td>
</tr>
<tr>
<td>FACSIMILE COVER SHEET</td>
<td>61</td>
</tr>
</tbody>
</table>
DIVISION OF ADVANCED ENERGY PROJECTS

PROGRAM OVERVIEW

CHARTER

The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have applications that may span scientific disciplines or technical areas.

The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. AEP does not support ongoing, evolutionary research or large scale demonstration projects. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems.

FUNDING

Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential.

SUBMISSION GUIDELINES

Unsolicited proposals can be submitted by universities, industrial organizations, non-profit research institutions or private individuals. The Division also considers ideas or concepts submitted by researchers at national laboratories. Before a formal proposal is prepared, the proposer should submit a summary (3-5 pages) of the proposed work to the Division for consideration. The summary should be sufficiently detailed to enable an informed decision as to whether the proposed work would be programmatically suited to the charter of the Division of Advanced Energy Projects. It should include descriptions of the proposed method and its potential benefit to energy. The summary should also contain estimates of the funding period and the annual funding level. If possible, some discussion of anticipated follow-on funding options should be provided.
After the AEP programmatic interest has been established, a proposal must be submitted consistent with the guidelines specified in the Office of Energy Research document, DOE/ER-0249, "Application and Guide for the Special Research Grant Program." Each proposal must contain:

- A cover page.
- A 200-300 word abstract describing the essence of the project in terms understandable to a layman. The abstract should be in a form suitable for inclusion in DOE publications, such as this program book. Technical jargon and equations should be avoided.
- A technical discussion of the proposed concept and a description of the proposed work. While the discussion should be brief, there is no formal limitation on the number of pages allotted to this section of the proposal. Since this section provides the basis for the evaluations by technical reviewers, the proposer should make certain to adequately cover all aspects of the proposed project which are relevant to forming a judgment of the project's overall merit.
- A statement of work specifying all tasks to be performed in the course of the proposed work. A sample statement of work can be found on page 47.
- Description of available facilities.
- Resumes of key personnel.
- Statement of all current and pending support for proposed and related research, and a description of research support for all projects that involve the principal investigator(s) and the period of time devoted to each project.
- A cost estimate for the proposed effort.

PROPOSAL EVALUATION

Awards are based on the results of an evaluation process which usually involves a review by external reviewers. Regardless of the outcome of the evaluation, proposers receive copies of reviewers' reports.

Questions asked of the reviewers depend on the subject of the proposal. Some typical questions are listed below:

1. What is the scientific and technical merit of the proposed effort?
2. Is the proposed concept new? How does it compare with other work in the field?
3. Are there basic flaws or major shortcomings in the scientific or technical arguments underlying the concept?

4. Are the technological and/or material requirements associated with the proposed concept within present or near term capabilities?

5. Is there anything about the concept which makes its economics manifestly untenable, even under reasonably optimistic assumptions?

6. Is the anticipated benefit to the public high enough to warrant the Department of Energy’s involvement in the R&D effort?

FURTHER INFORMATION

Inquiries should be directed to:

Dr. Walter M. Polansky, Director
Division of Advanced Energy Projects
ER-16, GTN
U.S. Department of Energy
Washington, D.C. 20585

Phone: 301-903-5995
Fax: See page 61

This book was compiled by Sue Ellen Stottlemyer.
There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 - September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated.

Ames Laboratory
Ames, IA 50011

1. Design of Materials with Photonic Band Gaps
 Kai-Ming Ho, Institute for Physical Research and Technology
 515/294-3481

 Funding Profile
 Date Started: February 15, 1992 FY 92 - $299,000
 Anticipated Duration: 3 Years FY 93 - $314,000
 FY 94 - $297,000

This joint theoretical and experimental program is intended to design, fabricate and characterize a new class of composite materials which possess forbidden ranges of frequencies, in which electromagnetic waves cannot propagate in any direction. These materials are called "photonic crystals" and the forbidden frequencies are called "photonic gaps", and they can be regarded as photonic analogues of electronic semiconductors with electronic gaps. This class of material will exhibit many interesting physical properties, and will find important practical applications in lasers, mirrors, resonators, filters, and quantum optical devices. The theoretical effort will be directed at designing periodic dielectric structures that give the optimal frequency gap for various applications with special emphasis on the fabricability of these structures, especially in the sub-micron length scale where these materials will find applications in optical measurements. The main purpose of the experimental effort is to fabricate the structures designed by theory in the micron and sub-micron length scales, using micro-fabrication patterning and etching techniques. The structural and optical properties of these micro-structures will be characterized and studied using optical techniques. The effect of disorder, defects and structural imperfections on the propagation of electromagnetic waves through these photonic crystals will also be studied both theoretically and experimentally.
2. Application of Aqueous Biphasic Extraction to Radioactive Waste Treatment

David S. Chaiko, Chemical Technology Division
708/252-4399

Funding Profile

Date Started: December 1, 1990
Anticipated Duration: 3 Years

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Funding Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 91</td>
<td>$475,000</td>
</tr>
<tr>
<td>FY 92</td>
<td>$485,000</td>
</tr>
<tr>
<td>FY 93</td>
<td>$495,000</td>
</tr>
</tbody>
</table>

Aqueous biphasic extraction systems will be developed as a means of treating radioactive wastes. The separation concept involves the selective partitioning of either solutes or colloid-size particles between two immiscible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The processing goal is to produce a plutonium concentrate that will more effectively integrate with existing and developing chemical recovery processes. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this project, applications of aqueous biphasic extraction will be explored that include the separation and recovery of dissolved species such as metal ions and water-soluble organics.
The discovery of the fullerenes, and particularly of C\textsubscript{60}, buckminsterfullerene, is an important scientific development. These kinetically stable carbon cluster molecules, allotropes of carbon, are in fact \textit{thermodynamically} unstable with respect to diamond and graphite by \textasciitilde-5 kcal/mol C. The fact that C\textsubscript{60} has a vapor pressure of \textasciitilde10^{-3} Torr at 500°C opens up the possibility of generating high-flux, high-energy carbon-cluster ion beams for thin-film deposition (including diamond films) and surface modification. A microwave-driven electron cyclotron resonance (ECR) plasma source will be used to generate the fullerene ion beams. The ECR source combines high-ionization efficiency with low-electron temperatures (5-10 eV). Typical ion current specifications for argon are 30 mA/cm2 with a uniformity of \pm 5% over a 4" diameter area. The mass transport associated with a similar current of singly ionized C\textsubscript{60} would correspond to 150 amps of atomic ions. The substrate impact energy will be controlled independently of the plasma parameters by biasing the substrate. End-Hall optics will be combined with the ECR plasma to provide additional control of beam characteristics. The ECR facility will be used to synthesize and characterize, by a variety of techniques, diamond films, diamond-like films, and carbon-implanted layers on large areas with high-deposition rates. The effort is directed toward producing high-quality films at low-substrate temperatures in a manner that can be adapted to industrial processes.
4. New Ion Exchange Materials for Environmental Restoration and Waste Management

E. Philip Horwitz, Chemistry Division
708/252-3653

Funding Profile

Date Started: December 1, 1990
Anticipated Duration: 3 Years

The objective of this program is to synthesize, characterize, and evaluate a new class of cation exchange resins. The new resins will contain the geminally substituted diphosphonic acid functional group. Ion exchange resins containing geminally substituted diphosphonic acid groups should have vastly superior properties compared to commercially available cation exchange resins and should find wide-scale applications in environmental restoration (e.g., groundwater cleanup) and in waste management (e.g., minimization of waste volume). Alkyl-1,1-diphosphonic acids are among the most powerful complexing agents for polyvalent metal ions in aqueous solution, particularly at pH<2. But, heretofore, it has not been possible to synthesize resins containing diphosphonic acid groups, because of the difficulty of introducing this group into a preformed polymer matrix. The synthesis of resins with the diphosphonic acid groups will be accomplished by the polymerization of vinylidene-1,1-diphosphonic acid (VDPA) or by the copolymerization of VDPA with suitable comonomers (e.g., acrylamide/bis-acrylamide or styrene/divinylbenzene). This approach represents a major departure from the traditional methods for preparing ion exchange materials whereby the exchangeable functional groups are introduced onto a preformed polymer matrix.
5. Production of Fuels and Chemicals From Methane*

Victor A. Maroni, Chemical Technology Division
708/252-4547

Funding Profile

Date Started: July 1, 1989
Anticipated Duration: 3 Years

FY 89 - $250,000
FY 90 - $247,000
FY 91 - $350,000

In this project research is being carried out to develop novel bifunctional catalysts (BFCs) that can convert methane to fuels (e.g., liquefied petroleum gas or gasoline) and large volume industrial chemicals. The goal is to produce a catalyst that operates efficiently under moderate conditions of temperature (<500°C) and pressure (<10 atm), and for extended periods of time, without need for frequent regeneration or replacement. The BFC concept involves integrating into one material the properties of C-H bond activation and product-selective chemical synthesis. Several types of C-H bond activation catalysts that rely on unique oxidation state chemistries and coordination geometries are employed in combination with molecular sieve materials having well defined intracrystalline pores and channels that constrain the size and shape of the active catalytic species contained therein and the chemical species formed therein. This research is expected to culminate in a demonstration of the feasibility of efficient conversion of methane to a liquid fuel and/or to one or more of the top fifty commodity chemicals.

*Project Completed
The objective of this project is to investigate promising methods for carrying out a new metal separation and purification process called ion replacement electrorefining. The challenge and program focus lie in developing a counter electrode that can serve in a sequential and, if possible, reversible manner as a cathode during metal dissolution and an anode during metal separation/deposition. The development work will be conducted with a view toward one particularly important application - the separation of spent metallic nuclear reactor fuel (or any nuclear waste material in metallic form) into its elemental constituents. The key goal is to produce a clean separation between actinide and non-actinide elements. One potential use for the ion replacement electrorefining method is the reprocessing of spent metal fuel from an Integral Fast Reactor (IFR), but it is also adaptable to the separation of transuranic elements from spent fuel and waste generated by the light water nuclear reactor (LWR) industry and the defense nuclear programs. In the case of the IFR, the proposed process represents an attractive alternative towards commercialization, in the sense that it offers a simplification of the conventional pyrometallurgical electrorefining process under development within the IFR Program. For LWR and defense waste applications, the ion replacement electrorefining method could be used in conjunction with processes that incorporate reduction of actinide element compounds (usually oxides) to a metallic form.
7. Ultrafast Molecular Electronic Devices

Michael R. Wasielewski, Chemistry Division
708/252-3538

Date Started: October 1, 1991
Anticipated Duration: 3 Years

The objective of this project is to apply the fundamental chemistry of ultra-fast photo-initiated electron transfer reactions to produce high speed, energy efficient molecular electronic devices. These molecules will act as opto-electronic switches on a picosecond time scale. The molecular switches are designed around electron donor-acceptor molecules that possess well-defined, easily controlled structures. Photo-excitation of these molecules with visible light results in very efficient charge separation reactions that set the on or off state of the molecular switch. Two types of molecular switch will be developed. The first type is a bistable electron transfer switch which will use a light pulse of one color to store information in the solid state in the form of a long-lived charge separation, and a light pulse of a second color to recover it. The second type of switch is a field effect switch which will use the electric field generated by one charge separated electron donor-acceptor pair to influence the on or off state of a second donor-acceptor pair. These switch molecules will be assembled in ordered arrays on surfaces using self-assembled monolayer and liquid crystal polymer technology to produce electro-optic devices. Potential applications of this technology are optical computing, wavelength selective gates and switches, laser detectors, electro-optic devices, modulators, and memories.
This program is intended to evaluate the feasibility of destroying oil slicks and beached oil by combustion with liquid oxygen (LOX). Initial experiments will be performed on a variety of oil slicks up to 10 meters in diameter which will be prepared at carefully controlled and instrumented inland sites. The parameters for ignition, as well as an evaluation of combustion products, will be measured with the view towards planning larger scale experiments. Beach clean-up problems will be addressed with simulations prepared by coating weathered oil on rocks and determining the extent that LOX assisted combustion is successful in removing this contamination. Combustion products and thermal effects on the sub-lying flora and fauna will be determined. On the basis of these experimental studies the feasibility of larger scale simulations will be evaluated, together with a preliminary design of actual field research.

*Project Completed
**Includes 4 month no cost extension
The impacts of accelerated cluster ions on solid surfaces generate transient highly compressed assemblies of energetic atoms. These atomic assemblies are unique in that very large amounts of energy are concentrated in the motion of the atoms rather than in the atomic electrons so that cooling processes are slower than with systems heated by lasers, electron beams or high-velocity ion beams. The direct deposition of energy into the motion of target atoms produces a non-random directional distribution of translational energy in the target atoms. As a consequence a very small fraction of the target atoms may acquire sufficient translational and/or vibrational energy to drive nuclear fusion reactions. A study of the effects of cluster impacts on solid surfaces in economical laboratory scale experiments can illuminate mechanisms of the ablative processes normally relied upon to compress and heat plasmas in inertially confined fusion. In addition, the direct application of cluster beams in place of heavy ion beams to heat inertially confined plasmas can be investigated. Most of the proposed experimental work will build on the foundation already established in studies of fusion reactions induced by singly-charged accelerated cluster ions. Studies will focus on the exploitation of multicharged ions to extend the range of velocities and sizes of the projectiles used to initiate cluster impact phenomena. The major objectives of this project are to study the properties of condensed matter under extreme conditions of pressure and energy density and to evaluate the potential of cluster impacts for use in the economical development of fusion energy.
10. Solar Detoxification of Aquatic Systems With Porous Photocatalysts

Micha Tomkiewicz, Physics Department
718/951-5357

Date Started: November 15, 1991
Anticipated Duration: 3 years

The objective of this project is two fold: (a) To investigate the feasibility of using a porous structure of a side bandgap semiconductor as a portable photocatalyst for photodegradation of organic pollutants in an aqueous environment; and (b) establish the correlation between the morphology of the porous photocatalyst and its efficiency in the photocatalytic process. Initially, efforts will be concentrated on the photocatalytic decomposition of two classes of organic materials: (a) Hydrocarbons, both light aliphatic and light aromatics, such as benzene and toluene. This work will be aimed primarily at water decontamination due to oil spills. (b) Salicylates. These are soluble ionic compounds that are being proposed in some quarters to serve as standards for the efficiency of various water purification schemes. The initial choices for the photocatalyst are porous TiO$_2$ films or beads that will be prepared either by the sol-gel method or by thermal decomposition of organic titanates, to make them low density enough to float in an aqueous environment. The principal tools in analyzing the porosity and the pore structure will be image processing in conjunction with optical and electron microscopies, small-angle x-ray scattering (SAXS) and impedance measurements. The reactants and the reaction products will be analyzed by absorption spectroscopy, by gas and liquid chromatography, and by electrodes specific to oxygen and carbon dioxide. Slow kinetic studies will be conducted by monitoring the time evolution of disappearance of the reactants and appearance of the products. Kinetic studies on a faster time scale will be conducted by flash-photolysis absorption measurements and time resolved luminescence. Parallel to the experimental work, computer simulations of the photocatalytic process on random porous photocatalysts and on porous deterministic fractals will be conducted.
11. Experimental, Theoretical and Computational Study of Frequency Upshift of Electromagnetic Radiation Using Plasma Techniques

Chan J. Joshi, Electrical Engineering Department
310/825-7279

Funding Profile

Date Started: January 15, 1991
Anticipated Duration: 3 Years

FY 91 - $250,000
FY 92 - $250,000
FY 93 - $250,000

In this project a new class of coherent electromagnetic radiation generation devices that, in principle, can cover the range of frequencies from microwaves to the vacuum ultraviolet will be investigated both theoretically and experimentally. In this method the frequency of the incident e.m. wave is upshifted by suddenly lowering the refractive index of the medium through which the wave is propagating. This can be done by rapidly ionizing the medium and forming a plasma. Various regimes will be investigated: (a) *Spatially uniform ionization (or flash ionization).* If the source wave \((\omega_s, k_s) \) is propagating through a medium that is uniformly ionized in time, then the wavenumber of this source wave \(k_s \) is fixed, but the frequency can change to \(\omega = \sqrt{\omega_{p}^{2}+\omega_{s}^{2}(t)} \) where \(\omega_p \) is the plasma angular frequency. This technique is particularly useful for generating tunable e.m. radiation in the mm wave range. (b) *Frequency upshift by a moving ionization front.* By sending an ionization front it is also possible to upshift the source wave frequency. If the plasma is underdense in the fronts frame, the upshifted frequency is \(\omega = \omega_s(1+\frac{\omega_p^2}{4 \omega_s^2}) \). If the plasma frequency is greater than the source frequency, this technique can generate frequency upshifts that are much greater than the flash ionization technique. This technique is suited to generate far-infrared and infrared radiation. An applications study will also be undertaken to identify technologies which would likely be impacted by these sources.
The goal of this project is the study of a storage ring for synchrotron radiation production capable of achieving simultaneously high brightness, and a short pulse duration, in the picosecond range. Existing storage rings can only produce radiation with limited brightness; a new generation now under construction has been designed to increase the brightness, thus largely extending the usefulness of these sources. However, no ring existing or under construction has the capability of producing picosecond pulses, while preserving the brightness, and increasing the peak current. Recent theoretical results on the possibility of operating a storage ring near transition, a Quasi Isochronous Ring, and of using a new type of nonlinear magnetic lenses, the modified sextupoles, indicate the possibility of achieving these results, extending even more the capability of synchrotron radiation sources. This program will explore these new concepts, develop a design of this new type of source, and evaluate its characteristics.
13. **Synchronous Picosecond Sonoluminescence: Developing and Characterizing a New Light Source**

Seth J. Putterman, Department of Physics
310/825-2269

Funding Profile

- **Date Started:** December 15, 1991
 - **FY 92:** $388,000
- **Anticipated Duration:** 3 Years
 - **FY 93:** $275,000
 - **FY 94:** $194,000

It has recently been discovered at the UCLA acoustics laboratory that the passage of a sound wave through a liquid leads to the ultra-precise clock-like emission of flashes of light. The power of the individual flashes is greater than 1 milliwatt and their width is less than 100 picoseconds. This effect is due to a spontaneous yet controllable concentration of sound energy by a factor of one trillion. The goal of this project is to perform those measurements which will elucidate the mechanism responsible for this off-equilibrium phenomenon (which has been named synchronous picosecond sonoluminescence). Toward this goal, the time and spatial resolution of the flashes will be measured along with the time development of the spectrum. Correlations and possible coherence will be searched for in the radiated light. Efforts will be made to measure the spectrum of microwave, radio frequency and far ultra-violet radiation. The degree of synchronicity will also be probed. These efforts will lead to the development of a variable width, variable intensity picosecond light pulser. By understanding the novel cooperative effects that cause *synchronous* picosecond sonoluminescence, insight will be gained as regards the means whereby large controllable energy concentrations could be achieved in other systems.
The thrust of this research is to explore fabrication of structures at the highest possible spatial resolution in which features are defined on the nanometer length scale by single molecules. Two-dimensional protein crystals will be used as the patterning elements for nanometer fabrication, employing masking and templating operations. Hundreds of two-dimensional biomolecular arrays, having lattice parameters in the 3-30 nanometer range, are available as patterning elements. The nanostructures to be fabricated will include patterned 1 nanometer thick metal films having, for example, arrays of 10 nanometer dimension holes, metal island arrays of nanometer periodicity, and biomolecular-solid state nanohetero-structures. By employing periodic patterns, structural fluctuations and defects can be effectively investigated, for example, the placement of 1 nanometer dimension metal grains by molecules of the template. The research goal is to understand phenomena which limit nanometer fabrication at the molecular level, to extend the limits of fabrication resolution, and to develop applications of molecular fabricated nanostructures. This parallel technology will enable the efficient parallel manipulation of surfaces. The ability to structure surfaces on the nanometer molecular length scale makes it possible to profoundly alter their fundamental properties such as chemical reactivity, adsorption characteristics, and electrical and optical behavior. Such a technology would contribute broadly to the advance of interfacial chemistry, physics, and materials science.

*Includes 12 month no cost extension
The project objective is to explore the generation of soft x-ray laser radiation in a capillary discharge. A hot and highly ionized plasma column with a large length-to-diameter ratio (l/d=10-100) will be generated by a rapid discharge into a capillary structure. A compact 800kV, 150 kA pulser will provide the excitation. At the end of the current pulse rapid cooling of the plasma is expected to occur as a consequence of electron heat conduction to the capillary walls and plasma radiation. Under optimized plasma conditions collisional recombination of the capillary plasma is expected to lead to amplification at extreme ultraviolet and soft x-ray wavelengths. Experiments will be conducted to demonstrate gain, focusing first in the 3-2 transition of hydrogenic ions. The initial experiment will explore gain in the 18.2 nm transition of hydrogenic carbon in a polyethylene capillary. The proposed capillary laser scheme offers the potential for compact, simple and efficient soft x-ray laser sources.
The aim of this project is to produce permanent magnets comprised of superconductors (SC's) which work at or near liquid nitrogen temperatures (77K). These magnets show promise for applications in motors, generators, charged particle beam steering, industrial particle separators, MRI, and other constant field applications. One advantage of these magnets is that much higher fields are possible than for ferromagnets. A second is that the SC magnets can accurately copy the fields used to activate them, thus making possible magnet replicas. In addition, SC magnets are lighter than iron, cost less than an electromagnet, and consume negligible energy. The SC magnet replicas are made of bulk pieces of high temperature superconductor, and so do not require the availability of wire, which is difficult to produce from these materials. Both chemical and radiation methods are being used to produce materials capable of storing high field. Stored fields have been increased by factors of over 1,000 in the past two years. Presently, stored fields in 1 cm3 samples are already three-times stronger than samarium-cobalt magnets. Methods of improving stability have been found. A small motor has been run using a magnet replica.
The goal of the project is the construction of an x-ray laser in the kilovolt regime. Recent experimental results indicate that a new technique for the generation of strong amplification of x-ray wavelengths is feasible. It involves the combination of (a) a new ultrahigh brightness subpicosecond laser technology; and (b) a recently discovered unique mode of strong-field interaction, particularly applicable to molecules. A concept of molecular x-ray laser design emerges from these considerations which matches the mode of excitation to the structure of the molecular system. The molecular approach enables the combination of very highly electronically excited conditions with an environment characteristic of dense cold matter, a general situation exceptionally conducive to x-ray amplification. Both high efficiency and wavelength tunability are intrinsic features of this method. A program of research is being conducted to evaluate this method for the production of x-ray amplification in the kilovolt region.
The application of pulsed metal plasma gun techniques to the fabrication of metallic superlattices, multilayers and thin films will be investigated. Multilayer structures will be synthesized that are of relevance to x-ray optical devices, to magnetic and magneto-optical recording media, and to the fabrication of high temperature superconducting thin films. The quality and characteristics of the thin film structures formed in this way will be explored. This means of fabrication of metallic multilayer systems is new and has not yet been examined except in preliminary testing at this laboratory. At the same time, interest in artificial metallic superlattices from a fundamental scientific perspective, and in metallic multilayer structures from the standpoint of applied technology, is growing rapidly. It is important to explore and develop the application of this new technique to these fields. The proposed program will make immediate application of the method within the three fields mentioned above (x-ray optics, magneto-optics and superconducting thin films) via collaborations with materials science research groups at this laboratory.
19. Cyclotron Mass Spectrometer for Tracer Studies

Ka-Ngo Leung
510/486-5011

Date Started: April 1, 1991
Anticipated Duration: 3 Years

Funding Profile
FY 91 - $290,000
FY 92 - $245,000
FY 93 - $225,000

A compact research cyclotron will be developed which uses permanent magnets and axial ion injection. The new instrument will be used as an ultrasensitive accelerator mass spectrometer (AMS) for applied tracer studies. This device can take the place of bulky, cumbersome and much more expensive tandem Van de Graaff accelerators usually employed in AMS applications, and in fact can be made "portable". Thus this new machine has the potential for great practical benefit primarily by permitting detection or monitoring of minute quantities of hazardous substances and contaminants in exhausts and effluents. Moreover, the instrument is predicted to have sufficient sensitivity to detect 14C isotopes as tracers after enormous dilution, opening the door to a large variety of environmental, biomedical and archeological applications. To facilitate 14C tracer work, the effort also includes optimization of a C$^-$ ion source that uses gaseous CO or CO$_2$ instead of solid graphite sputtering. It is expected that at the end of the project, the cyclotron mass spectrometer system will be developed well enough and its utility demonstrated to permit transfer to industry.
A study will be carried out of the science underlying the use of pulsed electrical discharges for the simultaneous removal of NO$_x$, SO$_2$ and soot from diesel engine exhausts. The goals involve major advances in the understanding of breakdown mechanisms in coronal discharges, the elucidation of the chemical reaction schemes responsible for the conversion of the pollutants to benign molecules, experimentation with novel devices, and preliminary analysis of the scaling laws, economic and environmental considerations relevant to the transfer of this technology from the laboratory. The research will be performed by a multidisciplinary team from the Physics, Electrical Engineering, and the Chemistry and Materials Science Departments.
21. Demonstration of Three Dimensional X-Ray Holography

James E. Trebes
510/423-7413

Date Started: January 1, 1992
Anticipated Duration: 1 Year

X-ray holography is rapidly developing as a potential tool for studies of macromolecular assemblies in live biological objects. Operating at soft x-ray wavelengths (45-23 Å) offers the potential for generating high resolution images of biological structures in physiological normal conditions with less dose than required for electron microscopy. The experimental results to date have resulted in holographic images with good transverse resolution (<1000 Å), but with essentially no depth resolution. Macromolecular structures such as the higher order structure or DNA in live cells will require 3-D imaging with both good transverse as well as depth resolution. A method of obtaining this 3-D resolution is holographic tomography. In this technique, several holograms of the same object are produced from different directions. The images from each hologram are combined in the holographic reconstruction process to produce a three dimensional image with a depth resolution comparable to the transverse resolution. The major advantages of this approach are that it exploits the predominantly forward scattering of x-rays by biological microstructures and that it samples a wide range of spatial frequencies in the object. The goal of this project is to demonstrate x-ray holographic tomography for the first time and determine the minimum number of views required for the production of high resolution holographic images. In addition, the minimum number of detected x-rays required for each view will be determined. This project will be carried out using an existing Fourier transform x-ray holography system on the National Synchrotron Light Source at Brookhaven National Laboratory. Successful completion of this project will provide the data base necessary for the design of holographic systems capable of creating three-dimensional, high-resolution images of biological microstructures.
Los Alamos National Laboratory
Los Alamos, NM 87545

22. Experimental and Theoretical Studies of Inertial-Electrostatic Confinement
Richard A. Nebel
505/667-7721

Funding Profile

Date Started: November 1, 1991
Anticipated Duration: 3 Years

FY 92 - $400,000
FY 93 - $400,000
FY 94 - $392,000

A comprehensive study of inertial-electrostatic confinement (IEC) will be conducted. IEC is a plasma confinement scheme for fusion applications based on electrostatic fields. Unlike conventional magnetic confinement fusion, IEC devices produce fusion via non-Maxwellian beam-beam interactions; the kinetic energy of the beam ions being approximately the same as the potential on the grid. Experimental work complemented and guided by theoretical analysis will be pursued. The experimental effort will be centered at the University of Illinois. Experimental diagnostics will glean data to determine the spatial dependence of both the neutron-emission source and the associated electrostatic potential. These data will be used to assess and improve the understanding of IEC and to test new physics concepts that may enhance ion compression and collision rates in such devices. The computational strengths of Los Alamos National Laboratory (LANL) together with the phenomenological modeling capabilities of Energy/Matter Conversion Corp., (EMC2) will be used to achieve this mission. A three-dimensional semi-implicit Particle-In-Cell (PIC) code is currently being developed at the LANL that is appropriate for modeling both the IEC experiments and conventional as well as newly developed phenomenological physics models of interest in their interpretation. Possible instabilities will be studied in order to determine their effect upon the electrostatic confinement. The primary goal will be to determine conditions for maximum ion confinement, and to define appropriate experimental regimes for their test.
Los Alamos National Laboratory
Los Alamos, NM 87545

23. Pulsed Microwigglers for Innovative Free-Electron Lasers

Roger W. Warren
505/667-1988

Date Started: June 1, 1991
Anticipated Duration: 3 Years

Funding Profile

FY 91 - $300,000
FY 92 - $350,000
FY 93 - $350,000

A pulsed microwiggler will generate a very strong wiggler field of short period. It will allow light of short wavelength to be generated by an FEL system that uses an unusually low energy accelerator that is, therefore, compact and inexpensive. This will lead to a new generation of FELs, revolutionizing the technology. The development will enable new applications for which FELs were previously considered too expensive and cumbersome. Development of such a wiggler will require extensive computer simulations, novel wiggler designs (both to generate fields of the required shape and magnitude and to allow heat to be extracted efficiently), advanced fabrication techniques (to achieve the required precision), state-of-the-art power supplies (high, pulsed currents), and unusual test equipment (to measure fields inside the small wigglers). These developments can be divided into several stages that can be attacked sequentially. It is planned to design, build, and test such a microwiggler and use it in an existing FEL system at Los Alamos to generate UV light.
Future linear colliders will require high frequency rf sources together with high gradient accelerating structures in order to be economically feasible. The cyclotron autoresonance maser (CARM) is a promising source for application as an rf accelerator driver. This project will investigate and evaluate the CARM amplifier as an efficient source of high peak power microwaves capable of fulfilling this future requirement. Experiments at a frequency of 17 GHz will be performed using two different technologies for generation of the high voltage electron beam required by the CARM. A long pulse (1 μs), 700kV pulse modulator and a short pulse (50 ns), 1.2 MeV induction accelerator will be employed for generation of the electron beam. This will allow a comparison of two alternate methods for producing the high peak power, ~50 ns microwave pulses required by the high gradient structures. A long pulse modulator-driven CARM together with pulse compression techniques, or an induction linac driven CARM are both capable in principle of delivering the required rf pulses to the structure. In both experiments, the details of CARM amplifier operation will be investigated, including linear and nonlinear gain, stability, efficiency, and phase sensitivity.

*Project Completed
25. Development of a Collisional EUV Laser Using Ni-Like and Nd-Like Ions*

Peter L. Hagelstein, Research Laboratory of Electronics
617/253-0899

Funding Profile

Date Started: May 1, 1989
Anticipated Duration: 41 Months**

<table>
<thead>
<tr>
<th>Year</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 89</td>
<td>$448,000</td>
</tr>
<tr>
<td>FY 90</td>
<td>$223,000</td>
</tr>
<tr>
<td>FY 91</td>
<td>$539,000</td>
</tr>
</tbody>
</table>

It is proposed to construct a small scale extreme ultraviolet (EUV) laser at 200-300 Å based on electron collisional excitation in low-Z, nickel-like ions. The laser is to be pumped by a 10 joule Nd:glass laser pulse train, consisting of about 5 short 100 picosecond (2 joule) pulses spaced every several nanoseconds. The short wavelength amplifier will be well-adapted to cavity studies, and both multi-layer and whisper gallery optics will be explored. The use of a glass slab power amplifier in this system will allow for a repetition rate which is high (0.1 Hertz) for EUV lasers. As a result, the proposed system will be especially well suited for applications. Future systems could be based on high average power slab lasers and operate at the 1-10 Hertz regime. Applications of short wavelength lasers will be explored which at present includes EUV nonlinear spectroscopy and phase sensitive thin film and surface probing. New short wavelength laser schemes will be explored including the extension of the collisional excitation scheme to Nd-like (60 electron) ions.

*Project Completed
**Includes 5 month no cost extension
The operation of the first positron microscopes in 1988 demonstrated a totally new contrast mechanism for microscopic imaging. Specifically, the positron reemission microscope images anti-matter positrons that have been implanted into a sample and subsequently reemitted from its surface. Image contrast, determined by the sample's positron reemission probability, depends on the unique behavior of positrons in solids. The goal of this research is to move this new technology beyond the current demonstration phase (3,000-10,000 Å resolution) by constructing and operating a 100 Å resolution instrument. This device would allow the assessment of the technique's ultimate capabilities, as well as allow investigation of several outstanding problems which the proposed microscope should make a unique contribution to solving. These problems include: (a) analysis of sub-25 Å films by positron tunneling microscopy; (b) unique applications in surface catalysis including, for example, analysis of systems with high Z substrates where electron microscopic techniques fail; (c) analysis of operation and failure modes of microelectronic devices; and (d) imaging of selected biological systems such as lipids and proteins in cell membranes. A program complementary to this has been initiated at the Idaho National Engineering Laboratory to construct a positron beam with a minimum intensity of 10^{10} positrons/sec. A beam of such intensity would be required for several applications including use in a sub-10 Å resolution microscope which would be constructed if, based on the results of this project, it is judged to be feasible and useful.

Mark A. Prelas, Nuclear Engineering Program
314/882-3550

Date Started: December 1, 1990
Anticipated Duration: 3 Years

The efficiency of modern day power plants is limited by the steam cycle that they employ. Future power plants may be able to improve upon the efficiency of the steam cycle provided that other energy conversion techniques become available. One such energy conversion method is excimer channeling. Excimer channeling is a method of efficiently creating a narrow band photon spectrum directly from the products of nuclear reactions. This narrow band photon spectrum can be used in an energy conversion cycle based upon photovoltaic reactions. This project addresses the issue of photovoltaic materials that can interface with the narrow band photon spectrum in the excimer channeling energy conversion method. Photovoltaics are generally thought to be inefficient because of their association with solar cells. Solar cells are photovoltaic cells that convert the broad band photon spectrum of the sun directly into electricity at an efficiency of 10% to as much as 20%. Conversion of photons into electricity could be very efficient (as high as 85%) if the photon spectrum were sufficiently narrow, such as that produced by excimer channeling, and matched to the bandgap of the photovoltaic material. Development of high bandgap photovoltaic materials that match the excimer channeling photon spectrum is the goal of this research program. This effort centers on materials with bandgaps exceeding 5 eV. High bandgap crystals will be synthesized, doped to form P-N junctions, characterized by various surface analysis methods, made into photovoltaic cells, the cells' characteristics tested, and the cells' tolerance to various types of electromagnetic radiation assessed.
The objective of the project is a further theoretical study of the pneumatic method to harness low and ultra low head hydropower and to demonstrate that such an approach can be economically and environmentally efficient for riverine power installation. The concept was originally offered in 1978-1980 for harnessing tidal power. The principal idea of the method is to utilize air turbines instead of conventional hydroturbines by means of converting energy of the flowing water into energy of compressed air. A pneumatic hydropower plant would cause minimal environmental distortion in the river and require substantially less land taking for a water pool than a conventional hydroturbine installation. There are two primary aspects of the research project: (a) to complete an analysis of air chamber parameters, mechanical and energy losses, air turbine operation; and (b) to perform a feasibility study of a pneumatic power installation for a selected riverine site in the state of Maine.
The development of improved, self-lubricating materials is critical for enabling progress in many industrial sectors: transportation, industrial machinery, business machines, aerospace, and defense. Its impact on the economy will therefore be large and diverse, spanning devices from high-temperature turbine engines to moving parts in heat-treatment systems for integrated circuitry. Chemical vapor deposition (CVD) techniques offer the opportunity to create very uniform self-lubricating composites which slowly wear away to expose pockets of lubricants which then spread across the surface. In CVD gaseous reactants are allowed to flow over a heated substrate where they react and deposit a solid coating. Solid lubricants have higher use temperatures and higher load-bearing capacities than do liquid lubricants. Consequently, they find use in applications where liquid lubricants prove inadequate. It has been noted that because buckminsterfullerene (C_{60}), is a spherical macromolecule and is thought to be very stable and slow to react with other substances, it should make an excellent lubricant. This project utilizes the controlled wear of a hard matrix to reveal the embedded high-temperature, solid lubricant. Such a composite coating would be produced by CVD, which has been demonstrated capable of producing multiphase coatings of controlled composition and microstructure. The C_{60} phase cannot be simultaneously formed during deposition, as can other of the proposed lubricants. The material can be incorporated into a coating, however, by entrainment in the coating gases.
The use of high-intensity-pulsed electric fields for droplet size control in dispersed liquid systems is being investigated. This technology has been utilized in a device called the electric dispersion reactor (EDR) to carry out the synthesis of micron-sized particles for the production of precursor powders of advanced ceramic materials. In this approach, pulsed electric fields are employed to create dispersions of microscopic conducting (aqueous-based) drops in nonconducting (organic) liquids. Each of these droplets becomes a localized microreactor where reactants in the organic phase diffuse into the aqueous droplets in which precipitation and gelation occur, while water and reaction products diffuse into the organic phase. The particle morphology is altered by varying reactant compositions in the liquid-liquid system while achieving intraparticle stoichiometric consistency. This leads to the production of high-quality precursor powders which, in turn, yield dense, consistent green-body material. Furthermore, this method requires far less energy expenditures than conventional approaches which rely on such inefficient operations as solids blending, mixing, and grinding to accomplish the formation of mixed-oxide precursor material.
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831

31. Biocatalytic Design by Chemical Modification

Jonathan Woodward, Chemical Technology Division
615/574-6826

Funding Profile

Date Started: October 1, 1991
Anticipated Duration: 3 Years

The overall goal of this project is to demonstrate that the generation of a biocatalyst with multiple active sites is possible by the chemical modification of a single enzyme and, once formed, it will have utility in the generation of energy and the degradation of polymeric and monomeric compounds. The model enzyme chosen to study is cellobiohydrolase I (CBH I), the major component of the cellulase enzyme mixture produced by the fungus, Trichoderma reesei. This enzyme catalyzes the hydrolysis of cellulose to cellobiose and can be purified relatively easily and quickly in preparative quantities. If, besides being an hydrolase, oxidase activity could be conferred upon CBH I, then it is conceivable that naturally occurring cellulosic substrates (lignocellulose) could be biodegraded (requiring both oxidation and hydrolysis) by a single biocatalyst by abolishing or reducing the pretreatment requirement. Consequently, there would exist a good possibility for a dramatic reduction in the costs and energy requirements associated with the enzymatic degradation of cellulose that could contribute to an energy-efficient and cost-effective waste management and bioprocessing system. The reason for this is that current pretreatment methods are costly and energy intensive, requiring capital investment as well as routine operational costs. Objectives of the research include: (a) the purification of gram quantities of CBH I; (b) the attachment of redox-active inorganic groups to the polypeptide of CBH I; (c) a comparison of the kinetic properties of native and modified CBH I, including the determination of their substrate specificity; (d) the demonstration of the efficient biodegradation of various lignocellulosic biomass sources by the modified enzyme; and (e) a comparative economic analysis of an enzymatic hydrolysis of lignocellulose to glucose process employing conventional pretreatment techniques or chemically modified biocatalysts.
The use of zeolite catalysts may improve conversion of cellulosics in two important ways, namely (a) reduction of glucose inhibition of cellulase activities; and (b) efficient conversion of xylose into xylulose and then ethanol. This project will study adsorption of carbohydrates, hydrolysis of oligosaccharides, and aldose-ketose isomerization catalyzed by zeolites under various conditions. High pressure liquid chromatography, nuclear magnetic resonance and infrared measurements will be used to detect sugars and to examine their interactions with the zeolites. These studies will help to elucidate the mechanism, kinetics, diffusion, and equilibrium of the reactions as they are affected by the presence of zeolites. Zeolite-promoted reactions including isomerization and oligomer hydrolysis can be coupled with biological reactions including enzymatic hydrolysis and yeast fermentation for the above-mentioned improved overall conversion of cellulosics.
The objective of this project is to make use of a wide range of products obtained from plant sources as monomers for the direct production of polymers which can be used for a wide range of plastic applications. In particular, high-volume American agricultural products such as soybean, cotton or linseed oils or forestry products such as lignin and cellulose are targeted for use either directly or with very slight modification for the production of the plastics. The monomers thus obtained will be rapidly and efficiently converted to polymers using ultraviolet light or heat employing unique catalysts developed in this laboratory. It is expected that these catalysts provide a low energy and pollution-free means for the direct fabrication of the plastics. Furthermore, the polymers that are formed are expected to be prone to biodegradation and to pose little long term accumulation or pollution hazard.
34. **The Plasma Centrifuge (A Compact, Low Cost, Stable Isotope Separator)**

Mahadevan Krishnan
510/521-8087

Funding Profile

Date Started: September 15, 1991	FY 91 - $495,000
Anticipated Duration: 3 Years	FY 92 - $441,000
	FY 93 - $317,000

The objective of this project is to make practical a new type of isotope separator called the Plasma Centrifuge. The Plasma Centrifuge is based on the concept of a cylinder of ionized matter (plasma) contained by a magnetic field and set into rotation by application of an electromagnetic body force. The typical embodiment consists of a rotating column that is fed by a vacuum arc plasma source at one end. As the plasma streams towards the other end of the chamber, centrifugal forces cause the heavier isotopes of the plasma ions to move nearer the periphery of the rotating column, resulting in partial separation between the constituent isotopes. Collectors placed at the other end of the column can collect either the outer portion that is enriched in the heavier isotope, or the inner portion that is enriched in the lighter isotope, as desired. This Plasma Centrifuge apparatus fits into a small room and can enrich dozens of isotopes with a throughput of about 1-3 grams/hour of enriched product. Such a capability would make this centrifuge a useful new separator to supply the US demand for a variety of enriched isotopes that are badly needed in these quantities in the fields of basic research in physics/chemistry/geology/medicine and in medical diagnostics radiological practice. The cost, modularity and size of this approach makes the Plasma Centrifuge a potential replacement for CALUTRONs, which are today's primary source of supply of enriched isotopes.
The primary objective of this project is to thoroughly explore the potential of the laser-heated pedestal (float zone) growth method for the preparation of flexible wires (fibers) of the new copper-oxide ceramic superconductors, in particular, the Bi-containing compounds that are capable of carrying high currents at temperatures above 77K. This method, which involves drawing wires directly from a melt, has many advantages over other methods, most important of which is that it allows precise control of the growth process through the control of melt composition. Critical issues that will be considered in this superconducting fiber program include: (a) determining the most suitable compositions to be grown; (b) the maximum allowable growth velocity that can be used to grow fibers with high T_c; and (c) the maximum length of fiber which can be produced. To address these issues, the program will involve an in-depth study of: (a) the thermodynamic and kinetic factors that affect growth rate and the properties of the fibers produced; (b) the development of an advanced fiber growth system that will permit better control of system parameters; and (c) the development of techniques to enhance fiber throughput via increased growth velocity, postgrowth heat treatments, and the possibility of growing many fibers simultaneously.

*Includes 12 month no cost extension
The objective of this project is to develop a novel and simple technology for optical, all-fiber switches based on the third order nonlinear effect in doped, single-mode fibers. The principle behind these devices is that when exciting a transition near resonance the electronic distribution changes and so does the contribution of this transition to the refractive index of the material. This effect exists in pure silica but it is extremely weak, and in undoped, pure silica fibers, tens of watts and tens of meters of fiber are required to induce the phase shift of π needed for switching. The novelty of this approach is to use a fiber doped with an appropriate impurity and excite it optically near an absorption resonance of this impurity to produce strongly enhanced nonlinear susceptibilities. Modeling shows that it is then possible to reduce the pump and length requirements by several orders of magnitude each, and to produce a π phase shift in centimeter lengths with milliwatts of pump power. The ultimate thrust of this project is to investigate this effect with a variety of impurities exhibiting high oscillator strength transitions to produce both high speed and very short devices. For picosecond response times, the reduction in the pump power-fiber length product is predicted to be 7 - 8 orders of magnitude over undoped silica. Slower but useful devices will also be investigated using well-understood erbium and neodymium-doped fibers, which have been extensively studied as lasers and amplifiers but not as nonlinear switches. This investigation is anticipated to open the door to the first low-power, ultra-short switches and modulators made with single-mode optical fibers, operated with a low-power, long-lifetime laser diode. Such components are not currently available in a form compatible with fiber optic systems, either from fiber-based or integrated-optic based elements. There are a variety of energy applications for the proposed research, including oil exploration, control of power substations, and management of consumer distribution systems. Interactions with several companies are planned throughout this study for directivity, technology transfer, and manufacturing of some of the devices tested under the program.
The objective of this project is to develop a new environmentally safe technology for eliminating crude oil slicks from oil spills. To accomplish this, microbeads that float on oil slicks are used. Under solar illumination, the microbeads accelerate the oxidation of the oil. The low-cost, hollow glass microbeads will be partially coated with a layer of titanium dioxide, a known photocatalyst for oxidation of contacting organic compounds. The beads will harvest light from areas substantially larger than their own, because oil films between air and water trap and propagate light, waveguiding it to the beads, which, in turn, waveguide it to the titanium dioxide photocatalyst particles. The waveguiding is associated with increasing indices of refraction. The required coverage of oil slicks with microbeads depends on their optical properties, increasing for heavier crudes. Coverage of 1% of the surface with microbeads is projected to be adequate for the photodissolution, under average solar illumination, in 1 month, even for the heavy crude spills.
The University of Texas at Austin
Austin, TX 78712

38. Synthesis of New High Performance Lubricants and Solid Lubricants

Richard J. Lagow, Department of Chemistry
512/471-1032

Funding Profile
Date Started: June 1, 1991
Anticipated Duration: 3 Years

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 91</td>
<td>$377,000</td>
</tr>
<tr>
<td>FY 92</td>
<td>$272,000</td>
</tr>
<tr>
<td>FY 93</td>
<td>$218,000</td>
</tr>
</tbody>
</table>

Work will be conducted on the synthesis and characterization of perfluoropolyethers, an extraordinary class of high performance lubricants, by a relatively new technique, direct fluorination, which is emerging as the best way to prepare perfluoropolyethers. Many new and important classes of perfluoropolyethers will be prepared with very significant potential as lubricants. Currently, the highest obtainable molecular weight perfluoropolyether synthesized using conventional polymerization processes is 50,000. This fluid with a molecular weight of 50,000 has a viscous syrup-like consistency. High molecular weight solids with a perfluoropolyether backbone have not been attained using methods other than direct fluorination technology. There exists now the capability to synthesize perfluoropolyethers with molecular weights over 1,000,000. Thus, solid perfluoropolyether lubricants are accessible for the first time. A feature of direct fluorination technology where hydrocarbon structures are converted to fluorocarbon structures is that the organic precursors are converted to fluorocarbon fluids and solids without substantial cross-linking and without increased or decreases in degree of polymerization. The synthesis of hydrocarbon polymers as starting materials has many other advantages and introduces great flexibility and capabilities not attainable using polymerization processes with various perfluorinated ethylene oxides. Work will be done on many generic classes of solid fluorocarbon lubricants. The capability to make perfluoropolyethers soluble (miscible) with less expensive hydrocarbon lubricants and poly alpha olefins has recently been developed. One of the most important and promising prospects of this research is the synthesis of chlorinated perfluoropolyether fluids that are very compatible and soluble in hydrocarbons offering potential as high performance lubrication additives.
Although conventional spark plugs appear to be entirely suitable for spark ignition (SI) engines, the design of the SI engine is limited by the characteristics of the ignitors. That is, if superior ignitors were available, the SI engine could be designed in a manner that would yield reduced emissions and improved fuel economy. Similarly, the design of virtually all types of internal combustion engines is limited in one way or another by the characteristics of the available ignitors. In this project a new type of ignitor is being investigated that operates on a much different principle than either conventional ignitors or any of the other advanced ignitor concepts that have been studied recently. Technology is being transferred from "star wars" to the automotive industry--railguns (a kinetic energy defense weapon) are being miniaturized to generate a new ignitor for internal combustion engines. Two characteristics make the miniaturized railgun, or "railplug", highly attractive as a replacement for conventional ignitors: a relatively large mass of plasma is generated and the plasma leaving the muzzle of the railplug has a high velocity. The advantages of using a railplug ignition system in three different engine applications are being investigated: replacement of spark plugs in both conventional SI engines and in dilute homogeneous charge SI engines, and replacement of glow plugs in indirect injection diesels to improve cold start characteristics. The primary objectives of the research are to improve internal combustion engine performance and fuel economy and to reduce emissions.
SAMPLE

Statement of Work

1) Project Objective

The proposer shall investigate the electrocatalytic oxidative dehydrogenation of ethylbenzene and butane in solid electrolyte fuel cells. The effort is directed toward defining optimal operating conditions for achieving high yields of styrene and butadiene with simultaneous electric energy generation.

2) The work to be performed consists of the following tasks:

2.1. Construction of tubular stabilized zirconia fuel cells with a platinum cathode and an iron oxide or platinum anode. Both anode materials are quite promising and a decision between the two will be made after preliminary runs.

2.2. Measurement of the styrene cell activity and yield as a function of temperature, inlet ethylbenzene concentration and external resistive load.

2.3. Measurement of the cell electric power output and overpotential as a function of the operating parameters described in 2.2.

2.4. Determination of the nature of the overpotential according to the results of 2.3. If ohmic overpotential dominates, a small well mixed cell with thin (150 microns) electrolyte discs will be constructed to increase power density.

2.5. Development of correlation for styrene yield and electrical power output in terms of operating and design parameters for use in future scale up.

2.6. Repeat tasks 2.2. through 2.5. using butane and/or butene as the fuel.

2.7. Preliminary engineering and economic analysis according to the results of 2.2. through 2.6.

3) Deliverables

The proposer shall provide the data of experiments performed according to paragraphs 2.2., 2.3., 2.4., 2.5. and 2.6. along with analyses and conclusions based on this data.

4) Performance Schedule

4.1. Complete construction of cells 3 months after start of work.

4.2. Complete ethylbenzene experiments within 12 months after start of work.

4.3. Complete butane and butene experiments and data analysis 20 months after start of work.

4.4. Complete data correlation, economic analysis and final report 24 months after start of work.
OFFICE OF BASIC ENERGY SCIENCES
DIVISION OF ADVANCED ENERGY PROJECTS
PROGRAM DATA

BUDGET

<table>
<thead>
<tr>
<th></th>
<th>FY 1991</th>
<th>FY 1992</th>
<th>FY 1993 (REQUEST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATING</td>
<td>$9,100,000</td>
<td>$10,800,000</td>
<td>$11,900,000</td>
</tr>
<tr>
<td>EQUIPMENT</td>
<td>300,000</td>
<td>310,000</td>
<td>310,000</td>
</tr>
</tbody>
</table>

DISTRIBUTION OF FY 1992 PROJECTS BY SECTOR

Universities 54%
Industry 3%
DOE Laboratories 43%
SMALL BUSINESS INNOVATION RESEARCH PROJECTS

The Small Business Innovation Research (SBIR) program was created in 1982 by Public Law 97-219 with the following objectives: to stimulate technological innovation; to use small business to meet Federal R&D needs; to increase private sector commercialization innovations derived from Federal R&D; and to foster and encourage participation by minority and disadvantaged persons in technological innovation.

Agencies with extramural R&D budgets of over $100 million were required to establish an SBIR program using a set-aside of a stated percentage of that budget. The percentage grew from an initial 0.2% in 1983 to 1.25% in 1986 through 1988. The program was extended through 1993 by Public Law 99-443 with a constant annual set-aside of 1.25%. Legislation is pending in Congress for a further extension.

In the Department of Energy, the funds are used to support an annual competition for Phase I awards of up to $50,000 for about 6 months to explore the feasibility of innovative concepts. Phase I winners are eligible to compete for Phase II awards, which are a continuation of the Phase I projects. Phase II is the principal research or R&D effort, and the awards are up to $500,000 for a two-year period. DOE funds an average of about 170 Phase I applications and about 60 Phase II applications per year. Technical topics for DOE's annual SBIR Solicitation are compiled by program managers in the agency.

In Fiscal Year 1992 the Division of Advanced Energy Projects managed a number of Phase II SBIR projects. These projects were selected from proposals submitted to the Advanced Energy Projects topic, "Novel Sources of Electromagnetic Radiation", which was included in the 1990 and 1991 DOE SBIR Program Solicitation.
40. Parametric Radiation as an Intense Monochromatic X-Ray Source

Melvin A. Piestrup
415/328-7337

Date Started: March 31, 1992
Anticipated Duration: 2 Years

The objective of the program is to investigate the use of parametric x-ray radiation (PXR) as a low-cost, pulsed, tuneable x-ray source. PXR generation is achieved by placing natural or synthetic crystals, or multilayer structures, into a relativistic electron beam. The virtual photons associated with the fields of the electrons are Bragg reflected by the periodic crystal lattice, and real x-rays appear at the Bragg angle. The production process is thus analogous to x-ray diffraction by crystals, except that the x-ray beam incident at the Bragg angle is replaced by a relativistic electron beam. This source is quasi-monochromatic, directional, tuneable, and polarizable. Bandwidths can be adjusted from about 0.1% to 50%. Parametric x-ray radiators can be designed to produce specified x-ray energies and bandwidths by careful selection of the crystal radiator, the Bragg angle, and electron-beam parameters. In contrast to synchrotron radiation, PXR requires only the moderate electron-beam energies of inexpensive linear accelerators. Under Phase I, the calculations and proof-of-principle experiments have demonstrated that PXR is a viable source from 5 to 30 keV. The x-ray spectrum from silicon and mosaic graphite crystal was measured using a 90 MeV electron beam. It was found that the intensity from graphite was roughly an order of magnitude higher than that produced by silicon radiators. Up to six harmonics could easily be observed. During Phase II, the range of the PXR source will be extended down to 1 keV and above 30 keV. High-intensity x-ray emission using high average electron-beam currents will also be demonstrated. Natural and synthetic crystal and multilayer structures will be used in these experiments. The angular distribution of the x-rays will be measured using existing imaging systems. An improved theoretical model for the spectral distribution will be derived, and a theory of PXR production by multilayer structures will be developed. Two applications will be studied: medical imaging of the arteries of the heart and the production of x-ray lithographs using soft x-ray emission.
The objective of this project is to investigate the use of a novel transition-radiation source to produce a low-cost, laboratory-scale, intense, pulsed x-ray source. By designing transition radiators to emit x-rays at the foil material K-shell photoabsorption edge, the x-ray spectrum is narrowed. The source is thus quasi-monochromatic (40 to 50% bandwidth), directional, intense, and uses an electron beam whose energy is considerably lower than that needed for synchrotron sources. By using a pulsed electron source, foil heating is minimized and high peak currents can be obtained. The radiation produced can be in the soft (0.1 to 5 keV), warm (5 to 15 keV) and hard (> 15 keV) x-ray regions of the spectrum depending upon the foil material used, the foil thicknesses, and the electron-beam energy. Under Phase I the spectral and spatial photon densities from a titanium radiator, whose bandwidth is between 2 and 5 keV, were measured. Using a high current beam, the total power from this radiator, along with a copper radiator whose bandwidth was between 5 and 9 keV, was also measured. Cylindrical and ellipsoidal optics were used to focus the 2 to 5 keV photons to a 1-mm diameter spot 3 m from the radiator. In Phase II, a permanent x-ray beamline will be constructed at an existing accelerator. This beamline will then be used to test five radiators at high average and pulsed currents. These radiators will generate x-rays from 5 to 25 keV. Focusing optics will be designed, fabricated, and used to focus the x-rays in the 5 to 10 keV range. Three applications will be studied: (1) Laue diffraction in the study of the static and kinetic structures of protein molecules, (2) the production of x-ray lithographs using soft x-ray emission, and (3) flash soft x-ray emission from pulsed electron sources.
Deacon Research
2440 Embarcadero Way
Palo Alto, CA 94303

42. Solid State UV Light Source

David Deacon
415/493-6100

Funding Profile

Date Started: July 6, 1992
Anticipated Duration: 2 Years

FY 92 - $333,000
FY 93 - $167,000

Deacon Research is developing inexpensive, diode laser based sources of coherent radiation in the blue and ultraviolet regions of the spectrum. In the first phase of this program, we have achieved high efficiency doubling of a diode laser, and anchored these results to the theoretical structure needed to scale to other configurations. We intend to develop a system that produces high conversion efficiency into the ultraviolet. If we succeed, we will have created a revolutionary new tool for use by the biological analytical and scientific communities. The combined advantages of long laser lifetime and rugged components will enable this product to rapidly penetrate existing UV laser markets, and will open up new applications due to its small volume and low power consumption.
Deacon Research
2440 Embarcadero Way
Palo Alto, CA 94303

43. A Precision Undulator Adjustment Tool
David Deacon
415/493-6100

Funding Profile
Date Started: May 20, 1991
Anticipated Duration: 2 Years

The available means for trimming up undulator magnetic fields are inadequate both for free electron lasers (FELs) and advanced synchrotron radiation sources. This problem prevents the generation of short wavelengths with FELs, and limits the beam brightness in synchrotron light sources. This program will produce a measurement tool which measures directly the quantity of interest in undulators, the particle trajectory, rather than calculating it from other quantities. The result will be an improvement in the brightness and coherence of the beam produced by the undulator, and a reduction in the manpower required to achieve it. This technology enables the production of essentially perfect undulators with a length ten times longer than possible now. Such undulators in turn will make possible the production of coherent light in the extreme ultraviolet (XUV) and the x-ray regions of the spectrum. In the Phase I program, the accuracy of the experimental detection system was measured, and the system was shown to perform better than expected. In Phase II, an innovative particle beam/detector system will be built and used to measure one of the high quality undulators being produced at the Lawrence Berkeley Laboratory for the Advanced Light Source. A comparison with the measurements made by conventional means will establish the value of the device.
The Phase I investigation has shown that in the x-ray region, channeling radiation (CR) can be highly competitive in intensity to contemplated applications with a synchrotron radiation (SR) source or with the proposed transition radiation (TR) source, while from the economic standpoint it is clearly superior: the required 5-20 MeV electron linacs are available for about $1 million, but corresponding 0.5-1 GeV synchrotrons or storage rings are priced from $60 million up. Corresponding electron linacs for TR must have 200 MeV or more, also at much higher cost. Concentrating thus on CR in the x-ray region, a number of prototype experiments will be carried out in Phase II for applications of commercial or medical importance in order to verify the predicted intensity and the effectiveness of CR sources of several keV (perhaps tens of keV) for such applications. Foremost will be x-ray microlithography, where exposure times of only several minutes are expected for 4" x 4" wafers. In addition, angiography experiments on phantoms will be performed, for which a new approach based on calcium deposits will be tested. Further experiments will demonstrate the superiority of CR over conventional sources for applications on the detection of trace elements via fluorescence or on the structural analysis of macromolecules.
Material analysis studies that require well-collimated x-ray beams typically have long measurement times or require use of a synchrotron. The ability to substantially shorten data collection time for measurements such as diffraction would make these techniques more widely available and improve our national capacity to perform new materials research. Use of capillary based x-ray optics to collect and collimate a divergent beam laboratory x-ray source appears to be feasible, based on experimental and modeling data. The proposed project will include design, fabrication, and characterization of x-ray optics. These optics would be used in diffraction experiments to investigate the benefits from inclusion of the optic in the experimental setup. X-Ray Optical Systems, Inc. and its consultants from the Institute for Roentgen Optical Systems, Moscow, and the Center for X-Ray Optics, Albany, the groups most qualified with optics, will work with diffraction experts to evaluate the opportunity.
<table>
<thead>
<tr>
<th>Name</th>
<th>Project Numbers</th>
<th>Name</th>
<th>Project Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bardsley, J. N.</td>
<td>20</td>
<td>Leung, Ka-Ngo</td>
<td>19</td>
</tr>
<tr>
<td>Besmann, Theodore M.</td>
<td>29</td>
<td>Maroni, Victor A.</td>
<td>5</td>
</tr>
<tr>
<td>Brown, Ian G.</td>
<td>18</td>
<td>Marshall, Paul</td>
<td>44</td>
</tr>
<tr>
<td>Chaiko, David S.</td>
<td>2</td>
<td>Matthews, Ronald D.</td>
<td>39</td>
</tr>
<tr>
<td>Crivello, James V.</td>
<td>33</td>
<td>Nebel, Richard A.</td>
<td>22</td>
</tr>
<tr>
<td>Danly, Bruce G.</td>
<td>24</td>
<td>Pantell, Richard H.</td>
<td>36</td>
</tr>
<tr>
<td>Deacon, David</td>
<td>42, 43</td>
<td>Pellegrini, Claudio</td>
<td>12</td>
</tr>
<tr>
<td>Douglas, Kenneth</td>
<td>14</td>
<td>Piestrup, Melvin A.</td>
<td>40, 41</td>
</tr>
<tr>
<td>Feigelson, Robert S.</td>
<td>35</td>
<td>Prelas, Mark A.</td>
<td>27</td>
</tr>
<tr>
<td>Franken, Peter A.</td>
<td>8</td>
<td>Putterman, Seth J.</td>
<td>13</td>
</tr>
<tr>
<td>Friedman, Lewis</td>
<td>9</td>
<td>Rhodes, Charles K.</td>
<td>17</td>
</tr>
<tr>
<td>Gidley, David W.</td>
<td>26</td>
<td>Rocca, Jorge J.</td>
<td>15</td>
</tr>
<tr>
<td>Gorlov, Alexander M.</td>
<td>28</td>
<td>Scott, Timothy C.</td>
<td>30</td>
</tr>
<tr>
<td>Gruen, Dieter M.</td>
<td>3</td>
<td>Tomczuk, Zygmunt</td>
<td>6</td>
</tr>
<tr>
<td>Hagelstein, Peter L.</td>
<td>25</td>
<td>Tomkiewicz, Micha</td>
<td>10</td>
</tr>
<tr>
<td>Heller, Adam</td>
<td>37</td>
<td>Trebes, James E.</td>
<td>21</td>
</tr>
<tr>
<td>Ho, Kai-Ming</td>
<td>1</td>
<td>Tsao, George T.</td>
<td>32</td>
</tr>
<tr>
<td>Horwitz, E. Philip</td>
<td>4</td>
<td>Warren, Roger W.</td>
<td>23</td>
</tr>
<tr>
<td>Joshi, Chan J.</td>
<td>11</td>
<td>Wsielewski, Michael R.</td>
<td>7</td>
</tr>
<tr>
<td>Krishnan, Mahadevan</td>
<td>34</td>
<td>Weinstein, Roy</td>
<td>16</td>
</tr>
<tr>
<td>Kolomitsev, Alexandre</td>
<td>45</td>
<td>Woodward, Jonathan</td>
<td>31</td>
</tr>
<tr>
<td>Lagow, Richard J.</td>
<td>38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INSTITUTIONAL INDEX
(Project Numbers)

Adelphi Technology, Inc. 40, 41
Ames Laboratory 1
Argonne National Laboratory 2, 3, 4, 5, 6, 7
Arizona, University of 8
Brookhaven National Laboratory 9
Brooklyn College of City University of New York 10
California, University of, Los Angeles 11, 12, 13
Colorado, University of 14
Colorado State University 15
Deacon Research 42, 43
Houston, University of 16
Illinois, University of, Chicago 17
Lawrence Berkeley Laboratory 18, 19
Lawrence Livermore National Laboratory 20, 21
Los Alamos National Laboratory 22, 23
Massachusetts Institute of Technology 24, 25
Michigan, University of 26
Missouri, University of 27
Northeastern University 28
Oak Ridge National Laboratory 29, 30, 31
Purdue University 32
Rensselaer Polytechnic Institute 33
Science Research Laboratory 34
SFA, Inc. 44
Stanford University 35, 36
Texas, University of, Austin 37, 38, 39
X-Ray Optical Systems, Inc. 45
TO: Division of Advanced Energy Projects, ER-16
U.S. Department of Energy
Washington, D.C. 20585

FROM: __________________________
(Inc. tel #)

SIGNATURE: ______________________

☐ D. L. Barney ☐ G. C. Carter ☐ W. M. Polansky

☐ S. E. Stottlemyer

Message:

This document consists of _____ pages (including this cover).

TRANSMIT: 301/903-6067 (or -7363)
VERIFY: 301/903-5995