BES Scientific User Facilities

Office Hours April 18, 2024

Office of Science Statement of Commitment & Other Guidance

• SC Statement of Commitment – SC is fully and unconditionally committed to fostering safe, diverse, equitable, inclusive, and accessible work, research, and funding environments that value mutual respect and personal integrity.

https://science.osti.gov/SW-DEI/SC-Statement-of-Commitment

• **Expectations for Professional Behaviors** – SC's expectations of all participants to positively contribute to a professional, inclusive meeting that fosters a safe and welcoming environment for conducting scientific business, as well as outlines behaviors that are unacceptable and potential ramifications for unprofessional behavior.

https://science.osti.gov/SW-DEI/DOE-Diversity-Equity-and-Inclusion-Policies/Harassment

 How to Address or Report Behaviors of Concern – Process on how and who to report issues, including the distinction between reporting on unprofessional, disrespectful, or disruptive behaviors, and behaviors that constitute a violation of Federal civil rights statutes.

<u>https://science.osti.gov/SW-DEI/DOE-Diversity-Equity-and-Inclusion-Policies/How-to-Report-a-Complaint</u>

BES Scientific User Facilities Division

U.S. DEPARTMENT OF

Office of

Science

FY 2024

Basic Energy Sciences: Understanding Matter and Energy at Electronic, Atomic, and Molecular Levels

BES fulfills its mission through:

• Supporting **basic research**

Office of

Science

- "Grand Challenge" science
- Discovery and design of materials and chemical processes that underpin a broad range of energy technologies
- Expanding research at underrepresented institutions and regions
- Operating **world-class scientific user facilities** in X-ray, neutron, and nanoscale science
- Managing construction and upgrade projects to maintain world-leading scientific user facilities

BES Supports 12 of DOE's Office of Science 28 User Facilities

5 X-ray Light Sources (ALS, APS, LCLS, NSLS-II, SSRL) 5 Nanoscale Science Research Centers (CFN, CINT, CNM, CNMS, TMF) 2 Neutron Sources (HFIR, SNS)

User Access

- Proposal-based access: typically, 2-3 application deadlines per year
- Available to all researchers at <u>no cost</u> for non-proprietary research, regardless of affiliation, nationality, or source of research support
- Access based on external peer merit review of proposals
- Proprietary research may be performed at full-cost recovery
- Remote access mode is available
- Collaboration with facility scientists an optional potential benefit
- Instrument and technique workshops offered periodically
- A variety of on-line, on-site, and hands-on training available

FY 2023 Facility Users

By facility type

By discipline

	Bio and Life Sciences 2,190		Chemistry 1,812			
		Engineering 921		Earth Sciences 444 Coptics 274 Env.		nique ev. 11
Materials Sciences 4,982	Physics 1,467	Polymers 615		Sciences 390	Medical 148	Other 127

The NSRCs operate as a network of nanoscience user facilities

- Offer unique themes and capabilities of cutting-edge instrumentation plus highly-trained staff scientists
- Available to inter/national users through a competitive peer-reviewed proposal process

CFN (BNL) Start yr 2008

- Nanomaterial synthesis by assembly, *ex* and *in situ* characterization, and computation
- Accelerated nanomaterial discovery, including use of autonomous platforms
- Nanomaterials in operando conditions

Office of

Science

S. DEPARTMENT OF

CINT (SNL/LANL) Start yr 2006

- Electronics and photonics for QIS
- Optical nanomaterials
- Soft and hybrid materials' assembly
- *In situ* characterization in extreme environment
- AI/ML in nanoscience

CNM (ANL) Start yr 2007

- Interfaces, interactions and assembly at nanoscale
- Nanoscale Dynamics
- QIS at nanoscale
- AI/ML for accelerating nanoscience
- Nano-enabled energy, sustainability, and preparedness

CNMS (ORNL) Start yr 2006

- Materials science and
 QIS
- Polymer and soft matter
- Neutron nanoscience
- Electron & scanning probe microscopy
- AI/ML for accelerating nanoscience
- Nanofabrication and synthesis

Foundry (LBNL) Start yr 2006

- Soft matter synthesis and functionality
- Atomic-design of Energy and information dynamics
- Energy conversion & storage, separation
- Automated synthesis and ML characterization

Growth and Impact of User Community

C

Science

Modernizing Nanoscience Infrastructure

NSRC-Recapitalization will acquire & install 17 instruments across the network of NSRCs

"...a forward-looking, strategic investment in emerging areas of nanoscience, designed to ensure continued U.S. leadership in the... important materials advances of the upcoming decade."

Total Project Cost: \$80M, Early Completion estimated for Jan 2026

NSRC-Recap adds state-of-the-art capabilities in <u>three important areas</u>:

Decoding Nanoscale **Dynamics &** Heterogeneity

Expanding the Limits of Nanofabrication

- Advanced microscopes ٠
- Lithography and deposition ٠
- Robotics and multimodal tools
- Novel sample environments
- Time-resolved tools

BES Neutron Scattering Facilities

- Current power: 85 MW
- Highest steady-state brightness of thermal and cold neutrons
- Monochromatic beams
- Polarized beams
- Parametric studies
- ➤ Kinetics
- ➢ 12 instruments

S. DEPARTMENT OF

https://neutrons.ornl.gov/

Office of

Science

First Target Station

- Highest peak brightness of thermal neutrons
- ➢ High resolution
- Focused bandwidth
- High-resolution crystallography
- Fast and high-energy dynamics
- 24 instrument positions (19 built, 1 under construction, VENUS)

Users

Publications

BES X-ray Light Sources

Five sources (four synchrotrons and one free electron laser) employing advanced spectroscopy, scattering, and imaging for research in physical, chemical, and bio sciences, geo and environmental sciences, and medical/pharmaceutical sciences.

Advanced Light Source (LBNL)

- 3rd Gen synchrotron
- Massive upgrade in 2026!
- High brightness soft Xray source
- Material, chemical, geo and bio sciences, life sciences, pharma
- 42 beamlines

Advanced Photon Source (ANL)

- 4th Gen synchrotron
- Massive upgrade almost complete!
- High coherence, high brightness hard X-ray source
- Material, chemical, geo and bio sciences, life sciences, pharma
- 72 beamlines

Linac Coherent Light Source (SLAC)

- X-ray laser
- LCLS-II Upgrade complete!
- Femtosecond, ultrahigh brightness pulses, high repeat rate
- Materials science, matter in extreme conditions, "molecular movies", biosciences
- 9 instruments

National Synchrotron Light Source-II (BNL)

- 3.5th Gen synchrotron
- Beamline developments and expansions underway
- High brightness hard and soft X-ray source
- Material, chemical, geo and bio sciences, life sciences, pharma
- 29 beamlines

Stanford Synchrotron Radiation Lightsource (SLAC)

- 3rd Gen synchrotron
- Beamline developments and expansions underway
- High brightness hard Xray source
- Material, chemical, geo and bio sciences, life sciences, pharma
- 27 beamlines

Growth and Impact of User Community

BES Accelerator and Detector Research (ADR) Program

Mission: sustain R&D in accelerators, optics, and detectors with emphasis on providing support for existing & future BES facilities

Balanced support of :

- > existing facilities to guarantee continued performance
- future electron, light, and neutron sources R&D through innovative concepts, modeling, design, and testing
- detectors for electrons, x-rays, and neutrons
- > next generation of x-ray/neutron optics instruments
- AI/ML tools that address efficient extraction of critical and strategic information from large data

according to strategic needs and fund availability

BES User Facilities 10-years Outlook: Upgrades and Outages

Future BES Office Hours

- •Upcoming dates/topics:
 - Thursday, May 16, 2024 at 2pm ET Introduction to BES Chemical Sciences, Geosciences, and Biosciences Division - Organization, priorities, and funding opportunities
- Additional information and registration links here: <u>https://science.osti.gov/bes/officehours</u> (inc. this slide deck)

Zoom Poll

- How did you hear about these BES office hours?
- What additional office hours topics would interest you?

Questions?

