Energy is critical to all aspects of daily human activities and the economy. With world demand expected to double by 2050, science innovations are key to providing environmentally sustainable energy sources. By
exploring matter at its tiniest, nanoscale science offers great potential for delivering a range of these innovations—from tapping unused sun and wind energy to storing electrical energy at high density. Also possible are
the efficient use of energy in solid-state lighting and fuel cells and the production of electricity from advanced coal and nuclear power sources that emit no carbon dioxide. Because all the basic steps of energy conversion
(e.g., charge transfer, molecular rearrangement, and chemical reactions) take place at the nanoscale, high-performing nanomaterials could help transform the way energy is produced, stored, and consumed.
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Nanoscale Dynamics: Ultrafast Transformations

Molecules are constantly vibrating and reorienting themselves. Chemical reactions happen in an instant, when an
atom is captured by or freed from a molecule. All these things occur in mere quadrillionths of a second called a
femtosecond (fs). Photosynthesis, for example, is a natural ultrafast process that converts sunlight into chemical
energy that is easily stored and transported. To understand such complex reactions, researchers must be able to
observe them at the timescales on which they occur, and better understanding could lead to new materials that
perform similar functions.

Mission-Inspired Science

The energy systems of the future—whether they tap sunlight, store electricity, or make fuel from splitting water or reducing carbon dioxide—uwill revolve around materials and chemical changes that
convert energy from one form to another such as converting light to electricity. Such materials will need to be more functional than today’s energy materials. To control chemical reactions or to convert a
solar photon to an electron requires coordination of multiple steps, each carried out by customized materials with designed nanoscale structures not found in nature. Such advanced materials must be
designed and fabricated to exacting standards using principles revealed by basic science.

The Basic Energy Sciences (BES) program of the U.S. Department of Energy’s (DOE) Office of Science supports fundamental research to design, observe, measure, and understand how nanoscale systems How Fast Is Ultrafast?
function and interact with the environment. The Nanoscale Science Research Centers (NSRCs) are DOE's premier user facilities for interdisciplinary research at the nanoscale. New scientific understanding NATURE TECHNOLOGY
and technologies emerging from the NSRCs, as well as the BES Energy Frontier Research Centers, have the potential to transform understanding of energy and matter and to advance national, economic,
and energy security. Select examples of these discoveries are highlighted below.
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Mesoscale Science: Bridging from Atom to Bulk
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