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The dislocation-network theory of Harper–Dorn (H–D) creep is reformulated using a new equation
for the kinetics of growth of individual dislocation links in the network. The new kinetic equation
has no impact on the scaled differential equation derived previously, which predicts the distribution
of link lengths. However, the new theory predicts slightly different behavior for the kinetics of static
recovery and leads to a new equation for the strain rate, which is expressed in terms of parameters
that can be evaluated independently. This equation is valid not only for steady-state H–D creep, but
is also valid for primary creep, provided the instantaneous value of the dislocation density is known.
Using data on the variation of dislocation density with time, calculated values of the creep rates for
Al deformed in the H–D regime agree with experimentally measured values to within a factor of 2.
Creep curves for Al are calculated with the same degree of accuracy. These calculations involve no
adjustable parameters. Steady-state creep rates for many materials presumably deformed in the H–D
creep regime are compared with the predictions of the new equation for the strain rate. The calculated
values agree with experimentally measured data to within a factor of about 150, which compares
well with the predictions of other equations proposed in the literature.

I. INTRODUCTION refine the network. What is probably not so readily appreci-
ated is the idea that positive plastic strain, i.e., strain in the

THE earliest attempts to explain the elevated-tempera- same direction as the applied stress, can also occur during
ture mechanical behavior of crystalline materials on the basis recovery of the network. That is, plastic deformation can be
of the dislocation-network theory[1–5] utilized average prop- accomplished through a reduction in the dislocation density,
erties of the networks, primarily the dislocation density; which is what happens when the network coarsens. We main-
these approaches were based on the early work of Frank.[6]

tain that all the strain generated during Harper–Dorn (H–D)
The dislocation network itself consists of a three-dimen- creep is a product of network coarsening.
sional array of individual dislocation lines (links) which The theory of Lagneborg and co-workers,[7–11] as well as
meet at nodes; in general, there are three links per node. our earliest efforts to explain high-temperature deformation
The dislocation density is the total length of all the links using a dislocation-network model,[12] were flawed for a
divided by the volume of the material. It is, therefore, an variety of reasons. Many of the deficiencies were rectified
important averaged property of the network, but it tells us

in our most recent article,[13] which incorporated severalvery little about the dynamics of network evolution. The
observations and ideas published after the appearance of theearly theories cited made no attempt to describe either the
last article from the Swedish group. These ideas includedistribution of link lengths or the evolution of this distribu-
scaling of the link-length distributions[14] and accounting fortion with time. This situation changed with the pioneering
the separate contributions of freely gliding links and networkefforts of Lagneborg and his co-workers,[7–11] who made the
links to the overall strain.[12,15] This latter idea leads, natur-first attempt to derive an equation, based on reasonable
ally, to an equation for the transition stress between power-physical arguments, capable of describing the dislocation-
law and H–D creep; this equation predicts the magnitudelink-length distribution and its relation to deformation. Not
of this stress with no adjustable parameters. A critical looksurprisingly, strain is produced by the motion of the disloca-
at network coarsening leads, naturally, to the idea of networktion links in the network in response to an applied stress. It
frustration,[16] which helps explain how the dislocation den-is evident that the glide of individual links produces plastic
sity during H–D creep might be the same for different valuesstrain, and it is certainly not difficult to visualize the idea
of the applied stress.that collisions between gliding links with each other or with

momentarily stationary links can produce new nodes and In our most recent article,[13] we used the scaling behavior
of the dislocation-link-length distribution, coupled with a
kinetic equation for network coarsening, to predict strain
rates and creep curves for comparison with existing data on

M.A. PRZYSTUPA, Adjunct Professor, and A.J. ARDELL, Professor, H–D creep of Al. In this work, we revisit these ideas and
are with the Department of Materials Science and Engineering, University

incorporate previous work on the physics of the movementof California, Los Angeles, CA 90095.
of dislocation nodes, to improve the equation for networkThis article is based on a presentation made in the workshop entitled

“Mechanisms of Elevated Temperature Plasticity and Fracture,” which was coarsening. The improvement produces new results, wherein
held June 27–29, 2001, in San Diego, CA, concurrent with the 2001 Joint the creep rates and creep curves for Al during H–D creep are
Applied Mechanics and Materials Summer Conference. The workshop was

reproduced to a high degree of accuracy with no adjustablesponsored by Basic Energy Sciences of the United States Department
of Energy. parameters. We also correlate extant data on steady-state
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H–D creep with our equation for this process and compare where k8 is a rate constant and L*(t) is a critical link length;
links with length L 5 L* are momentarily stationary in time.the correlation with others proposed in the literature.
The term in parentheses in Eq. [7] is also borrowed from
coarsening theory and leads to a simple and reasonable equa-II. REVIEW OF THE THEORY tion which describes the kinetics of static recovery in terms

The distribution of link lengths is described by the func- of the time-dependence of the dislocation density.[19] Lag-
tion f (L,t), where L is the length of an individual link in neborg also used Eq. [7] in his original article,[7] but with
the network (which takes the form of a circular arc under m 5 1.
applied stress s ), and f (L,t)dL is the number of links per
unit volume with a length between L and L 1 dL at time t. III. KINETICS OF LINK GROWTH
The evolution of the dislocation network during H–D creep

As mentioned earlier, Eq. [7] is largely empirical. It wouldis described by the partial differential equation[13]

be far more satisfactory if g(L,t) were related in a more
fundamental way to the dynamics of network growth. Anf (L,t)

t
5 2

f (L,t)g(L,t)
L

1 A(t) e
`

L

f (L8,t)
L8

dL8

[1]
equation which accomplishes this, and at the same time
satisfies the constraints imposed by the distribution of link
lengths, is proposed as follows. The starting point is the1 B(t)f (L,t)
equation

where the constants A(t) and B(t) are given by the equations
g [

dL
dt

5 vn 1L*
L 2

m

1 L
L*

2 12 [8]
A(t) 5 2

M0(t)

N
[2]

where vn is the velocity of the dislocation nodes in the
and network. This equation normalizes L by a natural length

scale of the system, namely L*, and at the same time couples
B(t) 5

1
N 1dN

dt
2 M0(t)2 [3] the coarsening of the network to the velocities of the nodes

to which the individual links are attached.
Following the work of Evans and Knowles,[20] we assumeThe important parameters N and M0(t) are the total number

that the nodes are spherical vacancy sinks/sources of diame-of links per unit volume and the rate of annihilation of links
ter b, i.e., equal to a Burgers vector, and that the climbper unit volume, respectively, and are related to the link-
velocity of a single node is equivalent to that of a jog.length distribution by the equations
According to Hirth and Lothe,[21] the velocity of a jog is

M0(t) 5 2lim
L→0

(J(L,t)) [4] given by the equation

and vn 5
4pbDF

kBT
[9]

where D is the lattice self-diffusion coefficient, kB is Boltz-N 5 e
`

0

f (L,t)dL [5]
mann’s constant, and F is the force per unit length on the
dislocation, which drives the motion of the node. In general,

where J(L,t) is the flux of links leaving the interval L, L 1 there are several contributions to F, including a contribution
dL at time t. Equation [4] represents the fraction of links from the applied stress. However, when s is small, as it is
shrinking to zero length at time t. The flux is given by in the case of H–D creep, the main contribution to F origi-
the equation nates from the net resolved force arising from the line ten-

sions of the three dislocations at the node.[20] In this case,J(L,t) 5 f (L,t)g(L,t) [6]
F, on average, is determined by the equation

where g(L,t) [ dL/dt is the rate at which a link of length L
changes with time. F '

G
^L&

[10]
One of the difficulties in the theory arises from determin-

ing an equation for g(L,t). Lin et al.[14] showed that f (L,t) where ^L& is the length of the average link in the network
→ Lm, where m is a constant, as L → 0 for all link-length and G is the dislocation-line tension. Substitution of Eq. [10]
distributions examined; the value of m is ' 4/3 for Al and into [9] leads to the result
3/2 for NaCl. This is an empirical result for which no theory
exists, although it is consistent with the behavior of, for vn 5

4pbDG
kBT^L&

[11]
example, particle-size distributions during diffusion-con-
trolled coarsening of precipitates (m 5 2)[17] and grain Since the link growth rate will be proportional to the node
growth (m 5 1)[18] in the limit of vanishingly small sizes. velocity, the expression for g becomes
Borrowing further from the theories of these processes,[17]

J(L,t) must remain finite in the limit L → 0. This condition g(L,t) 5
dL
dt

5
4pbDG
kBT^L& 1L*

L 2
m

1 L
L*

2 12 [12]
can be satisfied only if g → L2m in the same limit. An
equation for g(L,t) which is consistent with these require-
ments is

A. Scaling Equations

We scale the individual values of L by L* (t) and defineg(L,t) 5
k8

Lm 1 L
L*(t)

2 12 [7]
the time-invariant measure of the link length (u) as
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where
u 5

L
L*(t)

[13]

C 5
a

^u&2 e
uc

0

u22m (u 2 1)F(u)du [21]The scaled flux (q (u)) is defined as

q (u) 5 F(u)G(u) [14]

C. Network Coarsening
where F(u) is the scaled link-length distribution function

An important assumption of the theory is that there is noand G(u) is defined by the equation
fundamental difference between the kinetics of dislocation-
network coarsening under applied stress and coarsening

G(u) 5
u 2 1

um [15] under stress-free conditions (i.e., static recovery). The rate
constant k, given by Eq. [18], is independent of stress under

The partial differential equation for q (u) is these conditions. On first writing Eq. [12] as

g(L,t) 5
dL
dt

5
k

L*
(u 2 1)

um [22](u 2 1)2 d 2q (u)
du2 1 Mouum (u 2 1)

dq (u)
du

[16] and taking advantage of the similarity between the mathe-1 Mouum21 ((m 1 1)(u 2 1) 2 1)q (u) 5 0
matics of network coarsening and the coarsening of precipi-
tates,[22] the growth of L* during static recovery is readilywhich is identical in form to the one derived previously,[13]

shown to be governed by the relationshipalthough Mou is now given by the equation

(L*)2 2 (L*0 )2 5
2mm

(m 1 1)m11 kt [23]
Mou 5 2lim

u→0
F(u)G(u) 5 2lim

u→0
q (u) 5

(L*)2

kN
M0(t) [17]

where L*0 is the initial value of L*. Taking advantage of the
fact that ^u& 5 ^L&/L* and utilizing the relationship ^L& 5where k is the rate constant for the kinetics of link-length
b /r1/2, Eq. [23] is readily rewritten ascoarsening, given by

1
r

2
1
r0

5 kt [24]k 5
4pbDG
kBT^u&

[18]

where r0 is the initial dislocation density and k is a rate
and ^u& 5 ^L&/L* is the average value of u. The two boundary constant given by the equation
conditions required to integrate Eq. [16] and find q (u) and,
subsequently, F(u) via Eq. [14] are q (1) 5 0 and q (0) k 5 1^u&

b 2
2

2mm

(m 1 1)m11 k [25]
5 Mou .

Since the constants ^u&, b, and m are universal for a specific
material and can be evaluated from data on the link-length
distributions, Eq. [25] allows us to find k from the analysisB. The Strain Rate
of data on static recovery. It is emphasized that Eq. [25] is

In the dislocation-network theory of H–D creep, all the expected to be valid primarily at the beginning of static
strain is due to dislocation-network coarsening, and the strain recovery, because the network becomes frustrated on pro-
rate is given by relationship[12] longed aging,[15] and there is no provision for that process

in the theory. It is interesting to note that Eq. [24] is not
new, but is identical to the type of equation that emerges
from treating static recovery as a second-order kinetic proc-«̇ 5 abr e

Lc

0

f (L,t)g(L,t) sin2 1L
2r2 dL [19]

ess.[24] The derivation herein, which involves a mechanistic
treatment of the kinetics of node movement and the phenom-

where a ' 0.5 is a geometrical constant, and r 5 2G/sb enology of the kinetics of network coarsening, provides
is the radius of the bowed-out links under the applied stress, an expression for the rate constant k which has not been
s. The term Lc is equivalent to the length of a bowed- derived previously.
out dislocation segment during activation of a Frank–Read
source. Expressions for the line tension G and Lc are standard

IV. COMPARISON WITH EXPERIMENTALand, ultimately, lead to an expression for the transition stress
DATAbetween H–D and power-law creep.[16] Using the dimen-

sionless functions F(u) and G(u), Lc 5 pr and expanding The viability of the theory is tested here in two different
sin2 (pu/2uc) in a power series, taking advantage of the fact ways. The first is a comparison of its predictions with data
that u ¿ uc

[13] and using the new equations for g(L) and k on the experimental link-length distributions and strain rates
in Eqs. [12] and [18], the strain-rate equation ultimately relevant to the H–D creep of Al single crystals at 920 K
takes the form under applied stresses of 0.05, 0.06, and 0.08 MPa.[13,14,15]

The second evaluation of the theory involves a comparison
between the steady-state creep rate predicted by Eq. [20]«̇ 5

pCb3D
2kBT

rs [20]
with all known experimental data on the steady-state creep
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Table I. Compilation of the Data on the Link Length Distributions and Values of the Parameters Used in the Modeling of
the H–D Creep of Al Single Crystals Tested in Compression at 920 K under the Stresses Indicated

s (MPa) 5 0.05 0.06 0.08 Average St. Dev. Validity

N (mm23) 1045.5 987.4 878.8 970.5 84.6 steady state
^L& (mm) 0.0826 0.0841 0.0872 0.0846 0.0024
r (mm22) 86.32 83.00 76.61 81.98 4.98
L* (mm) 0.0403 0.0400 0.0423 0.0408 0.0012

^u& 2.058 2.108 2.068 2.078 0.0273 primary and steady-state region
b 0.767 0.766 0.763 0.7653 0.0021
Mou 0.556 0.509 0.611 0.559 0.051
k (m2s21) — — — 1.918 3 1029

c (mm2) 8.809 3 1023 — 1.169 3 1022 1.025 3 1022 2.035 3 1023

t (s) 2.879 3 105 — 8.748 3 105 5.81 3 105 4.15 3 105

C 0.264 0.266 0.270 0.267 0.003

rates during H–D creep. This comparison is made possible
by Eq. [20], which provides the dependence of «̇s on mate-
rial parameters.

A. The H–D Creep of Aluminum

This comparison is identical in many ways to the one the
authors previously published,[13] but it now takes into
account the newly developed relationship for the kinetics
of network coarsening. Since the differential Eq. [17] is
unaffected by the different forms of Eqs. [7] and [12], there
is no change at all of the parameters derived from the distri-
butions themselves, i.e., N, ^L&, r, L*, ^u&, b, and Mou are
exactly the same as they were before, although C is different
because of the way it has been defined in Eq. [21]. The
values of these parameters are shown in Table I.

We evaluate k as we did previously, i.e., by examining
the data of Hausselt and Blum[25] on static annealing of the

(a)dislocation microstructures in an Al-11 pct Zn alloy after
deformation in the steady-state creep regime at 523 K under
three different stresses. Their data are shown in Figure 1(a),
and the data on the shorter annealing times are plotted as
r21 vs t in Figure 1(b), where it is seen that k, which is
obtained from the slopes of the curves in Figure 1(b), is
nearly constant for all three stresses. The average value of
k estimated from the slopes of the least-squares regression
lines is 2.226 6 0.488 3 10215 m2 s21. Since this value of
k pertains to static recovery at 523 K, it is necessary to
estimate its value at 920 K, which is the temperature used for
the creep tests on Al.[15] Using the temperature dependence of
k and k on D/T from Eqs. [18] and [25] and the activation
energy of 143.4 kJ/mol for self-diffusion in Al,[26] we find
that k 5 1.918 3 1029 m2 s21 at 920 K.

Comparisons of the experimental and predicted creep rates
are shown in Figures 2(a) through (c). Figure 2(a) shows
the steady-state creep rates vs applied stress, Figure 2(b)
shows predicted and experimentally measured creep rates
during primary creep vs time for samples tested at 0.05 MPa, (b)
and Figure 2(c) shows the primary-creep data for samples Fig. 1—(a) Long- and (b) short-time data of Hausselt and Blum[25] on
tested at 0.08 MPa. The data in Figures 2(b) and (c) were dislocation recovery under zero stress in an Al-11 pct Zn alloy deformed
taken from the work of Lee.[23] In all cases, the theory at 523 K. The short-time data are plotted in (b) as r 21 vs t to obtain values

of the dislocation link-growth-rate constant k.predicts systematically smaller creep rates than the experi-
mentally measured ones by a factor of approximately 2. We
regard the agreement between theory and experiment as
outstanding, considering that primary and steady-state creep Equation [20] can also be integrated to obtained the creep

curves, provided that the change of dislocation density withrates have been predicted from the microstructural data alone
with no adjustable parameters. time is known. The variation of r with t, using the data
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(b)(a)

(c)

Fig. 2—Comparison of the measured and predicted creep rates for steady-state and primary creep vs time for Al single crystals tested at 920 K: (a) steady-
state creep, (b) primary creep under an applied stress of 0.05 MPa, and (c) as in (b) but for 0.08 MPa.

measured by Lee,[23] is shown in Figure 3(a). We assume in Table I and solving for « gives the following expression
for the creep curve:that the dislocation density during primary creep is governed

by the equation

« 5
Cpb3D

2kBT
tsrs 1t

t
1 ,n 11 2 crs e2t/t

1 2 crs
22 [27]

r21
s 2 r21 5 (r21

s 2 r21
i ) e2t/t [26]

where c 5 r21
s 2 r21

i .
The creep curves calculated using Eq. [24] are in quitewhere ri is the dislocation density on loading the specimen

and t is a phenomenological constant. Accordingly, the good agreement with the two experimental curves, as can
be seen in Figure 4. There are no adjustable parameters. Thedata of Lee[23] corresponding to the primary-creep regime

are shown in Figure 3(b), plotted in the form ln (r 21
s 2 calculated values of «̇s are smaller than those measured

experimentally, which manifests itself graphically in ther 21) vs t. The straight lines providing the best fit with the
data are shown, and it is evident that Eq. [26] does not smaller steady-state creep rates at both applied stresses. It

is perhaps worth noting that the value of k predicted by Eqs.describe the data very accurately. It is, nevertheless, good
enough for our purposes and provides the estimates of ri [18] and [25] is about a factor of 3 smaller than the average

value of k in Table I, which was obtained from analysis ofand t for the creep tests done at 0.05 and 0.08 MPa. Com-
bining Eqs. [20] and [27] with the values of t and c shown the data of Hausselt and Blum.[25]
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(a)(a)

(b)(b)

Fig. 4—Comparison of the experimental and predicted creep curves forFig. 3—(a) The experimental data of Lee[23] on the change of the dislocation
monocrystalline Al tested in compression at 920 K under applied stressesdensity vs time during primary H–D creep of Al single crystals. The data
of (a) s 5 0.05 MPa and (b) s 5 0.08 MPa. The experimental curves arein (a) are replotted in (b) as ln {r 21

s 2 r 21} vs t to obtain the phenomenolog-
from the data of Lee.[23]ical constants c and t (Eqs. [26] and [27]).

and where the authors included values of the dislocationB. Steady-State Creep-Rate Correlations for H–D Creep
density. All of the points, with the exception of the few data

Equation [20] can be rearranged in dimensionless form points for the highest stresses for olivine, were within our
to give theoretical limit for H–D creep.[16] This limit requires that

the acting stress be smaller than the stress necessary to bow2kBT«̇s

pCb3rDG
5

s
G

[28] the largest links in the distribution (equal to ,3^L&) into a
semicircular arc. One factor contributing to the discrepancy
in the case of olivine is the absence of reliable data onwhere the shear modulus (G) has been introduced artificially,

as it often is, for dimensional purposes. dislocation densities, which are difficult to measure in this
material. Another possible source of uncertainty is the mag-If we regard the parameters from the distribution of link

lengths as universal, i.e. assuming that the constant C is the nitude of the constant C, which was evaluated from Eq. [21].
It should be kept in mind that many of the materials involvedsame for all materials, we can plot all the known data on

H–D creep to test the validity of Eq. [28]. Such a plot is in the correlation in Figure 5 have limited numbers of slip
systems, even at elevated temperatures, and might, therefore,shown in Figure 5, where it is evident that the data are

scattered around the line of perfect agreement to within a have rather different dislocation-link-length distributions
than Al. This would certainly have some influence on thefactor of about 150. In constructing this plot, we have used

only those data which were clearly from the H–D region calculation of C, although we doubt that its magnitude would

236—VOLUME 33A, FEBRUARY 2002 METALLURGICAL AND MATERIALS TRANSACTIONS A



Fig. 5—Comparison of the available experimental data on steady-state Fig. 6—Same data as in Fig. 5, used for the comparison with the predictions
H–D creep with the predictions of the dislocation network theory, Eq. [28]. of the equation for the steady-state creep rate, Eq. [31], proposed by Langdon
As discussed in the text, only the data for which both the creep rates and and Wang.[28,29]

the dislocations densities were known could be used in the comparison.
The sources of data are summarized in Table II.

is assumed to be controlled by the lattice diffusion of vacan-
cies under saturation conditions. Based on theoretical consid-
erations, they proposed that the steady-state dislocationTable II. References Used as the Sources of Data for
density during H–D creep is related to the Peierls stress (tp)Estimating the Normalized Strain Rates in Figures 5
through the relationshipthrough 7; the Two Sets of Data on Al Were Obtained from

Monocrystalline and Polycrystalline Specimens
r 1/2 5

1.3tp

Gb
[30]

Strain Rates
and Dislocation Diffusion Plotting

The use of a reasonable expression for Vc in conjunctionData Set Stresses Density Coefficient Symbol
with Eqs. [29] and [30] leads to their equation for the normal-

Al (mono) 23 23 33 ● ized strain rate, i.e.,
Al (poly) 34 34 33 ✖
NaCl 35 35 33 m «̇kBT

AHD DLGb
5

s
G

[31]a -Zr 36 36 37 m
MgO 38 39 33 ✖
Fe-3Si 40 41 33 . where
Al-5Mg 42 42 33 c
Quartz 29 29 12 n

AHD 5 1.4 1tp

G2
2

[32]a -Ti 43 43 33
b -Co 43 43 13 i
Olivine 44, 45 44, 45 33 l

tp 5
G

1 2 v
exp 12

2p
(1 2 v)

d
b2 [33]

and d is the slip-plane spacing. The data in Figure 5 are
be affected by as much as a factor of 10. Nevertheless, there plotted in Figure 6 in accordance with the functional form
is no reason to think that C would be identical for materials of Eq. [31].
with very different crystal structures and slip systems. Ruano et al.[30,31,32] proposed a normalization based on
Finally, we have made no attempt to distinguish between an approach involving an internal stress (si). Their general
lattice diffusion and dislocation pipe diffusion, even though expression for the creep rate has the form
it is suspected that pipe diffusion could play an important
role in H–D creep at lower temperatures.[27]

«̇ 5
1
2

APL

Deff

b2 11s 1 si

E 2
n

[34]
It is useful to compare the correlation in Figure 5 with

those obtained from other equations for H–D creep. To this
end, we have chosen the equations proposed by Langdon 1

.s 2 si.
s 2 si

Zs 2 si

E Zn2and Wang,[28] Wang,[29] and Ruano et al.[30] Langdon and
Wang assumed that the H–D creep rate is given by the

where the stress exponent n 5 5 is appropriate for power-equation
law creep; Deff is an “effective” diffusion coefficient, which
for H–D creep is equivalent to D,[30] and APL is an empirical«̇ 5 rbVc [29]
material constant. For small stresses in the H–D regime
where s , si , and with si given by the equationwhere Vc is the climb velocity of jogged dislocations, which
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substitution allows us to calculate the instantaneous and
steady-state creep rates, and the creep curves, with very
good accuracy. The theoretical equation for the strain rate
is in fair agreement with a large body of data in the literature
on steady-state creep in the H–D regime. It is certainly as
good as some others, though it is far from perfect.
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